Refine
Year of publication
Has Fulltext
- yes (32)
Is part of the Bibliography
- no (32)
Keywords
- Active middle ear implants (1)
- Auditory system (1)
- Bone conduction devices (1)
- Cardiovascular mortality (1)
- Charmonia (1)
- Consensus statement (1)
- Diagnostic differentiation (1)
- Gadobutrol (1)
- Gadopentate dimeglumine (1)
- Health policy (1)
Institute
- Physik (20)
- Medizin (5)
- Biowissenschaften (2)
- Frankfurt Institute for Advanced Studies (FIAS) (2)
- Neuere Philologien (2)
- Geowissenschaften (1)
- Rechtswissenschaft (1)
We have isolated the human protein SNEV as downregulated in replicatively senescent cells. Sequence homology to the yeast splicing factor Prp19 suggested that SNEV might be the orthologue of Prp19 and therefore might also be involved in pre-mRNA splicing. We have used various approaches including gene complementation studies in yeast using a temperature sensitive mutant with a pleiotropic phenotype and SNEV immunodepletion from human HeLa nuclear extracts to determine its function. A human–yeast chimera was indeed capable of restoring the wild-type phenotype of the yeast mutant strain. In addition, immunodepletion of SNEV from human nuclear extracts resulted in a decrease of in vitro pre-mRNA splicing efficiency. Furthermore, as part of our analysis of protein–protein interactions within the CDC5L complex, we found that SNEV interacts with itself. The self-interaction domain was mapped to amino acids 56–74 in the protein's sequence and synthetic peptides derived from this region inhibit in vitro splicing by surprisingly interfering with spliceosome formation and stability. These results indicate that SNEV is the human orthologue of yeast PRP19, functions in splicing and that homo-oligomerization of SNEV in HeLa nuclear extract is essential for spliceosome assembly and that it might also be important for spliceosome stability.
Semicentral Ar+KCl, La+La, and Ar+Pb collisions at 800 MeV/nucleon were studied using a streamer chamber. The results are analyzed in the framework of the transverse momentum analysis and in terms of the average sphericity matrix. A critical examination of the analysis procedures, both experimental and theoretical, is given. New procedures are described to account for overall momentum conservation in the reaction, and to correct for azimuthal variations in the detection efficiency. Average transverse momenta per nucleon in the reaction plane are presented for deuterons emitted in the forward hemisphere, as these provide the most reliable information. A Vlasov-Uehling-Uhlenbeck calculation with a stiff equation of state gives a good fit to the momenta in the Ar+Pb reaction. Flow effects parametrized further using the sphericity tensor are found stronger than in the cascade model and consistently weaker than predicted by hydrodynamics. Parameters from the sphericity tensor exhibit a larger variation as a function of multiplicity than do the average momenta per nucleon.
Pion and proton production are measured to investigate thermal equilibrium in central collisions of 40Ar+KCl at 1.8 GeV/nucleon. The bulk of the pion yield is isotropic in the c.m. system, with an apparent temperature of 58±3 MeV, much lower than the 118±2 MeV of the protons. It is shown that the low pion "temperature" can be explained by the decay kinematics of delta resonances in thermal equilibrium. A (5±1)% component in the pion spectrum is, however, found to have a temperature of 110±10 MeV. The effect on the spectra of possible contributions from collective radial flow is discussed.
Charged-particle exclusive data for Ar+Pb collisions at 0.772 GeV/u are analyzed in terms of collective variables for the event shapes in momentum space. Semicentral collisions lead to sidewards flow whereas nearly head-on collisions have spherical shapes in the c.m. frame, resulting from complete stopping of projectile motion. The hydrodynamical model predictions agree qualitatively with the data whereas the standard cascade model disagrees, lacking in stopping power and collective flow.
We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at √s = 200 GeV. Data were taken with the STAR detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured at RHIC becomes smaller towards high pT , indicating more longitudinal J/ψ polarization as pT increases. The result is compared with predictions of presently available models.
The purpose of this phase III clinical trial was to compare two different extracellular contrast agents, 1.0 M gadobutrol and 0.5 M gadopentate dimeglumine, for magnetic resonance imaging (MRI) in patients with known or suspected focal renal lesions. Using a multicenter, single-blind, interindividual, randomized study design, both contrast agents were compared in a total of 471 patients regarding their diagnostic accuracy, sensitivity, and specificity to correctly classify focal lesions of the kidney. To test for noninferiority the diagnostic accuracy rates for both contrast agents were compared with CT results based on a blinded reading. The average diagnostic accuracy across the three blinded readers (‘average reader’) was 83.7% for gadobutrol and 87.3% for gadopentate dimeglumine. The increase in accuracy from precontrast to combined precontrast and postcontrast MRI was 8.0% for gadobutrol and 6.9% for gadopentate dimeglumine. Sensitivity of the average reader was 85.2% for gadobutrol and 88.7% for gadopentate dimeglumine. Specificity of the average reader was 82.1% for gadobutrol and 86.1% for gadopentate dimeglumine. In conclusion, this study documents evidence for the noninferiority of a single i.v. bolus injection of 1.0 M gadobutrol compared with 0.5 M gadopentate dimeglumine in the diagnostic assessment of renal lesions with CE-MRI.
The directed and elliptic flow of protons and charged pions has been observed from the semi-central collisions of a 158 GeV/nucleon Pb beam with a Pb target. The rapidity and transverse momentum dependence of the flow has been measured. The directed flow of the pions is opposite to that of the protons but both exhibit negative flow at low pt. The elliptic flow of both is fairly independent of rapidity but rises with pt. PACS numbers: 25.75.-q, 25.75.Ld
The transverse momentum and rapidity distributions of negative hadrons and participant protons have been measured for central 32S+ 32S collisions at plab=200 GeV/c per nucleon. The proton mean rapidity shift < Delta y>~1.6 and mean transverse momentum <pT>~0.6 GeV/c are much higher than in pp or peripheral AA collisions and indicate an increase in the nuclear stopping power. All pT spectra exhibit similar source temperatures. Including previous results for K0s Lambda , and Lambda -bar, we account for all important contributions to particle production.