### Refine

#### Year of publication

#### Document Type

- Article (11)
- Preprint (7)
- Conference Proceeding (1)

#### Language

- English (19)

#### Has Fulltext

- yes (19)

#### Is part of the Bibliography

- no (19)

#### Keywords

- Meson production (3)
- Relativistic heavy-ion collisions (3)
- Charmed mesons (1)
- Charmed quarks (1)
- Charmonium (1)
- Chiral symmetries (1)
- Collective flow (1)
- Hadron (1)
- Kernreaktion Modell und Methoden (1)
- Kollision (1)

#### Institute

The isospin and strangeness dimensions of the Equation of State are explored. RIA and the SIS200 accelerator at GSI will allow to explore these regions in compressed baryonic matter. 132 Sn + 132 Sn and 100 Sn + 100 Sn collisions as well as the excitation functions of K/pi, Lambda/pi and the centrality dependence of charmonium suppression from the UrQMD and HSD transport models are presented and compared to data. Unambiguous proof for the creation of a 'novel phase of matter' from strangeness and charm yields is not in sight.

Recent STAR data for the directed flow of protons, antiprotons and charged pions obtained within the beam energy scan program are analyzed within the Parton-Hadron-String-Dynamics (PHSD/HSD) transport models. Both versions of the kinetic approach are used to clarify the role of partonic degrees of freedom. The PHSD results, simulating a partonic phase and its coexistence with a hadronic one, are roughly consistent with the STAR data. Generally, the semi-qualitative agreement between the measured data and model results supports the idea of a crossover type of quark-hadron transition which softens the nuclear EoS but shows no indication of a first-order phase transition. Furthermore, the directed flow of kaons and antikaons is evaluated in the PHSD/HSD approachesfrom √sNN ≈ 3 - 200 GeV which shows a high sensitivity to hadronic potentials in the FAIR/NICA energy regime √sNN ≤ 8 GeV.

We investigate the properties of the QCD matter across the deconfinement phase transition in the scope of the parton-hadron string dynamics (PHSD) transport approach. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow v2 of direct photons. We argue that the different centrality dependence of the hadronic and partonic sources for direct photon production in nucleusnucleus collisions can be employed to shed some more light on the origin of the photon v2 “puzzle”. While the dilepton spectra at low invariant mass show in-medium effects like an enhancement from multiple baryonic resonance formation or a collisional broadening of the vector meson spectral functions, the dilepton yield at high invariant masses (above 1.1 GeV) is dominated by QGP contributions for central heavy-ion collisions at ultra-relativistic energies. This allows to have an independent view on the parton dynamics via their electromagnetic massive radiation.

We study the kinetic and chemical equilibration in 'infinite' parton-hadron matter within the Parton-Hadron-String Dynamics transport approach, which is based on a dynamical quasiparticle model for partons matched to reproduce lattice-QCD results – including the partonic equation of state – in thermodynamic equilibrium. The 'infinite' matter is simulated within a cubic box with periodic boundary conditions initialized at different baryon density (or chemical potential) and energy density. The transition from initially pure partonic matter to hadronic degrees of freedom (or vice versa) occurs dynamically by interactions. Different thermody-namical distributions of the strongly-interacting quark-gluon plasma (sQGP) are addressed and discussed.

We extend the parton‐hadron‐string dynamics (PHSD) transport approach in the partonic sector by explicitly calculating the total and differential partonic scattering cross sections as a function of temperature T and baryon chemical potential μB on the basis of the effective propagators and couplings from the dynamical quasiparticle model (DQPM) that is matched to reproduce the equation of state of the partonic system above the deconfinement temperature Tc from lattice quantum chromodynamics (QCD). We calculate the collisional widths for the partonic degrees of freedom at finite T and μB in the time‐like sector and conclude that the quasiparticle limit holds sufficiently well. Furthermore, the ratio of shear viscosity η over entropy density s, that is, η/s, is evaluated using the collisional widths and compared to lattice QCD(lQCD) calculations for μB = 0 as well. We find that the ratio η/s does not differ very much from that calculated within the original DQPM on the basis of the Kubo formalism. Furthermore, there is only a very modest change of η/s with the baryon chemical μB as a function of the scaled temperature T/Tc(μB). This also holds for a variety of hadronic observables from central A + A collisions in the energy range 5 GeV urn:x-wiley:00046337:media:asna201913708:asna201913708-math-0001 200 GeV when implementing the differential cross sections into the PHSD approach. Accordingly, it will be difficult to extract finite μB signals from the partonic dynamics based on “bulk” observables.

The interplay of charmonium production and suppression in In+In and Pb+Pb reactions at 158 AGeV and in Au+Au reactions at sqrt(s)=200 GeV is investigated with the HSD transport approach within the hadronic comover model' and the QGP melting scenario'. The results for the J/Psi suppression and the Psi' to J/Psi ratio are compared to the recent data of the NA50, NA60, and PHENIX Collaborations. We find that, at 158 AGeV, the comover absorption model performs better than the scenario of abrupt threshold melting. However, neither interaction with hadrons alone nor simple color screening satisfactory describes the data at sqrt(s)=200 GeV. A deconfined phase is clearly reached at RHIC, but a theory having the relevant degrees of freedom in this regime (strongly interacting quarks/gluons) is needed to study its transport properties.

We investigate the properties of the QCD matter across the deconfinement phase transition. In the scope of the parton-hadron string dynamics (PHSD) transport approach, we study the strongly interacting matter in equilibrium as well as the out-of equilibrium dynamics of relativistic heavy-ion collisions. We present here in particular the results on the electromagnetic radiation, i.e. photon and dilepton production, in relativistic heavy-ion collisions and the relevant correlator in equilibrium, i.e. the electric conductivity. By comparing our calculations for the heavy-ion collisions to the available data, we determine the relative importance of the various production sources and address the possible origin of the observed strong elliptic flow ν2 of direct photons.

We study the collective flow of open charm mesons and charmonia in Au + Au collisions at s = 200 GeV within the hadron-string-dynamics (HSD) transport approach. The detailed studies show that the coupling of D, mesons to the light hadrons leads to comparable directed and elliptic flow as for the light mesons. This also holds approximately for J/ mesons since more than 50% of the final charmonia for central and midcentral collisions stem from D + induced reactions in the transport calculations. The transverse momentum spectra of D, mesons and J/ s are only very moderately changed by the (pre-)hadronic interactions in HSD, which can be traced back to the collective flow generated by elastic interactions with the light hadrons. PACS-Nr. 25.75.-q, 13.60.Le, 14.40.Lb, 14.65.Dw

We compare multiplicities as well as rapidity and transverse momentum distributions of protons, pions and kaons calculated within presently available transport approaches for heavy ion collisions around 1 AGeV. For this purpose, three reactions have been selected: Au+Au at 1 and 1.48 AGeV and Ni+Ni at 1.93 AGeV.

We study the equilibrium properties of strongly-interacting infinite parton-hadron matter, characterized by the transport coefficients such as shear and bulk viscosity and electric conductivity, and the non-equilibrium dynamics of heavy-ion collisions within the Parton-Hadron-String Dynamics (PHSD) transport approach, which incorporates explicit partonic degrees of freedom in terms of strongly interacting quasiparticles (quarks and gluons) in line with an equation of state from lattice QCD as well as the dynamical hadronization and hadronic collision dynamics in the final reaction phase. We discuss in particular the possible origin for the strong elliptic flow v2 of direct photons observed at RHIC energies.