Refine
Document Type
- Preprint (7)
- diplomthesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (9)
Is part of the Bibliography
- no (9)
Keywords
- colour model (1)
- flavour model (1)
- quark mass (1)
- quark matter (1)
Institute
- Physik (9)
- Sportwissenschaften (1)
In this thesis, I study the phase diagram of dense, locally neutral three-flavor quark matter as a function of the strange quark mass, the quark chemical potential, and the temperature, employing a general nine-parameter ansatz for the gap matrix. At zero temperature and small values of the strange quark mass, the ground state of quark matter corresponds to the color–flavor-locked (CFL) phase. At some critical value of the strange quark mass, this is replaced by the recently proposed gapless CFL (gCFL) phase. I also find several other phases, for instance, a metallic CFL (mCFL) phase, a so-called uSC phase where all colors of up quarks are paired, as well as the standard two-flavor color-superconducting (2SC) phase and the gapless 2SC (g2SC) phase. I also study the phase diagram of dense, locally neutral three-flavor quark matter within the framework of a Nambu–Jona-Lasinio (NJL) model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagram in the plane of temperature and quark chemical potential is presented. The results for two qualitatively different regimes, intermediate and strong diquark coupling strength, are presented. It is shown that the role of gapless phases diminishes with increasing diquark coupling strength. In addition, I study the effect of neutrino trapping on the phase diagram of dense, locally neutral three-flavor quark matter within the same NJL model. The phase diagrams in the plane of temperature and quark chemical potential, as well as in the plane of temperature and leptonnumber chemical potential are presented. I show that neutrino trapping favors two-flavor color superconductivity and disfavors the color–flavor-locked phase at intermediate densities of matter. At the same time, the location of the critical line separating the two-flavor color-superconducting phase and the normal phase of quark matter is little affected by the presence of neutrinos. The implications of these results for the evolution of protoneutron stars are briefly discussed.
We discuss the phase diagram of moderately dense, locally neutral three-flavor quark matter using the framework of an effective model of quantum chromodynamics with a local interaction. The phase diagrams in the plane of temperature and quark chemical potential as well as in the plane of temperature and lepton-number chemical potential are discussed.
We study the effect of neutrino trapping on the phase diagram of dense, locally neutral three-flavor quark matter within the framework of a Nambu--Jona-Lasinio model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagrams in the plane of temperature and quark chemical potential, as well as in the plane of temperature and lepton-number chemical potential are presented. We show that neutrino trapping favors two-flavor color superconductivity and disfavors the color-flavor-locked phase at intermediate densities of matter. At the same time, the location of the critical line separating the two-flavor color-superconducting phase and the normal phase of quark matter is little affected by the presence of neutrinos. The implications of these results for the evolution of protoneutron stars are briefly discussed. PACS numbers: 12.39.-x 12.38.Aw 26.60.+c
The properties of the outer crust of non-accreting cold neutron stars are studied by using modern nuclear data and theoretical mass tables updating in particular the classic work of Baym, Pethick and Sutherland. Experimental data from the atomic mass table from Audi, Wapstra, and Thibault of 2003 is used and a thorough comparison of many modern theoretical nuclear models, relativistic and non-relativistic ones, is performed for the first time. In addition, the influences of pairing and deformation are investigated. State-of-the-art theoretical nuclear mass tables are compared in order to check their differences concerning the neutron dripline, magic neutron numbers, the equation of state, and the sequence of neutron-rich nuclei up to the dripline in the outer crust of non-accreting cold neutron stars.
We study the phase diagram of dense, locally neutral three-flavor quark matter within the framework of the Nambu--Jona-Lasinio model. In the analysis, dynamically generated quark masses are taken into account self-consistently. The phase diagram in the plane of temperature and quark chemical potential is presented. The results for two qualitatively different regimes, intermediate and strong diquark coupling strength, are presented. It is shown that the role of gapless phases diminishes with increasing diquark coupling strength.
We study the phase diagram of dense, locally neutral three-flavor quark matter as a function of the strange quark mass, the quark chemical potential, and the temperature, employing a general nine-parameter ansatz for the gap matrix. At zero temperature and small values of the strange quark mass, the ground state of matter corresponds to the color-flavor-locked (CFL) phase. At some critical value of the strange quark mass, this is replaced by the recently proposed gapless CFL (gCFL) phase. We also find several other phases, for instance, a metallic CFL (mCFL) phase, a so-called uSC phase where all colors of up quarks are paired, as well as the standard two-flavor color-superconducting (2SC) phase and the gapless 2SC (g2SC) phase.
We discuss gapless colour superconductivity for neutral quark matter in β equilibrium at zero as well as at nonzero temperature. Basic properties of gapless superconductors are reviewed. The current progress and the remaining problems in the understanding of the phase diagram of strange quark matter are discussed.
We compare quark stars made of color-superconducting quark matter to normal-conducting quark stars. We focus on the most simple color-superconducting system, a two-flavor color superconductor, and employ the Nambu-Jona-Lasinio (NJL) model to compute the gap parameter and the equation of state. By varying the strength of the four-fermion coupling of the NJL model, we study the mass and the radius of the quark star as a function of the value of the gap parameter. If the coupling constant exceeds a critical value, the gap parameter does not vanish even at zero density. For coupling constants below this critical value, mass and radius of a color-superconducting quark star change at most by ca. 20% compared to a star consisting of normal-conducting quark matter. For coupling constants above the critical value mass and radius may change by factors of two or more.
Die Motivation dieser Diplomarbeit bestand darin, die Unterschiede zwischen der 2SC-< ud >-farbsupraleitenden und der normalleitenden Phase der Quarkmaterie aufzuzeigen und die Auswirkungen der 2SC-< ud >-farbsupraleitenden Phase auf Quarksterne zu untersuchen. Dabei sollte festgestellt werden, wie groß der farbsupraleitende Gap sein muß, damit sich die Eigenschaften der Quarksterne merklich ändern. Dazu wurde die Kopplungskonstante variiert. Die Ergebnisse aus Kapitel 5 lassen sich somit zu folgenden Resultaten zusammenfassen: Die 2SC-< ud >-farbsupraleitende wird immer der normalleitenden Phase der Quarkmaterie vorgezogen, weil sie energetisch günstiger ist. Zudem muß die Quarkmaterie neutral sein, denn sonst würde sie wegen der abstoßenden Coulombkraft nicht stabil sein und die Quarksterne würden explodieren. 2SC-< ud >-farbsupraleitende Quarkmateriemit freien, massiven strange Quarks besitzt den höchsten Druck bei gegebenem quarkchemischen Potential und ist damit am meisten bevorzugt vor allen anderen in dieser Diplomarbeit betrachteten Quarkmateriephasen. Durch das Einführen des farbchemischen und elektrischen Potentials wird die 2SC-< ud >- farbsupraleitende Quarkmaterie neutralisiert. In der 2SC-< ud >-farbsupraleitenden Phase ohne strange Quarks werden jedoch so viele Elektronen zur Neutralisation benötigt, daß der farbsupraleitende Gap erheblich verringert wird. Die 2SC-< ud >-farbsupraleitende Phase mit freien, massiven strange Quarks wird gegenüber der 2SC-< ud >-farbsupraleitenden Phase ohne strange Quarks energetisch bevorzugt, weil erstere nicht so viele Elektronen zur Neutralisation benötigt, da diese Aufgabe hauptsächlich von den strange Quarks übernommen und dadurch der Gap nicht so erheblich reduziert wird. Zudem kommt noch der freie strange Quarkdruck hinzu, der diesen Zustand energetisch begünstigt. 2SC-< ud >-farbsupraleitende Quarksterne ohne strange Quarks besitzen einen maximal 122 Meter kleineren Radius und eine maximal 0.016 M⊙ kleinere Masse als normalleitende Quarksterne ohne strange Quarks. 2SC-< ud >-farbsupraleitende Quarksterne mit strange Quarks besitzen einen maximal 72 Meter kleineren Radius und eine maximal 0.023 M⊙ kleinere Masse als normalleitende Quarksterne mit strange Quarks. Erhöht man den farbsupraleitenden Gap, dann werden die Quarksterne größer und schwerer. Vergrößert man die Kopplungskonstante um das 1.5-fache des angegebenen Referenzwertes (5.2), dann ungefähr verdoppelt sich der farbsupraleitende Gap. Ein Quarkstern mit strange Quarks weist dann eine Radiusdifferenz von einem Kilometer und eine Massendifferenz von 0.31 M⊙ zu einem Quarkstern mit normalleitender Phase auf. Durch Verringern des Referenzwertes der Kopplungskonstante wird auch der farbsupraleitende Gap reduziert und es treten so gut wie keine Unterschiede mehr zur normalleitenden Phase des Quarksterns auf.