Refine
Year of publication
Language
- English (28)
Has Fulltext
- yes (28)
Is part of the Bibliography
- no (28)
Keywords
- BESIII (7)
- Branching fractions (3)
- Hadronic decays (3)
- Charmonium (2)
- Elastic scattering (2)
- Heavy-ion collisions (2)
- Absolute branching fraction (1)
- Angular distribution (1)
- Annihilation (1)
- Azimuthal correlations (1)
Institute
A massless particle beyond the Standard Model is searched for in the two-body decay Σ+→p+invisible using (1.0087±0.0044)×1010 J/ψ events collected at a center-of-mass energy of s√=3.097 GeV with the BESIII detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction B(Σ+→p+invisible) is determined to be 3.2×10−5 at the 90% confidence level. This is the first search for a flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in constraining new physics models.
A massless particle beyond the Standard Model is searched for in the two-body decay Σ+→p+invisible using (1.0087±0.0044)×1010 J/ψ events collected at a center-of-mass energy of s√=3.097 GeV with the BESIII detector at the BEPCII collider. No significant signal is observed, and the upper limit on the branching fraction B(Σ+→p+invisible) is determined to be 3.2×10−5 at the 90% confidence level. This is the first search for a flavor-changing neutral current process with missing energy in hyperon decays which plays an important role in constraining new physics models.
Using a data sample of 448.1 × 106 ψ(3686) events collected with the BESIII detector at the BEPCII collider, we report the first observation of the electromagnetic Dalitz decay ψ(3686) → η e+e−, with significances of 7.0σ and 6.3σ when reconstructing the η meson via its decay modes η → γπ+π− and η → π+π−η (η → γγ ), respectively. The weighted average branching fraction is determined to be B(ψ(3686) → η e+e−) = (1.90 ± 0.25 ± 0.11) × 10−6, where the first uncertainty is statistical and the second systematic.
Measurement of branching fractions for D meson decaying into ϕ meson and a pseudoscalar meson
(2019)
The four decay modes D0 → φπ0, D0 → φη, D+ → φπ+, and D+ → φK + are studied by using a data sample taken at the centre-of-mass energy √s = 3.773 GeV with the BESIII detector, corresponding to an integrated luminosity of 2.93 fb−1. The branching fractions of the first three decay modes are measured to be B(D0 → φπ0) = (1.168 ± 0.028 ± 0.028) × 10−3, B(D0 → φη) = (1.81 ± 0.46 ± 0.06) × 10−4, and B(D+ → φπ+) = (5.70 ± 0.05 ± 0.13) × 10−3, respectively, where the first uncertainties are statistical and the second are systematic. In addition, the upper limit of the branching fraction for D+ → φK+ is given to be 2.1 × 10−5 at the 90% confidence level. The ratio of B(D0 → φπ0) to B(D+ → φπ+) is calculated to be (20.49 ± 0.50 ± 0.45)%, which is consistent with the theoretical prediction based on isospin symmetry between these two decay modes.
Using a data sample of e+e− collision data corresponding to an integrated luminosity of 2.93 fb−1 collected with the BESIII detector at a center-of-mass energy of s=3.773GeV, we search for the singly Cabibbo-suppressed decays D0→π0π0π0, π0π0η, π0ηη and ηηη using the double tag method. The absolute branching fractions are measured to be B(D0→π0π0π0)=(2.0±0.4±0.3)×10−4, B(D0→π0π0η)=(3.8±1.1±0.7)×10−4 and B(D0→π0ηη)=(7.3±1.6±1.5)×10−4 with the statistical significances of 4.8σ, 3.8σ and 5.5σ, respectively, where the first uncertainties are statistical and the second ones systematic. No significant signal of D0→ηηη is found, and the upper limit on its decay branching fraction is set to be B(D0→ηηη)<1.3×10−4 at the 90% confidence level.
We report the first measurements of absolute branching fractions for the W -exchange-only processes + c → 0K + and + c → (1530)0K + with the double-tag technique, by analyzing an e+e− collision data sample, that corresponds to an integrated luminosity of 567 pb−1 collected at a center-of-mass energy of 4.6 GeV by the BESIII detector. The branching fractions are measured to be B(+c → 0K +) = (5.90 ± 0.86 ± 0.39) × 10−3 and B(+c → (1530)0K +) = (5.02 ± 0.99 ± 0.31) × 10−3, where the first uncertainties are statistical and the second systematic. Our results are more precise than the previous relative measurements.
Using 16 energy points of e+e− annihilation data collected in the vicinity of the J/ψ resonance with the BESIII detector and with a total integrated luminosity of around 100 pb−1, we study the relative phase between the strong and electromagnetic amplitudes of J/ψ decays. The relative phase between J/ψ electromagnetic decay and the continuum process (e+e− annihilation without the J/ψ resonance) is confirmed to be zero by studying the cross section lineshape of μ+μ− production. The relative phase between J/ψ strong and electromagnetic decays is then measured to be (84.9 ± 3.6)◦ or (−84.7 ± 3.1)◦ for the 2(π+π−)π0 final state by investigating the interference pattern between the J/ψ decay and the continuum process. This is the first measurement of the relative phase between J/ψ strong and electromagnetic decays into a multihadron final state using the lineshape of the production cross section. We also study the production lineshape of the multihadron final state ηπ+π− with η → π+π−π0, which provides additional information about the phase between the J/ψ electromagnetic decay amplitude and the continuum process. Additionally, the branching fraction of J/ψ → 2(π+π−)π0 is measured to be (4.73 ± 0.44)% or (4.85 ± 0.45)%, and the branching fraction of J/ψ → ηπ+π− is measured to be (3.78 ± 0.68) × 10−4. Both of them are consistent with the world average values. The quoted uncertainties include both statistical and systematic uncertainties, which are mainly caused by the low statistics.
Measurements of cross section of e⁺e⁻ → pp¯π⁰ at center-of-mass energies between 4.008 and 4.600 GeV
(2017)
Based on e+e− annihilation data samples collected with the BESIII detector at the BEPCII collider at 13 center-of-mass energies from 4.008 to 4.600 GeV, measurements of the Born cross section of e+e− → pp¯π0 are performed. No significant resonant structure is observed in the measured energy dependence of the cross section. The upper limit on the Born cross section of e+e− → Y (4260) → pp¯π0 at the 90% C.L. is determined to be 0.01 pb. The upper limit on the ratio of the branching fractions B(Y (4260)→pp¯π0) B(Y (4260)→π+π− J/ψ) at the 90% C.L. is determined to be 0.02%.
Using data samples collected with the BESIII detector at the BEPCII collider at six center-of-mass energies between 4.008 and 4.600 GeV, we observe the processes e+e− → φφω and e+e− → φφφ. The Born cross sections are measured and the ratio of the cross sections σ(e+e− → φφω)/σ(e+e− → φφφ) is estimated to be 1.75 ± 0.22 ± 0.19 averaged over six energy points, where the first uncertainty is statistical and the second is systematic. The results represent first measurements of these interactions.
We report the first observation of the decay Λ+c→Σ−π+π+π0, based on data obtained in e+e− annihilations with an integrated luminosity of 567~pb−1 at s√=4.6~GeV. The data were collected with the BESIII detector at the BEPCII storage rings. The absolute branching fraction B(Λ+c→Σ−π+π+π0) is determined to be (2.11±0.33(stat.)±0.14(syst.))%. In addition, an improved measurement of B(Λ+c→Σ−π+π+) is determined as (1.81±0.17(stat.)±0.09(syst.))%.