Refine
Year of publication
Document Type
- Article (33)
- Preprint (17)
- Working Paper (4)
- Book (1)
- Conference Proceeding (1)
Has Fulltext
- yes (56)
Is part of the Bibliography
- no (56)
Keywords
- Angiogenesis (2)
- Börsenkurs (2)
- Deutschland (2)
- Gene regulation (2)
- AKI (1)
- Aktienanalyse (1)
- Aktienbewertung (1)
- Aktienkurs (1)
- Anandamide (1)
- Anura (1)
Institute
Impaired alveolar formation and maintenance are features of many pulmonary diseases that are associated with significant morbidity and mortality. In a forward genetic screen for modulators of mouse lung development, we identified the non-muscle myosin II heavy chain gene, Myh10. Myh10 mutant pups exhibit cyanosis and respiratory distress, and die shortly after birth from differentiation defects in alveolar epithelium and mesenchyme. From omics analyses and follow up studies, we find decreased Thrombospondin expression accompanied with increased matrix metalloproteinase activity in both mutant lungs and cultured mutant fibroblasts, as well as disrupted extracellular matrix (ECM) remodeling. Loss of Myh10 specifically in mesenchymal cells results in ECM deposition defects and alveolar simplification. Notably, MYH10 expression is downregulated in the lung of emphysema patients. Altogether, our findings reveal critical roles for Myh10 in alveologenesis at least in part via the regulation of ECM remodeling, which may contribute to the pathogenesis of emphysema.
The directed and elliptic flow of protons and charged pions has been observed from the semi-central collisions of a 158 GeV/nucleon Pb beam with a Pb target. The rapidity and transverse momentum dependence of the flow has been measured. The directed flow of the pions is opposite to that of the protons but both exhibit negative flow at low pt. The elliptic flow of both is fairly independent of rapidity but rises with pt. PACS numbers: 25.75.-q, 25.75.Ld
Using the NA49 main TPC, the central production of hyperons has been measured in CERN SPS Pb - Pb collisions at 158 GeV c-1. The preliminary ratio, studied at 2.0 < y < 2.6 and 1 < pT < 3 GeV c-1, equals ~ (13 ± 4)% (systematic error only). It is compatible, within errors, with the previously obtained ratios for central S + S [1], S + W [2], and S + Au [3] collisions. The fit to the transverse momentum distribution resulted in an inverse slope parameter T of 297 MeV. At this level of statistics we do not see any noticeable enhancement of hyperon production with the increased volume (and, possibly, degree of equilibration) of the system from S + S to Pb + Pb. This result is unexpected and counterintuitive, and should be further investigated. If confirmed, it will have a significant impact on our understanding of mechanisms leading to the enhanced strangeness production in heavy-ion collisions.
Preliminary data on phi production in central Pb + Pb collisions at 158 GeV per nucleon are presented, measured by the NA49 experiment in the hadronic decay channel phi - K+K-. At mid-rapidity, the kaons were separated from pions and protons by combining dE/dx and time-of-flight information; in the forward rapidity range only dE/dx identification was used to obtain the rapidity distribution and a rapidity-integrated mt-spectrum. The mid-rapidity yield obtained was dN/dy = 1.85 ± 0.3 per event; the total phi multiplicity was estimated to be 5.0 ± 0.7 per event. Comparison with published pp data shows a slight, but not very significant strangeness enhancement.
Lambda and Antilambda reconstruction in central Pb+Pb collisions using a time projection chamber
(1997)
The large acceptance time projection chambers of the NA49 experiment are used to record the trajectory of charged particles from Pb + Pb collisions at 158 GeV per nucleon. Neutral strange hadrons have been reconstructed from their charged decay products. To obtain distributions of Λ, and Ks0 in discrete bins of rapidity, y, and transverse momentum, pT, calculations have been performed to determine the acceptance of the detector and the efficiency of the reconstruction software as a function of both variables. The lifetime distributions obtained give values of cτ = 7.8 ± 0.6 cm for Λ and cτ = 2.5 ± 0.3 cm for Ks0, consistent with data book values.
The large acceptance TPCs of the NA49 spectrometer allow for a systematic multidimensional study of two-particle correlations in different part of phase space. Results from Bertsch-Pratt and Yano-Koonin-Podgoretskii parametrizations are presented differentially in transverse pair momentum and pair rapidity. These studies give an insight into the dynamical space-time evolution of relativistic Pb+Pb collisions, which is dominated by longitudinal expansion.
Two-particle correlation functions of negative hadrons over wide phase space, and transverse mass spectra of negative hadrons and deuterons near mid-rapidity have been measured in central Pb+Pb collisions at 158 GeV per nucleon by the NA49 experiment at the CERN SPS. A novel Coulomb correction procedure for the negative two-particle correlations is employed making use of the measured oppositely charged particle correlation. Within an expanding source scenario these results are used to extract the dynamic characteristics of the hadronic source, resolving the ambiguities between the temperature and transverse expansion velocity of the source, that are unavoidable when single and two particle spectra are analysed separately. The source shape, the total duration of the source expansion, the duration of particle emission, the freeze-out temperature and the longitudinal and transverse expansion velocities are deduced.
Non-standard errors
(2021)
In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in sample estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: non-standard errors. To study them, we let 164 teams test six hypotheses on the same sample. We find that non-standard errors are sizeable, on par with standard errors. Their size (i) co-varies only weakly with team merits, reproducibility, or peer rating, (ii) declines significantly after peer-feedback, and (iii) is underestimated by participants.
Transcription factors can serve as links between tumor microenvironment signaling and oncogenesis. Interferon regulatory factor 9 (IRF9) is recruited and expressed upon interferon stimulation and is dependent on cofactors that exert in tumor-suppressing or oncogenic functions via the JAK-STAT pathway. IRF9 is frequently overexpressed in human lung cancer and is associated with decreased patient survival; however, the underlying mechanisms remain to be elucidated. Here, we used stably transduced lung adenocarcinoma cell lines (A549 and A427) to overexpress or knockdown IRF9. Overexpression led to increased oncogenic behavior in vitro, including enhanced proliferation and migration, whereas knockdown reduced these effects. These findings were confirmed in vivo using lung tumor xenografts in nude mice, and effects on both tumor growth and tumor mass were observed. Using RNA sequencing, we identified versican (VCAN) as a novel downstream target of IRF9. Indeed, IRF9 and VCAN expression levels were found to be correlated. We showed for the first time that IRF9 binds at a newly identified response element in the promoter region of VCAN to regulate its transcription. Using an siRNA approach, VCAN was found to enable the oncogenic properties (proliferation and migration) of IRF9 transduced cells, perhaps with CDKN1A involvement. The targeted inhibition of IRF9 in lung cancer could therefore be used as a new treatment option without multimodal interference in microenvironment JAK-STAT signaling.
We report measurements of Xi and Xi-bar hyperon absolute yields as a function of rapidity in 158 GeV/c Pb+Pb collisions. At midrapidity, dN/dy = 2.29 +/- 0.12 for Xi, and 0.52 +/- 0.05 for Xi-bar, leading to the ratio of Xi-bar/Xi = 0.23 +/- 0.03. Inverse slope parameters fitted to the measured transverse mass spectra are of the order of 300 MeV near mid-rapidity. The estimated total yield of Xi particles in Pb+Pb central interactions amounts to 7.4 +/- 1.0 per collision. Comparison to Xi production in properly scaled p+p reactions at the same energy reveals a dramatic enhancement (about one order of magnitude) of Xi production in Pb+Pb central collisions over elementary hadron interactions.