Refine
Year of publication
Document Type
- Article (22)
- Preprint (2)
- Doctoral Thesis (1)
Language
- English (25)
Has Fulltext
- yes (25)
Is part of the Bibliography
- no (25)
Keywords
- BESIII (2)
- p63 (2)
- Accelerators & Beams (1)
- Annihilation (1)
- Anti-kaon–nucleon physics (1)
- Atomic, Molecular & Optical (1)
- Charmonium (1)
- Cross section (1)
- Dalitz decay (1)
- Electromagnetic form factor (1)
Institute
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p-Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
The Transition Radiation Detector (TRD) was designed and built to enhance the capabilities of the ALICE detector at the Large Hadron Collider (LHC). While aimed at providing electron identification and triggering, the TRD also contributes significantly to the track reconstruction and calibration in the central barrel of ALICE. In this paper the design, construction, operation, and performance of this detector are discussed. A pion rejection factor of up to 410 is achieved at a momentum of 1 GeV/c in p–Pb collisions and the resolution at high transverse momentum improves by about 40% when including the TRD information in track reconstruction. The triggering capability is demonstrated both for jet, light nuclei, and electron selection.
Long-range angular correlations on the near and away side in p–Pb collisions at √sNN=5.02 TeV
(2013)
Angular correlations between charged trigger and associated particles are measured by the ALICE detector in p–Pb collisions at a nucleon–nucleon centre-of-mass energy of 5.02 TeV for transverse momentum ranges within 0.5<pT,assoc<pT,trig<4 GeV/c. The correlations are measured over two units of pseudorapidity and full azimuthal angle in different intervals of event multiplicity, and expressed as associated yield per trigger particle. Two long-range ridge-like structures, one on the near side and one on the away side, are observed when the per-trigger yield obtained in low-multiplicity events is subtracted from the one in high-multiplicity events. The excess on the near-side is qualitatively similar to that recently reported by the CMS Collaboration, while the excess on the away-side is reported for the first time. The two-ridge structure projected onto azimuthal angle is quantified with the second and third Fourier coefficients as well as by near-side and away-side yields and widths. The yields on the near side and on the away side are equal within the uncertainties for all studied event multiplicity and pT bins, and the widths show no significant evolution with event multiplicity or pT. These findings suggest that the near-side ridge is accompanied by an essentially identical away-side ridge.
The ALICE experiment at the LHC has studied J/psi production at mid-rapidity in pp collisions at sqrt{s}=7 TeV through its electron pair decay on a data sample corresponding to an integrated luminosity L_int = 5.6nb-1. The fraction of J/psi from the decay of long-lived beauty hadrons was determined for J/psi candidates with transverse momentum p_t>1.3 GeV/c and rapidity |y|<0.9. The cross section for prompt J/psi mesons, i.e. directly produced J/psi and prompt decays of heavier charmonium states such as the Psi(2S) and Csi_c resonances, is sigma_prompt-J/psi(pt > 1.3 GeV/c, |y| < 0.9) = 8.3 +- 0.8(stat.) +- 1.1(syst.) + 1.5 - 1.4(syst. pol.) micro barn. The cross section for the production of b-hadrons decaying to J/psi with p_t>1.3 GeV/c and |y|<0.9 is sigma_{J/psi<-h_B} = 1.46 +- 0.38(stat.) + 0.26 -0.32(syst.) micro barn. The results are compared to QCD model predictions. The shape of the p_t and y distributions of b-quarks predicted by perturbative QCD model calculations are used to extrapolate the measured cross section to derive the b-bbar pair total cross section and dsigma/dy at mid-rapidity.
Partial wave analysis of the reaction p(3.5 GeV) + p → pK +Λ to search for the "ppK−" bound state
(2015)
Employing the Bonn–Gatchina partial wave analysis framework (PWA), we have analyzed HADES data of the reaction p(3.5 GeV) + p → pK +Λ. This reaction might contain information about the kaonic cluster “ppK −” (with quantum numbers J P = 0− and total isospin I = 1/2) via its decay into pΛ. Due to interference effects in our coherent description of the data, a hypothetical KNN (or, specifically “ppK −”) cluster signal need not necessarily show up as a pronounced feature (e.g. a peak) in an invariant mass spectrum like pΛ. Our PWA analysis includes a variety of resonant and non-resonant intermediate states and delivers a good description of our data (various angular distributions and two-hadron invariant mass spectra) without a contribution of a KNN cluster. At a confidence level of CLs = 95% such a cluster cannot contribute more than 2–12% to the total cross section with a pK +Λ final state, which translates into a production cross-section between 0.7 μb and 4.2 μb, respectively. The range of the upper limit depends on the assumed cluster mass, width and production process.
Mitochondrial cristae morphology is highly variable and altered under numerous pathological conditions. The protein complexes involved are largely unknown or only insufficiently characterized. Using complexome profiling we identified apolipoprotein O (APOO) and apolipoprotein O-like protein (APOOL) as putative components of the Mitofilin/MINOS protein complex which was recently implicated in determining cristae morphology. We show that APOOL is a mitochondrial membrane protein facing the intermembrane space. It specifically binds to cardiolipin in vitro but not to the precursor lipid phosphatidylglycerol. Overexpression of APOOL led to fragmentation of mitochondria, a reduced basal oxygen consumption rate, and altered cristae morphology. Downregulation of APOOL impaired mitochondrial respiration and caused major alterations in cristae morphology. We further show that APOOL physically interacts with several subunits of the MINOS complex, namely Mitofilin, MINOS1, and SAMM50. We conclude that APOOL is a cardiolipin-binding component of the Mitofilin/MINOS protein complex determining cristae morphology in mammalian mitochondria. Our findings further assign an intracellular role to a member of the apolipoprotein family in mammals.
The transcription factor p63 is part of the p53 protein family, which consists of three members, p53, p63 and p73. P63 shares structural similarity with all family members, but is associated to different biological functions than p53 or p73. While p53 is mainly linked to tumor suppression and p73 is connected with neuronal development, p63 has been connected to critical biological roles within ectodermal development and skin stem cell biology as well as supervision of the genetic stability of oocytes. Due to its gene structure p63 is expressed as at least six different isoforms, three of them containing a N-terminal transactivation domain. The isoforms that are of biological relevance both have a C-terminal inhibitory domain that negatively regulates the transcriptional activity. This inhibitory domain is supposed to contain two individual components of which one is internally binding and masking the transactivation domain while the other one can be sumoylated. To further investigate this domain a mutational analysis with the help of transactivation assays in SAOS2 cells was carried out to identify the critical amino acids within the inhibitory domain and the impact on transcriptional activity of TAp63alpha, the p63-isoform which is essential for the integrity of the female germline. The results of these experiments show that a stretch of approximately 13 amino acids seems to be important for the regulation of transcriptional activity in TAp63alpha, due to the increased transcriptional activity occurring in this region after mutation. Additional experiments showed that this mechanism is distinct from sumoylation, which seems to have only implications for the intracellular level of TAp63alpha. As a conclusion, the C-terminus of the Tap63alpha is essential for two different mechanisms, which control the transcriptional activity of the protein. Both regulatory elements are independent from each other and can now be restricted to certain amino acids. Activation of the wild type protein might take place in the identified region via post-translational modification. Furthermore an inhibition assay was carried out to test if the same region might have implications on the second biological relevant isoform deltaNp63alpha. The results show that the same amino acids which show an impact on transcriptional activity in Tap63alpha lead to a significant change in functional behaviour of deltaNp63alpha. There is a possibility that both proteins are regulated with opposite effects via the same mechanisms, based at the C-terminus of the p63alpha-isoforms. In both cases a modification of these residues could lead to a more opened conformation of the protein with consequences on promoter binding, which can be even important for deltaNp63alpha with respect to promoter squelching. Both alpha-isoforms seem to be regulated via the C-terminus and to elucidate if that is also the case for TAp63gamma a deletion analysis was carried out. The results show that there are also amino acids within the C-terminus of TAp63gamma, which have implications on the transcriptional activity of the protein. Therefore the C-terminus seems to play a major role for regulation of diverse p63 isoforms.
The transcription factor p63 is expressed as at least six different isoforms, of which two have been assigned critical biological roles within ectodermal development and skin stem cell biology on the one hand and supervision of the genetic stability of oocytes on the other hand. These two isoforms contain a C-terminal inhibitory domain that negatively regulates their transcriptional activity. This inhibitory domain contains two individual components: one that uses an internal binding mechanism to interact with and mask the transactivation domain and one that is based on sumoylation. We have carried out an extensive alanine scanning study to identify critical regions within the inhibitory domain. These experiments show that a stretch of ~13 amino acids is crucial for the binding function. Further, investigation of transcriptional activity and the intracellular level of mutants that cannot be sumoylated suggests that sumoylation reduces the concentration of p63. We therefore propose that the inhibitory function of the C-terminal domain is in part due to direct inhibition of the transcriptional activity of the protein and in part due to indirect inhibition by controlling the concentration of p63. Keywords: p63, transcriptional regulation, auto-inhibition, sumoylation
Limbic encephalitis (LE) is an autoimmune syndrome often associated with temporal lobe epilepsy. Recent research suggests that particular structural changes in LE depend on the type of the associated antibody and occur in both mesiotemporal gray matter and white matter regions. However, it remains questionable to what degree conventional diffusion tensor imaging (DTI)-methods reflect alterations in white matter microstructure, since these methods do not account for crossing fibers. To address this methodological shortcoming, we applied fixel-based analysis as a novel technique modeling distinct fiber populations. For our study, 19 patients with LE associated with autoantibodies against glutamic acid decarboxylase 65 (GAD-LE, mean age = 35.9 years, 11 females), 4 patients with LE associated with autoantibodies against leucine-rich glioma-inactivated 1 (LGI1-LE, mean age = 63.3 years, 2 females), 5 patients with LE associated with contactin-associated protein-like 2 (CASPR2, mean age = 57.4, 0 females), 20 age- and gender-matched control patients with hippocampal sclerosis (19 GAD-LE control patients: mean age = 35.1 years, 11 females; 4 LGI1-LE control patients: mean age = 52.6 years, 2 females; 5 CASPR2-LE control patients: mean age = 42.7 years, 0 females; 10 patients are included in more than one group) and 33 age- and gender-matched healthy control subjects (19 GAD-LE healthy controls: mean age = 34.6 years, 11 females; 8 LGI1-LE healthy controls: mean age = 57.0 years, 4 females, 10 CASPR2-LE healthy controls: mean age = 57.2 years, 0 females; 4 subjects are included in more than one group) underwent structural imaging and DTI at 3 T and neuropsychological testing. Patient images were oriented according to lateralization in EEG resulting in an affected and unaffected hemisphere. Fixel-based metrics fiber density (FD), fiber cross-section (FC), and fiber density and cross-section (FDC = FD · FC) were calculated to retrieve information about white matter integrity both on the micro- and the macroscale. As compared to healthy controls, patients with GAD-LE showed significantly (family-wise error-corrected, p < 0.05) lower FDC in the superior longitudinal fascicle bilaterally and in the isthmus of the corpus callosum. In CASPR2-LE, lower FDC in the superior longitudinal fascicle was only present in the affected hemisphere. In LGI1-LE, we did not find any white matter alteration of the superior longitudinal fascicle. In an explorative tract-based correlation analysis within the GAD-LE group, only a correlation between the left/right ratio of FC values of the superior longitudinal fascicle and verbal memory performance (R = 0.64, Holm-Bonferroni corrected p < 0.048) remained significant after correcting for multiple comparisons. Our results underscore the concept of LE as a disease comprising a broad and heterogeneous group of entities and contribute novel aspects to the pathomechanistic understanding of this disease that may strengthen the role of MRI in the diagnosis of LE.