Refine
Document Type
- Article (6)
Language
- English (6)
Has Fulltext
- yes (6)
Is part of the Bibliography
- no (6)
Keywords
- Catchment hydrological models (1)
- Global hydrological models (1)
- Hydrological droughts (1)
- ISIMIP (1)
- Model evaluation (1)
- Model validation (1)
The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at sqrt{s}=7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L_int = 5.6nb-1. The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p_t>1.3 GeV/c and rapidity |y|<0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the Psi(2S) and Csi_c resonances, is sigma_prompt-J/psi(pt > 1.3 GeV/c, |y| < 0.9) = 8.3 +- 0.8(stat.) +- 1.1(syst.) + 1.5 - 1.4(syst. pol.) micro barn. The cross section for the production of b-hadrons decaying to J/psi with p_t>1.3 GeV/c and |y|<0.9 is sigma_{J/psi<-h_B} = 1.46 +- 0.38(stat.) + 0.26 -0.32(syst.) micro barn. The results are compared to QCD model predictions. The shape of the p_t and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b-bbar pair total cross section and dsigma/dy at mid-rapidity.
Long-range angular correlations on the near and away side in p–Pb collisions at √sNN=5.02 TeV
(2013)
Angular correlations between charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges within 0.5<pT,assoc<pT,trig<4 GeV/c. The correlations are measured over two units of pseudorapidity and full azimuthal angle in different intervals of event multiplicity, and expressed as associated yield per trigger particle. Two long-range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity events. The excess on the near-side is qualitatively similar to that recently reported by the CMS Collaboration, while the excess on the away-side is reported for the first time. The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and pT bins, and the widths show no significant evolution with event multiplicity or pT. These findings suggest that the near-side ridge is accompanied by an essentially identical away-side ridge.
Although global- and catchment-scale hydrological models are often shown to accurately simulate long-term runoff time-series, far less is known about their suitability for capturing hydrological extremes, such as droughts. Here we evaluated simulations of hydrological droughts from nine catchment scale hydrological models (CHMs) and eight global scale hydrological models (GHMs) for eight large catchments: Upper Amazon, Lena, Upper Mississippi, Upper Niger, Rhine, Tagus, Upper Yangtze and Upper Yellow. The simulations were conducted within the framework of phase 2a of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2a). We evaluated the ability of the CHMs, GHMs and their respective ensemble means (Ens-CHM and Ens-GHM) to simulate observed hydrological droughts of at least one month duration, over 31 years (1971–2001). Hydrological drought events were identified from runoff-deficits and the Standardised Runoff Index (SRI). In all catchments, the CHMs performed relatively better than the GHMs, for simulating monthly runoff-deficits. The number of drought events identified under different drought categories (i.e. SRI values of -1 to -1.49, -1.5 to -1.99, and ≤-2) varied significantly between models. All the models, as well as the two ensemble means, have limited abilities to accurately simulate drought events in all eight catchments, in terms of their occurrence and magnitude. Overall, there are opportunities to improve both CHMs and GHMs for better characterisation of hydrological droughts.
Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1–10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.
Land surface and hydrologic models (LSM/HM) are used at diverse spatial resolutions ranging from 1-10 km in catchment-scale applications to over 50 km in global-scale applications. Application of the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the model resolution and fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent and realistic parameter fields for land surface geophysical properties. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB and WaterGAP models are conducted to demonstrate the pitfalls of poor parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge’s 1982 statement on the unsolved problem of parameterization in these models remains true. We provide a short review of existing parameter regionalization techniques and discuss a method for obtaining seamless hydrological predictions of water fluxes and states across multiple spatial resolutions. The multiscale parameter regionalization (MPR) technique is a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. A general model protocol is presented to describe how MPR can be applied to a specific model, with an example of this application using the PCR-GLOBWB model. Applying MPR to PCR-GLOBWB substantially improves the flux-matching condition. Estimation of evapotranspiration without MPR at 5 arcmin and 30 arcmin spatial resolutions for the Rhine river basin results in a difference of approximately 29%. Applying MPR reduce this difference to 9%. For total soil water, the differences without and with MPR are 25% and 7%, respectively.
Synaptic long-term potentiation (LTP) at spinal neurons directly communicating pain-specific inputs from the periphery to the brain has been proposed to serve as a trigger for pain hypersensitivity in pathological states. Previous studies have functionally implicated the NMDA receptor-NO pathway and the downstream second messenger, cGMP, in these processes. Because cGMP can broadly influence diverse ion-channels, kinases, and phosphodiesterases, pre- as well as post-synaptically, the precise identity of cGMP targets mediating spinal LTP, their mechanisms of action, and their locus in the spinal circuitry are still unclear. Here, we found that Protein Kinase G1 (PKG-I) localized presynaptically in nociceptor terminals plays an essential role in the expression of spinal LTP. Using the Cre-lox P system, we generated nociceptor-specific knockout mice lacking PKG-I specifically in presynaptic terminals of nociceptors in the spinal cord, but not in post-synaptic neurons or elsewhere (SNS-PKG-I−/− mice). Patch clamp recordings showed that activity-induced LTP at identified synapses between nociceptors and spinal neurons projecting to the periaqueductal grey (PAG) was completely abolished in SNS-PKG-I−/− mice, although basal synaptic transmission was not affected. Analyses of synaptic failure rates and paired-pulse ratios indicated a role for presynaptic PKG-I in regulating the probability of neurotransmitter release. Inositol 1,4,5-triphosphate receptor 1 and myosin light chain kinase were recruited as key phosphorylation targets of presynaptic PKG-I in nociceptive neurons. Finally, behavioural analyses in vivo showed marked defects in SNS-PKG-I−/− mice in several models of activity-induced nociceptive hypersensitivity, and pharmacological studies identified a clear contribution of PKG-I expressed in spinal terminals of nociceptors. Our results thus indicate that presynaptic mechanisms involving an increase in release probability from nociceptors are operational in the expression of synaptic LTP on spinal-PAG projection neurons and that PKG-I localized in presynaptic nociceptor terminals plays an essential role in this process to regulate pain sensitivity.