Refine
Document Type
- Article (3)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- no (3)
Keywords
Institute
- Medizin (3)
Shikonin reduces growth of docetaxel-resistant prostate cancer cells mainly through necroptosis
(2021)
Simple Summary: Prostate carcinoma (PCa) is the most common tumor in men with an increasing age-associated risk. Several therapy strategies, one of which is docetaxel (DX) chemotherapy, have been established. However, due to the development of therapy resistance, in which chemotherapy no longer effectively combats the cancer, advanced, metastasized PCa with a poor prognosis may become manifested and therapy inevitably fails. Thus, new treatment options are urgently needed. Shikonin (SHI), from Traditional Chinese Medicine, has revealed promising antitumor activity in several tumor entities. In the current study, the impact of SHI on four therapy-sensitive and four respective DX-resistant PCa cell lines was determined. SHI induced growth inhibition mainly by necroptosis, a type of cell death, in all the tested therapy-sensitive, but more importantly, DX-resistant PCa cell lines. Corresponding molecular alterations contributing to growth inhibition after SHI exposure were found. SHI could, therefore, be a promising additive in treating advanced PCa.
Abstract: The prognosis for advanced prostate carcinoma (PCa) remains poor due to development of therapy resistance, and new treatment options are needed. Shikonin (SHI) from Traditional Chinese Medicine has induced antitumor effects in diverse tumor entities, but data related to PCa are scarce. Therefore, the parental (=sensitive) and docetaxel (DX)-resistant PCa cell lines, PC3, DU145, LNCaP, and 22Rv1 were exposed to SHI [0.1–1.5 μM], and tumor cell growth, proliferation, cell cycling, cell death (apoptosis, necrosis, and necroptosis), and metabolic activity were evaluated. Correspondingly, the expression of regulating proteins was assessed. Exposure to SHI time- and dose-dependently inhibited tumor cell growth and proliferation in parental and DX-resistant PCa cells, accompanied by cell cycle arrest in the G2/M or S phase and modulation of cell cycle regulating proteins. SHI induced apoptosis and more dominantly necroptosis in both parental and DX-resistant PCa cells. This was shown by enhanced pRIP1 and pRIP3 expression and returned growth if applying the necroptosis inhibitor necrostatin-1. No SHI-induced alteration in metabolic activity of the PCa cells was detected. The significant antitumor effects induced by SHI to parental and DX-resistant PCa cells make the addition of SHI to standard therapy a promising treatment strategy for patients with advanced PCa.
Secondary plant metabolites reveal numerous biological activities making them attractive as resource for drug development of human diseases. As the majority of cancer drugs clinically established during the past half century is derived from nature, cancer researchers worldwide try to identify novel natural products as lead compounds for cancer therapy. Natural products are considered as promising cancer therapeutics, either as single agents or in combination protocols, to enhance the antitumor activity of additional therapeutic modalities. Most natural compounds exert pleotrophic effects and modulate various signal transduction pathways. A better understanding of the complex mechanisms of action of natural products is expected to open new perspectives in coming years for their use alone or in combination therapies in oncology. Two major strategies to identify novel drug candidates from nature are the bioactivity-guided fractionation of medicinal plant extracts to isolate cytotoxic chemicals and the identification of small molecules inhibiting specific targets in cancer cells. In the present review, we report on our own efforts to unravel the molecular modes of action of phytochemicals in cancer cells and focus on resveratrol, betulinic acid, artesunate, dicentrine and camptothecin derivatives.
Cisplatin, which induces DNA damage, is standard chemotherapy for advanced bladder cancer (BCa). However, efficacy is limited due to resistance development. Since artesunate (ART), a derivative of artemisinin originating from Traditional Chinese Medicine, has been shown to exhibit anti-tumor activity, and to inhibit DNA damage repair, the impact of artesunate on cisplatin-resistant BCa was evaluated. Cisplatin-sensitive (parental) and cisplatin-resistant BCa cells, RT4, RT112, T24, and TCCSup, were treated with ART (1–100 µM). Cell growth, proliferation, and cell cycle phases were investigated, as were apoptosis, necrosis, ferroptosis, autophagy, metabolic activity, and protein expression. Exposure to ART induced a time- and dose-dependent significant inhibition of tumor cell growth and proliferation of parental and cisplatin-resistant BCa cells. This inhibition was accompanied by a G0/G1 phase arrest and modulation of cell cycle regulating proteins. ART induced apoptos is by enhancing DNA damage, especially in the resistant cells. ART did not induce ferroptosis, but led to a disturbance of mitochondrial respiration and ATP generation. This impairment correlated with autophagy accompanied by a decrease in LC3B-I and an increase in LC3B-II. Since ART significantly inhibits proliferative and metabolic aspects of cisplatin-sensitive and cisplatin-resistant BCa cells, it may hold potential in treating advanced and therapy-resistant BCa.