Refine
Document Type
- Article (7)
- Preprint (4)
- Conference Proceeding (1)
Language
- English (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Institute
Correlations between the harmonic flow coefficients v1, v2, v3 and v4 of nucleons in semi-peripheral Au+Au collisions at a beam energy of 1.23 AGeV are investigated within the hadronic transport approach ultra-relativistic quantum molecular dynamics (UrQMD). In contrast to ultra-relativistic collision energies (where the flow coefficients are evaluated with respect to the respective event plane), we predict strong correlations between the flow harmonics with respect to the reaction plane. Based on an event-by-event selection of the midrapidity final state elliptic flow of nucleons we show that as a function of rapidity, (I) the sign of the triangular flow changes, (II) that the shape of v4 changes from convex to concave, and (III) that v3∝v1v2 and v4∝v22 for all different event classes, indicating strong correlations between all investigated harmonic flow coefficients.
We investigate the development of the directed, v1, and elliptic flow, v2, in heavy ion collisions in mid-central Au+Au reactions at Elab=1.23A GeV. We demonstrate that the elliptic flow of hot and dense matter is initially positive (v2>0) due to the early pressure gradient. This positive v2 transfers its momentum to the spectators, which leads to the creation of the directed flow v1. In turn, the spectator shadowing of the in-plane expansion leads to a preferred decoupling of hadrons in the out-of-plane direction and results in a negative v2 for the observable final state hadrons. We propose a measurement of v1−v2 flow correlations and of the elliptic flow of dileptons as methods to pin down this evolution pattern. The elliptic flow of the dileptons allows then to determine the early-state EoS more precisely, because it avoids the strong modifications of the momentum distribution due to shadowing seen in the protons. This opens the unique opportunity for the HADES and CBM collaborations to measure the Equation-of-State directly at 2-3 times nuclear saturation density.
The deuteron coalescence parameter 𝐵2 in proton+proton and nucleus+nucleus collisions in the energy range of √s N N = 900–7000 GeV for proton + proton and √s N N = 2–2760 GeV for nucleus + nucleus collisions is analyzed with the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) transport model, supplemented by an event-by-event phase space coalescence model for deuteron and anti-deuteron production. The results are compared to data by the E866, E877, PHENIX, STAR and ALICE experiments. The 𝐵2 values are calculated from the final spectra of protons and deuterons. At lower energies, √s N N ≤ 20 GeV, B2 drops drastically with increasing energy. The calculations confirm that this is due to the increasing freeze-out volume reflected in B2 ∼ 1/V . At higher energies, √s N N ≥ 20 GeV, B2 saturates at a constant level. This qualitative change and the vanishing of the volume suppression is shown to be due to the development of strong radial flow with increasing energy. The flow leads to strong space-momentum correlations which counteract the volume effect.
The HADES experiment at GSI has recently provided data on the flow coefficients v1,..., v4 for protons in Au+Au reactions at Elab = 1.23 AGeV (or √sNN = 2.4 GeV). This data allows to estimate the shear viscosity over entropy density ratio, η/s at low energies via a coarse graining analysis of the UrQMD transport simulations of the flow harmonics in comparison to the experimental data. By this we can provide for the first time an estimate of η/s ≈ 0.65 ± 0.15 (or (8 ± 2)(4π)−1) at such low energies.
We introduce a novel approach based on elas- tic and inelastic scattering rates to extract the hyper-surface of the chemical freeze-out from a hadronic transport model in the energy range from Elab = 1.23 AGeV to √sNN = 62.4 GeV. For this study, the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model combined with a coarse-graining method is employed. The chemical freeze- out distribution is reconstructed from the pions through sev- eral decay and re-formation chains involving resonances and taking into account inelastic, pseudo-elastic and string excita- tion reactions. The extracted average temperature and baryon chemical potential are then compared to statistical model analysis. Finally we investigate various freeze-out criteria suggested in the literature. We confirm within this micro- scopic dynamical simulation, that the chemical freeze-out at all energies coincides with ⟨E⟩/⟨N⟩ ≈ 1 GeV, while other criteria, like s/T 3 = 7 and nB +nB ̄ ≈ 0.12 fm−3 are limited to higher collision energies.
We introduce a novel approach based on elastic and inelastic scattering rates to extract the hyper-surface of the chemical freeze-out from a hadronic transport simulation. We use the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model to extract the chemical freeze-out hyper-surface of pions and kaons in the energy range from Elab = 1:23A GeV to √SNN = 7.7 GeV. By employing a coarse-graining procedure, we can extract the local temperature T and baryo-chemical potential μB on the chemical freeze-out surface and compare them to results from statistical model analysis. We find good agreement between the pion chemical freeze-out line extracted from the simulation and the freeze-out line from the statistical model extracted from data. In addition the simulations also hint towards the existence of a flavor hierarchy similar to the one observed in recent lattice QCD calculations.
Prediction for hyper nuclei multiplicities from GSI to LHC energies from the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model combined with a final state coalescence approach is presented and compared to the thermal model. The influence of the coalescence radius on the collision energy and centrality dependence of the Λ3H/ΛΛ3H/Λ ratio is discussed.
Experimental data from the NA49 collaboration show an unexpectedly steep rise of the rapidity width of the ϕ meson as function of beam energy, which was suggested as possible interesting signal for novel physics. In this work we show that the Ultra-relativistic Quantum-Molecular-Dynamics (UrQMD) model is able to reproduce the shapes of the rapidity distributions of most measured hadrons and predicts a common linear increase of the width for all hadrons. Only when following the exact same analysis technique and experimental acceptance of the NA49 and NA61/SHINE collaborations, we find that the extracted value of the rapidity width of the ϕ increases drastically for the highest beam energy. We conclude that the observed steep increase of the ϕ rapidity width is a problem of limited detector acceptance and the simplified Gaussian fit approximation.
We analyze the experimental data on nuclei and hypernuclei yields recently obtained by the STAR collaboration. The hybrid dynamical and statistical approaches which have been developed previously are able to describe the experimental data reasonably. We discuss the intriguing difference between the yields of normal nuclei and hypernuclei which may be related to the properties of hypermatter at subnuclear densities. Most importantly new (hyper-)nuclei could be detected via particle correlations, and such measurements are relevant to pin down the production mechanism.
We analyze the experimental data on nuclei and hypernuclei yields recently obtained by the STAR collaboration. The hybrid dynamical and statistical approaches which have been developed previously are able to describe the experimental data reasonably. We discuss the intriguing difference between the yields of normal nuclei and hypernuclei which may be related to the properties of hypermatter at subnuclear densities. Most importantly new (hyper-)nuclei could be detected via particle correlations, and such measurements are relevant to pin down the production mechanism.