Refine
Year of publication
Document Type
- Article (15)
Has Fulltext
- yes (15)
Is part of the Bibliography
- no (15)
Keywords
- BI1361849 (1)
- Biodiversity conservation (1)
- Bone metastasis (1)
- Breast neoplasms (1)
- Buprestidae (1)
- CRPC (1)
- CV9202 (1)
- Cerambycidae (1)
- Clinical trial (1)
- Cohort studies (1)
Institute
The blue pine wood borer (Phaenops cyanea) and the black pine sawyer beetle (Monochamus galloprovincialis) (Fig. 1) both are pests of the white pine (Pinus silvestris) and other Pinus species. Both insects have nearly the same demands regarding their breeding site. Larval development requires a fresh, unwilted inner bark. An infestation occurs on freshly cut trees or on trees suffering from stress (e.g. after dry seasons, loss of needles caused by feeding caterpillars or damage by forest fires). Phaenops cyanea detects susceptible pines by their volatile emissions (SCHÜTZ et al. 2004) and is able to infest the trees already at a low stress level. During feeding the larvae avoid the resin ducts of the tree and thus evade the oleoresin defence. The beetle is endemic in Europe and – under favourable climatic conditions – can cause substantial damage to pine forests. It is the most significant bark-breeding beetle of white pine in the lowlands of north-eastern Germany. Monochamus galloprovincialis is found in Europe and northern Africa. The larvae tend to a more copious feeding which makes them more susceptible to the oleoresin defence of the tree. Thus, M. galloprovincialis prefers trees that are weakened by a higher degree of stress. The economic damage caused by feeding of thebeetle is low. However, the beetle has gained a special attention of forest scientists because of its association with the nematode Bursaphelenchus xylophilus which is causing the pine wilt disease (PWD) in Pinus. The only outbreak of the PWD within Europe is limited to an area of 258.000 ha in Portugal. (MOTA et al. 1999).
In this study, we report the results of a long-term investigation on changes in population size and fledging success of Northern Lapwing on Wangerooge, a German Wadden Sea island. This population is increasing over a period of 34 years in contrast to numerous populations in North-western Europe. The reproductive success however declines over time and also with population density. Both effects cannot be considered separately due to autocorrelation. However, it is noted that the population on Wangerooge is not sustained by local recruitment only. This outcome is even more alarming as coastal areas and islands are considered as rare high quality meadow bird habitats. According to the present results Wangerooge cannot be considered as a source habitat for Northern Lapwings in North-western Germany.
Die Fundmeldungen in Band 33 von Botanik und Naturschutz in Hessen stammen von: Dirk Bönsel, Martin de Jong, Wolfgang Ehmke, Peter Emrich, Benjamin Feller, Brunhilde Göbel, Thomas Gregor, Arthur Händler, Sylvain Hodvina, Gerwin Kasperek, Egbert Korte, Ute Lange, Stefan Meyer, Hasko Friedrich Nesemann, Uwe Raabe, Bernd Sauerwein, Marco Schmidt, Christof Nikolaus Schröder, Antje Schwab, Rainer Stoodt und Michael Uebeler.
Movement of organisms is one of the key mechanisms shaping biodiversity, e.g. the distribution of genes, individuals and species in space and time. Recent technological and conceptual advances have improved our ability to assess the causes and consequences of individual movement, and led to the emergence of the new field of ‘movement ecology’. Here, we outline how movement ecology can contribute to the broad field of biodiversity research, i.e. the study of processes and patterns of life among and across different scales, from genes to ecosystems, and we propose a conceptual framework linking these hitherto largely separated fields of research. Our framework builds on the concept of movement ecology for individuals, and demonstrates its importance for linking individual organismal movement with biodiversity. First, organismal movements can provide ‘mobile links’ between habitats or ecosystems, thereby connecting resources, genes, and processes among otherwise separate locations. Understanding these mobile links and their impact on biodiversity will be facilitated by movement ecology, because mobile links can be created by different modes of movement (i.e., foraging, dispersal, migration) that relate to different spatiotemporal scales and have differential effects on biodiversity. Second, organismal movements can also mediate coexistence in communities, through ‘equalizing’ and ‘stabilizing’ mechanisms. This novel integrated framework provides a conceptual starting point for a better understanding of biodiversity dynamics in light of individual movement and space-use behavior across spatiotemporal scales. By illustrating this framework with examples, we argue that the integration of movement ecology and biodiversity research will also enhance our ability to conserve diversity at the genetic, species, and ecosystem levels.
Background: Preclinical studies demonstrate synergism between cancer immunotherapy and local radiation, enhancing anti-tumor effects and promoting immune responses. BI1361849 (CV9202) is an active cancer immunotherapeutic comprising protamine-formulated, sequence-optimized mRNA encoding six non-small cell lung cancer (NSCLC)-associated antigens (NY-ESO-1, MAGE-C1, MAGE-C2, survivin, 5T4, and MUC-1), intended to induce targeted immune responses.
Methods: We describe a phase Ib clinical trial evaluating treatment with BI1361849 combined with local radiation in 26 stage IV NSCLC patients with partial response (PR)/stable disease (SD) after standard first-line therapy. Patients were stratified into three strata (1: non-squamous NSCLC, no epidermal growth factor receptor (EGFR) mutation, PR/SD after ≥4 cycles of platinum- and pemetrexed-based treatment [n = 16]; 2: squamous NSCLC, PR/SD after ≥4 cycles of platinum-based and non-platinum compound treatment [n = 8]; 3: non-squamous NSCLC, EGFR mutation, PR/SD after ≥3 and ≤ 6 months EGFR-tyrosine kinase inhibitor (TKI) treatment [n = 2]). Patients received intradermal BI1361849, local radiation (4 × 5 Gy), then BI1361849 until disease progression. Strata 1 and 3 also had maintenance pemetrexed or continued EGFR-TKI therapy, respectively. The primary endpoint was evaluation of safety; secondary objectives included assessment of clinical efficacy (every 6 weeks during treatment) and of immune response (on Days 1 [baseline], 19 and 61).
Results: Study treatment was well tolerated; injection site reactions and flu-like symptoms were the most common BI1361849-related adverse events. Three patients had grade 3 BI1361849-related adverse events (fatigue, pyrexia); there was one grade 3 radiation-related event (dysphagia). In comparison to baseline, immunomonitoring revealed increased BI1361849 antigen-specific immune responses in the majority of patients (84%), whereby antigen-specific antibody levels were increased in 80% and functional T cells in 40% of patients, and involvement of multiple antigen specificities was evident in 52% of patients. One patient had a partial response in combination with pemetrexed maintenance, and 46.2% achieved stable disease as best overall response. Best overall response was SD in 57.7% for target lesions.
Conclusion: The results support further investigation of mRNA-based immunotherapy in NSCLC including combinations with immune checkpoint inhibitors.
Trial registration: ClinicalTrials.gov identifier: NCT01915524.
Targeted redox inhibition of protein phosphatase 1 by Nox4 regulates eIF2α‐mediated stress signaling
(2016)
Phosphorylation of translation initiation factor 2α (eIF2α) attenuates global protein synthesis but enhances translation of activating transcription factor 4 (ATF4) and is a crucial evolutionarily conserved adaptive pathway during cellular stresses. The serine–threonine protein phosphatase 1 (PP1) deactivates this pathway whereas prolonging eIF2α phosphorylation enhances cell survival. Here, we show that the reactive oxygen species‐generating NADPH oxidase‐4 (Nox4) is induced downstream of ATF4, binds to a PP1‐targeting subunit GADD34 at the endoplasmic reticulum, and inhibits PP1 activity to increase eIF2α phosphorylation and ATF4 levels. Other PP1 targets distant from the endoplasmic reticulum are unaffected, indicating a spatially confined inhibition of the phosphatase. PP1 inhibition involves metal center oxidation rather than the thiol oxidation that underlies redox inhibition of protein tyrosine phosphatases. We show that this Nox4‐regulated pathway robustly enhances cell survival and has a physiologic role in heart ischemia–reperfusion and acute kidney injury. This work uncovers a novel redox signaling pathway, involving Nox4–GADD34 interaction and a targeted oxidative inactivation of the PP1 metal center, that sustains eIF2α phosphorylation to protect tissues under stress.
Background: To evaluate the impact of time to castration resistance (TTCR) in metastatic hormone-sensitive prostate cancer (mHSPC) patients on overall survival (OS) in the era of combination therapies for mHSPC.
Material and Methods: Of 213 mHSPC patients diagnosed between 01/2013-12/2020 who subsequently developed metastatic castration resistant prostate cancer (mCRPC), 204 eligible patients were analyzed after having applied exclusion criteria. mHSPC patients were classified into TTCR <12, 12-18, 18-24, and >24 months and analyzed regarding OS. Moreover, further OS analyses were performed after having developed mCRPC status according to TTCR. Logistic regression models predicted the value of TTCR on OS.
Results: Median follow-up was 34 months. Among 204 mHSPC patients, 41.2% harbored TTCR <12 months, 18.1% for 12-18 months, 15.2% for 18-24 months, and 25.5% for >24 months. Median age was 67 years and median PSA at prostate cancer diagnosis was 61 ng/ml. No differences in patient characteristics were observed (all p>0.05). According to OS, TTCR <12 months patients had the worst OS, followed by TTCR 12-18 months, 18-24 months, and >24 months, in that order (p<0.001). After multivariable adjustment, a 4.07-, 3.31-, and 6.40-fold higher mortality was observed for TTCR 18-24 months, 12-18 months, and <12 months patients, relative to TTCR >24 months (all p<0.05). Conversely, OS after development of mCRPC was not influenced by TTCR stratification (all p>0.05).
Conclusion: Patients with TTCR <12 months are at the highest OS disadvantage in mHSPC. This OS disadvantage persisted even after multivariable adjustment. Interestingly, TTCR stratified analyses did not influence OS in mCRPC patients.
Background: Threonine Aspartase 1 (Taspase1) mediates cleavage of the mixed lineage leukemia (MLL) protein and leukemia provoking MLL-fusions. In contrast to other proteases, the understanding of Taspase1's (patho)biological relevance and function is limited, since neither small molecule inhibitors nor cell based functional assays for Taspase1 are currently available. Methodology/Findings: Efficient cell-based assays to probe Taspase1 function in vivo are presented here. These are composed of glutathione S-transferase, autofluorescent protein variants, Taspase1 cleavage sites and rational combinations of nuclear import and export signals. The biosensors localize predominantly to the cytoplasm, whereas expression of biologically active Taspase1 but not of inactive Taspase1 mutants or of the protease Caspase3 triggers their proteolytic cleavage and nuclear accumulation. Compared to in vitro assays using recombinant components the in vivo assay was highly efficient. Employing an optimized nuclear translocation algorithm, the triple-color assay could be adapted to a high-throughput microscopy platform (Z'factor = 0.63). Automated high-content data analysis was used to screen a focused compound library, selected by an in silico pharmacophor screening approach, as well as a collection of fungal extracts. Screening identified two compounds, N-[2-[(4-amino-6-oxo-3H-pyrimidin-2-yl)sulfanyl]ethyl]benzenesulfonamideand 2-benzyltriazole-4,5-dicarboxylic acid, which partially inhibited Taspase1 cleavage in living cells. Additionally, the assay was exploited to probe endogenous Taspase1 in solid tumor cell models and to identify an improved consensus sequence for efficient Taspase1 cleavage. This allowed the in silico identification of novel putative Taspase1 targets. Those include the FERM Domain-Containing Protein 4B, the Tyrosine-Protein Phosphatase Zeta, and DNA Polymerase Zeta. Cleavage site recognition and proteolytic processing of these substrates were verified in the context of the biosensor. Conclusions: The assay not only allows to genetically probe Taspase1 structure function in vivo, but is also applicable for high-content screening to identify Taspase1 inhibitors. Such tools will provide novel insights into Taspase1's function and its potential therapeutic relevance.
The Masquelet technique for the treatment of large bone defects is a two‐stage procedure based on an induced membrane. The size of a scaffold is reported to be a critical factor for bone healing response. We therefore aimed to investigate the influence of the granule size of a bone graft substitute on bone marrow derived mononuclear cells (BMC) supported bone healing in combination with the induced membrane. We compared three different sizes of Herafill® granules (Heraeus Medical GmbH, Wehrheim) with or without BMC in vivo in a rat femoral critical size defect. A 10 mm defect was made in 126 rats and a membrane induced by a PMMA‐spacer. After 3 weeks, the spacer was taken out and membrane filled with different granule sizes. After 8 weeks femurs were taken for radiological, biomechanical, histological, and immunohistochemical analysis. Further, whole blood of the rat was incubated with granules and expression of 29 peptide mediators was assessed. Smallest granules showed significantly improved bone healing compared to larger granules, which however did not lead to an increased biomechanical stability in the defect zone. Small granules lead to an increased accumulation of macrophages in situ which could be assigned to the inflammatory subtype M1 by majority. Increased release of chemotactic respectively proangiogenic active factors in vitro compared to syngenic bone and beta‐TCP was observed. Granule size of the bone graft substitute Herafill® has significant impact on bone healing of a critical size defect in combination with Masquelet's technique in terms of bone formation and inflammatory.