Refine
Year of publication
Language
- English (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- Chronic kidney disease (2)
- survival (2)
- Aortic stiffness (1)
- Cardiovascular magnetic resonance (1)
- Coronary artery disease (1)
- EBV (1)
- Edema (1)
- Genetics (1)
- Heart failure (1)
- Immunogenetics (1)
Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We have further developed the existing water footprint methodology by globally resolving virtual water flows and import and source regions at 5 arc minutes spatial resolution, and by assessing local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2% and 0.5%, respectively, roughly equal to local drinking water abstractions of these cities. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.
Water footprints have been proposed as sustainability indicators, relating the consumption of goods like food to the amount of water necessary for their production and the impacts of that water use in the source regions. We further developed the existing water footprint methodology, by globally resolving virtual water flows from production to consumption regions for major food crops at 5 arcmin spatial resolution. We distinguished domestic and international flows, and assessed local impacts of export production. Applying this method to three exemplary cities, Berlin, Delhi and Lagos, we find major differences in amounts, composition, and origin of green and blue virtual water imports, due to differences in diets, trade integration and crop water productivities in the source regions. While almost all of Delhi's and Lagos' virtual water imports are of domestic origin, Berlin on average imports from more than 4000 km distance, in particular soy (livestock feed), coffee and cocoa. While 42% of Delhi's virtual water imports are blue water based, the fractions for Berlin and Lagos are 2 and 0.5%, respectively, roughly equal to the water volumes abstracted in these two cities for domestic water use. Some of the external source regions of Berlin's virtual water imports appear to be critically water scarce and/or food insecure. However, for deriving recommendations on sustainable consumption and trade, further analysis of context-specific costs and benefits associated with export production will be required.
Global change effects on biodiversity and human wellbeing call for improved long-term environmental data as a basis for science, policy and decision making, including increased interoperability, multifunctionality, and harmonization. Based on the example of two global initiatives, the International Long-Term Ecological Research (ILTER) network and the Group on Earth Observations Biodiversity Observation Network (GEO BON), we propose merging the frameworks behind these initiatives, namely ecosystem integrity and essential biodiversity variables, to serve as an improved guideline for future site-based long-term research and monitoring in terrestrial, freshwater and coastal ecosystems. We derive a list of specific recommendations of what and how to measure at a monitoring site and call for an integration of sites into co-located site networks across individual monitoring initiatives, and centered on ecosystems. This facilitates the generation of linked comprehensive ecosystem monitoring data, supports synergies in the use of costly infrastructures, fosters cross-initiative research and provides a template for collaboration beyond the ILTER and GEO BON communities.
In Eurotransplant kidney allocation system (ETKAS), candidates can be considered unlimitedly for repeated re‐transplantation. Data on outcome and benefit are indeterminate. We performed a retrospective 15‐year patient and graft outcome data analysis from 1464 recipients of a third or fourth or higher sequential deceased donor renal transplantation (DDRT) from 42 transplant centers. Repeated re‐DDRT recipients were younger (mean 43.0 vs. 50.2 years) compared to first DDRT recipients. They received grafts with more favorable HLA matches (89.0% vs. 84.5%) but thereby no statistically significant improvement of patient and graft outcome was found as comparatively demonstrated in 1st DDRT. In the multivariate modeling accounting for confounding factors, mortality and graft loss after 3rd and ≥4th DDRT (P < 0.001 each) and death with functioning graft (DwFG) after 3rd DDRT (P = 0.001) were higher as compared to 1st DDRT. The incidence of primary nonfunction (PNF) was also significantly higher in re‐DDRT (12.7%) than in 1st DDRT (7.1%; P < 0.001). Facing organ shortage, increasing waiting time, and considerable mortality on dialysis, we question the current policy of repeated re‐DDRT. The data from this survey propose better HLA matching in first DDRT and second DDRT and careful selection of candidates, especially for ≥4th DDRT.
Background: Kidney transplant recipients (KTR) reflect a high-risk population for coronary artery disease (CAD). CAD is the most common cause for morbidity and mortality in this population. However, only few data are available on the favourable revascularization strategy for these patients as they were often excluded from studies and not mentioned in guidelines.
Methods: This retrospective single-centre study includes patients with a history of kidney transplantation undergoing myocardial revascularization for multivessel or left main CAD by either percutaneous coronary intervention (PCI, n = 27 patients) or coronary artery bypass grafting (CABG, n = 24 patients) at University Hospital Frankfurt, Germany, between 2005 and 2015.
Results: In-hospital mortality was higher in the CABG group (20.8% vs. 14.8% PCI group; p = 0.45). In Kaplan-Meier analysis, one-year-survival showed better outcome in the PCI group (85.2% vs. 75%). After four years, outcome was comparable between both strategies (PCI 66.5% vs. CABG 70.8%; log-rank p = 0.94).
Acute kidney injury (AKI), classified by Acute Kidney Injury Network, was observed more frequently after CABG (58.3% vs. 18.5%; p < 0.01). After one year, graft survival was 95.7% in the PCI group and 94.1% in the CABG group. Four year follow-up showed comparable graft survival in both groups (76.8% PCI and 77.0% CABG; p = 0.78).
Conclusion: In this retrospective single-centre study of KTR requiring myocardial revascularization, PCI seems to be superior to CABG with regard to in-hospital mortality, acute kidney injury and one-year-survival. To optimise treatment of these high-risk patients, larger-scaled studies are urgently warranted.
This study describes a simple technique that improves a recently developed 3D sub-diffraction imaging method based on three-photon absorption of commercially available quantum dots. The method combines imaging of biological samples via tri-exciton generation in quantum dots with deconvolution and spectral multiplexing, resulting in a novel approach for multi-color imaging of even thick biological samples at a 1.4 to 1.9-fold better spatial resolution. This approach is realized on a conventional confocal microscope equipped with standard continuous-wave lasers. We demonstrate the potential of multi-color tri-exciton imaging of quantum dots combined with deconvolution on viral vesicles in lentivirally transduced cells as well as intermediate filaments in three-dimensional clusters of mouse-derived neural stem cells (neurospheres) and dense microtubuli arrays in myotubes formed by stacks of differentiated C2C12 myoblasts.
Background: Patients with chronic kidney disease (CKD) have considerable cardiovascular morbidity and mortality. Aortic stiffness is an independent predictor of cardiovascular risk and related to left ventricular remodeling and heart failure. Myocardial fibrosis is the pathophysiological hallmark of the failing heart.
Methods and results: An observational study of consecutive CKD patients (n = 276) undergoing comprehensive clinical cardiovascular magnetic resonance imaging. The relationship between aortic stiffness, myocardial fibrosis, left ventricular remodeling and the severity of chronic kidney disease was examined. Compared to age-gender matched controls with no known kidney disease (n = 242), CKD patients had considerably higher myocardial native T1 and central aortic PWV (p ≪ 0.001), as well as abnormal diastolic relaxation by E/e′ (mean) by echocardiography (p ≪ 0.01). A third of all patients had LGE, with similar proportions for the presence and the (ischaemic and non-ischaemic) pattern between the groups. PWV was strongly associated with and age, NT-proBNP and native T1 in both groups, but not with LGE presence or type; the associations were amplified in severe CKD stages. In multivariate analyses, PWV was independently associated with native T1 in both groups (p ≪ 0.01) with near two-fold increase in adjusted R2 in the presence of CKD (native T1 (10 ms) R2, B(95%CI) CKD vs. non-CKD 0.28, 0.2(0.15–0.25) vs. 0.18, 0.1(0.06–0.15), p ≪ 0.01).
Conclusions: Aortic stiffness and interstitial myocardial fibrosis are interrelated; this association is accelerated in the presence of CKD, but independent of LGE. Our findings reiterate the significant contribution of CKD-related factors to the pathophysiology of cardiovascular remodeling.
The tyrosine kinase inhibitor sunitinib is used as first‐line therapy in patients with metastasized renal cell carcinoma (mRCC), given in fixed‐dose regimens despite its high variability in pharmacokinetics (PKs). Interindividual variability of drug exposure may be responsible for differences in response. Therefore, dosing strategies based on pharmacokinetic/pharmacodynamic (PK/PD) models may be useful to optimize treatment. Plasma concentrations of sunitinib, its active metabolite SU12662, and the soluble vascular endothelial growth factor receptors sVEGFR‐2 and sVEGFR‐3, were measured in 26 patients with mRCC within the EuroTARGET project and 21 patients with metastasized colorectal cancer (mCRC) from the C‐II‐005 study. Based on these observations, PK/PD models with potential influence of genetic predictors were developed and linked to time‐to‐event (TTE) models. Baseline sVEGFR‐2 levels were associated with clinical outcome in patients with mRCC, whereas active drug PKs seemed to be more predictive in patients with mCRC. The models provide the basis of PK/PD‐guided strategies for the individualization of anti‐angiogenic therapies.
Background: The importance of the Notch signaling in the development of glomerular diseases has been recently described. Therefore we analyzed in podocytes the expression and activity of ADAM10, one important component of the Notch signaling complex. Methods: By Western blot, immunofluorescence and immunohistochemistry analysis we characterized the expression of ADAM10 in human podocytes, human urine and human renal tissue. Results: We present evidence, that differentiated human podocytes possessed increased amounts of mature ADAM10 and released elevated levels of L1 adhesion molecule, one well known substrate of ADAM10. By using specific siRNA and metalloproteinase inhibitors we demonstrate that ADAM10 is involved in the cleavage of L1 in human podocytes. Injury of podocytes enhanced the ADAM10 mediated cleavage of L1. In addition, we detected ADAM10 in urinary podocytes from patients with kidney diseases and in tissue sections of normal human kidney. Finally, we found elevated levels of ADAM10 in urinary vesicles of patients with glomerular kidney diseases. Conclusions: The activity of ADAM10 in human podocytes may play an important role in the development of glomerular kidney diseases.
Lysophosphatidic acid (LPA) is a synaptic phospholipid, which regulates cortical excitation/inhibition (E/I) balance and controls sensory information processing in mice and man. Altered synaptic LPA signaling was shown to be associated with psychiatric disorders. Here, we show that the LPA-synthesizing enzyme autotaxin (ATX) is expressed in the astrocytic compartment of excitatory synapses and modulates glutamatergic transmission. In astrocytes, ATX is sorted toward fine astrocytic processes and transported to excitatory but not inhibitory synapses. This ATX sorting, as well as the enzymatic activity of astrocyte-derived ATX are dynamically regulated by neuronal activity via astrocytic glutamate receptors. Pharmacological and genetic ATX inhibition both rescued schizophrenia-related hyperexcitability syndromes caused by altered bioactive lipid signaling in two genetic mouse models for psychiatric disorders. Interestingly, ATX inhibition did not affect naive animals. However, as our data suggested that pharmacological ATX inhibition is a general method to reverse cortical excitability, we applied ATX inhibition in a ketamine model of schizophrenia and rescued thereby the electrophysiological and behavioral schizophrenia-like phenotype. Our data show that astrocytic ATX is a novel modulator of glutamatergic transmission and that targeting ATX might be a versatile strategy for a novel drug therapy to treat cortical hyperexcitability in psychiatric disorders.