Refine
Year of publication
Document Type
- Article (24)
- diplomthesis (1)
- Doctoral Thesis (1)
Has Fulltext
- yes (26)
Is part of the Bibliography
- no (26)
Keywords
- ACLF (1)
- ADHD (1)
- Atoms (1)
- Buprestidae (1)
- CNVs (1)
- Cerambycidae (1)
- Drug development (1)
- Electroantennography (1)
- Endothelprogenitorzellen (1)
- GWAS (1)
Institute
- Medizin (14)
- Geowissenschaften (4)
- Physik (4)
- ELEMENTS (2)
- Biowissenschaften (1)
- Mathematik (1)
- Pharmazie (1)
Attention-deficit/hyperactivity disorder (ADHD) is a common, highly heritable neurodevelopmental disorder. Genetic loci have not yet been identified by genome-wide association studies. Rare copy number variations (CNVs), such as chromosomal deletions or duplications, have been implicated in ADHD and other neurodevelopmental disorders. To identify rare (frequency ≤1%) CNVs that increase the risk of ADHD, we performed a whole-genome CNV analysis based on 489 young ADHD patients and 1285 adult population-based controls and identified one significantly associated CNV region. In tests for a global burden of large (>500 kb) rare CNVs, we observed a nonsignificant (P=0.271) 1.126-fold enriched rate of subjects carrying at least one such CNV in the group of ADHD cases. Locus-specific tests of association were used to assess if there were more rare CNVs in cases compared with controls. Detected CNVs, which were significantly enriched in the ADHD group, were validated by quantitative (q)PCR. Findings were replicated in an independent sample of 386 young patients with ADHD and 781 young population-based healthy controls. We identified rare CNVs within the parkinson protein 2 gene (PARK2) with a significantly higher prevalence in ADHD patients than in controls (P=2.8 × 10(-4) after empirical correction for genome-wide testing). In total, the PARK2 locus (chr 6: 162 659 756-162 767 019) harboured three deletions and nine duplications in the ADHD patients and two deletions and two duplications in the controls. By qPCR analysis, we validated 11 of the 12 CNVs in ADHD patients (P=1.2 × 10(-3) after empirical correction for genome-wide testing). In the replication sample, CNVs at the PARK2 locus were found in four additional ADHD patients and one additional control (P=4.3 × 10(-2)). Our results suggest that copy number variants at the PARK2 locus contribute to the genetic susceptibility of ADHD. Mutations and CNVs in PARK2 are known to be associated with Parkinson disease.
We measured the Coulomb dissociation of 16O into 4He and 12C at the R3B setup in a first campaign within FAIR Phase 0 at GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt. The goal was to improve the accuracy of the experimental data for the 12C(α,γ)16O fusion reaction and to reach lower center-ofmass energies than measured so far.
The experiment required beam intensities of 109 16O ions per second at an energy of 500 MeV/nucleon. The rare case of Coulomb breakup into 12C and 4He posed another challenge: The magnetic rigidities of the particles are so close because of the same mass-to-charge-number ratio A/Z = 2 for 16O, 12C and 4He. Hence, radical changes of the R3B setup were necessary. All detectors had slits to allow the passage of the unreacted 16O ions, while 4He and 12C would hit the detectors' active areas depending on the scattering angle and their relative energies. We developed and built detectors based on organic scintillators to track and identify the reaction products with sufficient precision.
Malignant germ cell tumors (GCT) are the most common malignant tumors in young men between 18 and 40 years. The correct identification of histological subtypes, in difficult cases supported by immunohistochemistry, is essential for therapeutic management. Furthermore, biomarkers may help to understand pathophysiological processes in these tumor types. Two GCT cell lines, TCam-2 with seminoma-like characteristics, and NTERA-2, an embryonal carcinoma-like cell line, were compared by a quantitative proteomic approach using high-resolution mass spectrometry (MS) in combination with stable isotope labelling by amino acid in cell culture (SILAC). We were able to identify 4856 proteins and quantify the expression of 3936. 347 were significantly differentially expressed between the two cell lines. For further validation, CD81, CBX-3, PHF6, and ENSA were analyzed by western blot analysis. The results confirmed the MS results. Immunohistochemical analysis on 59 formalin-fixed and paraffin-embedded (FFPE) normal and GCT tissue samples (normal testis, GCNIS, seminomas, and embryonal carcinomas) of these proteins demonstrated the ability to distinguish different GCT subtypes, especially seminomas and embryonal carcinomas. In addition, siRNA-mediated knockdown of these proteins resulted in an antiproliferative effect in TCam-2, NTERA-2, and an additional embryonal carcinoma-like cell line, NCCIT. In summary, this study represents a proteomic resource for the discrimination of malignant germ cell tumor subtypes and the observed antiproliferative effect after knockdown of selected proteins paves the way for the identification of new potential drug targets.
Infections of the central nervous system (CNS) are infrequently diagnosed in immunocompetent patients, but they do occur in a significant proportion of patients with hematological disorders. In particular, patients undergoing allogeneic hematopoietic stem-cell transplantation carry a high risk for CNS infections of up to 15%. Fungi and Toxoplasma gondii are the predominant causative agents. The diagnosis of CNS infections is based on neuroimaging, cerebrospinal fluid examination and biopsy of suspicious lesions in selected patients. However, identification of CNS infections in immunocompromised patients could represent a major challenge since metabolic disturbances, side-effects of antineoplastic or immunosuppressive drugs and CNS involvement of the underlying hematological disorder may mimic symptoms of a CNS infection. The prognosis of CNS infections is generally poor in these patients, albeit the introduction of novel substances (e.g. voriconazole) has improved the outcome in distinct patient subgroups. This guideline has been developed by the Infectious Diseases Working Party (AGIHO) of the German Society of Hematology and Medical Oncology (DGHO) with the contribution of a panel of 14 experts certified in internal medicine, hematology/oncology, infectious diseases, intensive care, neurology and neuroradiology. Grades of recommendation and levels of evidence were categorized by using novel criteria, as recently published by the European Society of Clinical Microbiology and Infectious Diseases.
Men and women differ substantially regarding height, weight, and body fat. Interestingly, previous work detecting genetic effects for waist-to-hip ratio, to assess body fat distribution, has found that many of these showed sex-differences. However, systematic searches for sex-differences in genetic effects have not yet been conducted. Therefore, we undertook a genome-wide search for sexually dimorphic genetic effects for anthropometric traits including 133,723 individuals in a large meta-analysis and followed promising variants in further 137,052 individuals, including a total of 94 studies. We identified seven loci with significant sex-difference including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were significant in women, but not in men. Of interest is that sex-difference was only observed for waist phenotypes, but not for height or body-mass-index. We found no evidence for sex-differences with opposite effect direction for men and women. The PPARG locus is of specific interest due to its link to diabetes genetics and therapy. Our findings demonstrate the importance of investigating sex differences, which may lead to a better understanding of disease mechanisms with a potential relevance to treatment options.
Introduction: Evidence from a number of open-label, uncontrolled studies has suggested that rituximab may benefit patients with autoimmune diseases who are refractory to standard-of-care. The objective of this study was to evaluate the safety and clinical outcomes of rituximab in several standard-of-care-refractory autoimmune diseases (within rheumatology, nephrology, dermatology and neurology) other than rheumatoid arthritis or non-Hodgkin's lymphoma in a real-life clinical setting.
Methods: Patients who received rituximab having shown an inadequate response to standard-of-care had their safety and clinical outcomes data retrospectively analysed as part of the German Registry of Autoimmune Diseases. The main outcome measures were safety and clinical response, as judged at the discretion of the investigators.
Results: A total of 370 patients (299 patient-years) with various autoimmune diseases (23.0% with systemic lupus erythematosus, 15.7% antineutrophil cytoplasmic antibody-associated granulomatous vasculitides, 15.1% multiple sclerosis and 10.0% pemphigus) from 42 centres received a mean dose of 2,440 mg of rituximab over a median (range) of 194 (180 to 1,407) days. The overall rate of serious infections was 5.3 per 100 patient-years during rituximab therapy. Opportunistic infections were infrequent across the whole study population, and mostly occurred in patients with systemic lupus erythematosus. There were 11 deaths (3.0% of patients) after rituximab treatment (mean 11.6 months after first infusion, range 0.8 to 31.3 months), with most of the deaths caused by infections. Overall (n = 293), 13.3% of patients showed no response, 45.1% showed a partial response and 41.6% showed a complete response. Responses were also reflected by reduced use of glucocorticoids and various immunosuppressives during rituximab therapy and follow-up compared with before rituximab. Rituximab generally had a positive effect on patient well-being (physician's visual analogue scale; mean improvement from baseline of 12.1 mm).
Conclusions: Data from this registry indicate that rituximab is a commonly employed, well-tolerated therapy with potential beneficial effects in standard of care-refractory autoimmune diseases, and support the results from other open-label, uncontrolled studies.
Der Mangel von Faktor VIII (FVIII) führt zur häufigsten Gerinnungsstörung, der Hämophilie A. Die rekombinante Expression von FVIII für gentherapeutische Ansätze oder zur Herstellung von FVIII ist zwei bis drei Größenordnungen niedriger verglichen mit anderen Proteinen vergleichbarer Größe. Die Ursachen für die geringe Expression liegen zum großen Teil an der ineffizienten Transkription und dem ineffizientem intrazellulären Transport. (1) Im Rahmen der Untersuchung der FVIII-Sekretion, konnte durch Verwendung von FVIII-GFP Fusionsproteinen zum ersten Mal gezeigt werden, wie FVIII in lebenden Zellen transportiert wird. Außerdem wurde anhand von vergleichenden Immunfluoreszensfärbungen, FVIII-Messungen und Westernblotanalysen demonstriert, dass weder bei der B-Domäne deletierten noch bei der Volllängenvariante signifikante Unterschiede zwischen den GFP-fusionierten und Wildtyp-FVIII-Varianten messbar waren. Offensichtlich wird die Funktionalität von FVIII durch die C-terminal fusionierte GFP-Domäne nicht eingeschränkt. In ersten Lebendzellanalysen konnte gezeigt werden, dass sich FVIII in primären Zellen und Zelllinien hauptsächlich im ER befindet und eine für lumenale ER-Proteine charakteristischen Mobilität aufweist. Beim frühen sekretorischen Transport zeigte sich bei Temperaturblock-Experimenten eine verlängerte Dauer der Akkumulation in ER-Exit-Sites und eine vergleichsweise niedrige Frequenz von ER-Golgi-Bewegungen. Es konnte zum ersten Mal der Nachweis von FVIII-Transport durch vesikuläre tubuläre Cluster erbracht werden. Die Ergebnisse deuten darauf hin, dass der möglicherweise durch Faltungsprobleme blockierte Austritt aus dem ER das Hauptproblem des ineffizienten FVIII-Transports zu sein scheint und weniger der intrazelluläre Transport an sich. Mittels siRNA-Silencing wurde außerdem die überwiegende Beteiligung von COPI am intrazellulären Transport von FVIII deutlich, dessen Herunterregulierung zu einer 78 prozentigen Reduktion der FVIII-Sekretion im Gegensatz zu 32 Prozent bei COPII führte. Dagegen konnte durch Herunterregulierung der Expression der p24-Cargo-Rezeptor Familienmitglieder p24 und p26 und der Clathrin Adapterproteine µ- und -Adaptin bzw. durch physiologischen Knock-out im Falle von ER-Exit-Rezeptor MCFD2 kein Einfluß auf die FVIII-Sekretion festgestellt werden. (2) Als Alternative zu dem ineffizienten FVIII-Expressionsystem in unphysiologischen Zelllinien, bieten primäre Endothelzellen den Vorteil einer hocheffizienten FVIII-Sekretion. Zur Verwendung bei der rekombinanten Produktion benötigt man allerdings eine kontinuierlich wachsende gut charakterisierte Zelllinie. Zur Immortalisierung wurden aus Nabelschnurblut gewonnene Endothelprogenitorzellen mit der aktiven Untereinheit der humanen Telomerase (hTERT) transduziert. Trotz erfolgreicher Transduktion und langfristiger Expression von hTERT, welche im TRAP-Assay normale Aktivität zeigte, gingen die Zellen nach der natürlichen Teilungsspanne in die Seneszenz über. Möglicherweise wird noch ein weiteres Immortalisierungsgen benötigt oder hTERT ist durch die ektopischen Expression in diesen Endothelzellen nicht funktionell. (3) Der Einsatz hämatopoetischer Stammzellen für gentherapeutische Ansätze zur Expression von humanen FVIII ist bislang aufgrund niedriger Expressionseffizienz der Vektoren limitiert. Es wurden daher die Kombinationen verschiedener transkriptioneller und posttranskriptioneller Elemente in FVIII-Expressionsvektoren ausgetestet. Hierbei zeigte sich, dass die Verwendung einer 5’ untranslatierten Region (5’UTR) des hämatopoetisch exprimierten FXIIIA-Gens die FVIII-Sekretion in verschiedenen Zelllinien und primären Zellen deutlich steigerte. Am stärksten war die Wirkung in primären Monozyten, in denen die FVIII-Expression den 6fachen Wert im Vergleich zum Ursprungsvektor ohne 5’UTR erreichte. Leberzellen stellen weitere attraktive Zielzellen für gentherapeutische Ansätze dar, da Sie den primären physiologischen Ort der FVIII-Synthese darstellen. Die häufig für Gentherapievektoren verwendeten ubiquitär exprimierenden viralen Promotoren bewirken zwar hohe Expression in den transduzierten Zellen, haben allerdings den Nachteil durch ektopische Expression vermehrt Immunantworten auszulösen und durch starke Interaktion mit benachbarten Promotoren der Integrationsstelle im Genom möglicherweise tumorgene Effekte zu verursachen. Bei der Untersuchung verschiedener physiologischer Promotoren im Vergleich zum viralen CMV Promotor in Leberzellen konnte mit dem zum ersten mal getesteten minimalen FVIII-Promoter in einem lentiviralen Vektor der dritten Generation in Leberzelllinien eine vergleichsweise hohe Expression von 0,5 IU/ml FVIII /106 Zellen erzielt werden. Der FVIII-Promoter ist daher geeignet für eine lebergerichtete Expression und minimiert dabei das potentielle Risiko der häufig verwendeten ubiquitären viralen Promotoren.
The blue pine wood borer (Phaenops cyanea) and the black pine sawyer beetle (Monochamus galloprovincialis) (Fig. 1) both are pests of the white pine (Pinus silvestris) and other Pinus species. Both insects have nearly the same demands regarding their breeding site. Larval development requires a fresh, unwilted inner bark. An infestation occurs on freshly cut trees or on trees suffering from stress (e.g. after dry seasons, loss of needles caused by feeding caterpillars or damage by forest fires). Phaenops cyanea detects susceptible pines by their volatile emissions (SCHÜTZ et al. 2004) and is able to infest the trees already at a low stress level. During feeding the larvae avoid the resin ducts of the tree and thus evade the oleoresin defence. The beetle is endemic in Europe and – under favourable climatic conditions – can cause substantial damage to pine forests. It is the most significant bark-breeding beetle of white pine in the lowlands of north-eastern Germany. Monochamus galloprovincialis is found in Europe and northern Africa. The larvae tend to a more copious feeding which makes them more susceptible to the oleoresin defence of the tree. Thus, M. galloprovincialis prefers trees that are weakened by a higher degree of stress. The economic damage caused by feeding of thebeetle is low. However, the beetle has gained a special attention of forest scientists because of its association with the nematode Bursaphelenchus xylophilus which is causing the pine wilt disease (PWD) in Pinus. The only outbreak of the PWD within Europe is limited to an area of 258.000 ha in Portugal. (MOTA et al. 1999).
Seven years after the launch of the European Paediatric Medicine Regulation, limited progress in paediatric oncology drug development remains a major concern amongst stakeholders – academics, industry, regulatory authorities, parents, patients and caregivers. Restricted increases in early phase paediatric oncology trials, legal requirements and regulatory pressure to propose early Paediatric Investigation Plans (PIPs), missed opportunities to explore new drugs potentially relevant for paediatric malignancies, lack of innovative trial designs and no new incentives to develop drugs against specific paediatric targets are some unmet needs. Better access to new anti-cancer drugs for paediatric clinical studies and improved collaboration between stakeholders are essential. The Cancer Drug Development Forum (CDDF), previously Biotherapy Development Association (BDA), with Innovative Therapy for Children with Cancer Consortium (ITCC), European Society for Paediatric Oncology (SIOPE) and European Network for Cancer Research in Children and Adolescents (ENCCA) has created a unique Paediatric Oncology Platform, involving multiple stakeholders and the European Union (EU) Commission, with an urgent remit to improve paediatric oncology drug development. The Paediatric Oncology Platform proposes to recommend immediate changes in the implementation of the Regulation and set the framework for its 2017 revision; initiatives to incentivise drug development against specific paediatric oncology targets, and repositioning of drugs not developed in adults. Underpinning these changes is a strategy for mechanism of action and biology driven selection and prioritisation of potential paediatric indications rather than the current process based on adult cancer indications. Pre-competitive research and drug prioritisation, early portfolio evaluation, cross-industry cooperation and multi-compound/sponsor trials are being explored, from which guidance for innovative trial designs will be provided.
Access to specialized care is essential for people with Parkinson´s disease (PD). Given the growing number of people with PD and the lack of general practitioners and neurologists, particularly in rural areas in Germany, specialized PD staff (PDS), such as PD nurse specialists and Parkinson Assistants (PASS), will play an increasingly important role in the care of people with PD over the coming years. PDS have several tasks, such as having a role as an educator or adviser for other health professionals or an advocate for people with PD to represent and justify their needs. PD nurse specialists have been established for a long time in the Netherlands, England, the USA, and Scandinavia. In contrast, in Germany, distinct PDS models and projects have been established. However, these projects and models show substantial heterogeneity in terms of access requirements, education, theoretical and practical skills, principal workplace (inpatient vs. outpatient), and reimbursement. This review provides an overview of the existing forms and regional models for PDS in Germany. PDS reimbursement concepts must be established that will foster an implementation throughout Germany. Additionally, development of professional roles in nursing and more specialized care in Germany is needed.