Refine
Document Type
- Article (7)
- Preprint (2)
- Doctoral Thesis (1)
Has Fulltext
- yes (10)
Is part of the Bibliography
- no (10)
Keywords
- neuroblastoma (3)
- ABCB1 (2)
- drug resistance (2)
- nutlin-3 (2)
- p53 (2)
- survivin (2)
- ABCC1 (1)
- BIRC5 (1)
- CDK inhibitor (1)
- MDM2 (1)
In dieser Arbeit wurde YM155 anhand eines Neuroblastom-Zellmodells bezüglich seiner antitumoralen Wirkung, sowie möglicher Resistenzmechanismen untersucht. Mit Hilfe eines Viabilitäts-‚Screenings‘ wurde eine Auswahl von 113 chemosensitiven und chemoresistenten Neuroblastomzellen auf mögliche Kreuzresistenzen gegen YM155 untersucht. Hinsichtlich der IC50 Werte gegen YM155, lagen insgesamt 74 % der untersuchten Zelllinien im therapeutisch erreichbaren Bereich von unter 50 nM. Zusätzlich wurden Neuroblastom-, Mammakarzinom- und Prostatakarzinomzellen an eine klinisch relevante YM155 Konzentration adaptiert. Diese zeigten wiederum, dass durch die Adaptierung hervorgerufene Expressionsänderung des ABC-Transporters ABCB1 und des ‚solute carrier‘ Protein SLC35F2 eine bedeutsame Rolle hinsichtlich des Resistenzmechanismus gegen YM155 spielen. Durch den Einsatz von spezifischen ABCB1-Inhibitoren, als auch durch siRNA-vermittelte Reduzierung von ABCB1 konnte eine Abhängigkeit für die Wirksamkeit YM155 von ABCB1 in Neuroblastomzellen bestätigt werden. Des Weiteren wurde in den untersuchten Zelllinien ein Zusammenhang zwischen der Wirkung von YM155 und der Expression des ‚solute carrier‘ Proteins SLC35F2 hergestellt. Dazu wurden Zellen mit verminderter SLC35F2 Expression verwendet, welche durch Transduktion mit einem für eine SLC35F2 spezifische shRNA kodierenden Vektor etabliert wurden. Dabei führte eine verminderte SLC35F2 Expression zu einer starken Minderung der Sensitivität gegen YM155. Das Zusammenspiel dieser beiden Transporter und der damit verbundene Resistenzmechanismus gegen YM155, konnte in fast allen etablierten YM155-resistenten Zelllinien (UKF-NB-3rYM15520, 22RV1rYM155300, PC-3rYM15520, HCC-1806rYM15520 und MDA-MB-231rYM15520) gezeigt werden. Wobei diese Zellen unabhängig von der Tumorentität als Resistenzmechanismus gegen YM155 entweder eine signifikant induzierte ABCB1 Expression (verstärkter YM155 Efflux) und/oder eine verminderte SLC35F2 Expression (verringerter YM155 Influx) entwickelten. Außerdem konnte mit Hilfe der p53-depletierten Zelllinie UKF-NB-3pc-p53 eine Abhängigkeit der YM155 Wirkung vom Tumorsuppressor p53 nachgewiesen werden, wobei es durch die Depletierung von p53 zu einer verminderten Sensitivität der Zellen gegen YM155 kam. Zudem kam es durch die Nutlin-3 hervorgerufene p53 Aktivierung und Akkumulierung zu einer Verstärkung der YM155 Wirkung in den untersuchten Zellen. Diese Ergebnisse deuten darauf hin, dass der p53 Status von Zellen einen Einfluss auf deren YM155 Resistenz haben kann. Da in der Behandlung von Neuroblastomen neben der Chemotherapie auch Bestrahlung eingesetzt wird, wurde zusätzlich untersucht ob eine Adaptierung von Neuroblastomzellen an YM155 zu einer verminderten Sensitivität gegen Bestrahlung führen kann. Da die im Rahmen dieser Arbeit untersuchten UKF-NB-3 Zelllinien (UKF-NB-3 und UKF-NB-3rYM15520) eine ähnliche Sensitivität gegenüber der Bestrahlung aufwiesen, konnte kein Zusammenhang zwischen einer Adaptierung an YM155 und der Ausbildung einer Bestrahlungsresistenz gezeigt werden.
Ein weiterer wichtiger Teil dieser Arbeit war es, den primären Wirkmechanismus von YM155 in Neuroblastomzellen zu untersuchen. In vorangegangenen Studien wurde die vom Hersteller beschriebene Wirkung von YM155 als Survivin-Inhibitor in Frage gestellt. Stattdessen soll der primäre Apoptose-induzierende Effekt in erster Linie durch DNA-Schäden hervorgerufen werden, während die Survivin Inhibierung lediglich darauf folgen soll. In einer zeitlichen und konzentrationsabhängigen Kinetik der YM155 Behandlung konnte in UKF-NB-3 Zellen der genaue Zeitpunkt der Survivin-Inhibierung und der Induktion der DNA-Schadensantwort ermittelt werden. Dabei konnte in der vorliegenden Arbeit gezeigt werden, dass in Neuroblastomzellen als Antwort auf die YM155 Behandlung zuerst eine Survivin-Inhibierung erfolgt, und die DNA-Schadensantwort als Folge dieser induziert wird. Darüber hinaus belegte die siRNA-vermittelte Survivin-Inhibierung in UKF-NB-3 und UKF-NB-6, dass eine fehlende Survivin Expression die DNA-Schadensantwort induziert.
Zusammenfassend konnte in dieser Arbeit erstmals in YM155 adaptierten Neuroblastomzellen der Resistenzmechanismus gegen YM155 näher untersucht werden und darüber hinaus wurde demonstriert, dass die Wirkung von YM155 in Neuroblastomzellen nicht auf die Induktion der DNA-Schadensantwort beruht, sondern primär auf die Survivin-Inhibierung zurückzuführen ist.
The survivin suppressant YM155 is a drug candidate for neuroblastoma. Here, we tested YM155 in 101 neuroblastoma cell lines (19 parental cell lines, 82 drug-adapted sublines). Seventy seven (77) cell lines displayed YM155 IC50s in the range of clinical YM155 concentrations. ABCB1 was an important determinant of YM155 resistance. The activity of the ABCB1 inhibitor zosuquidar ranged from being similar to that of the structurally different ABCB1 inhibitor verapamil to being 65-fold higher. ABCB1 sequence variations may be responsible for this, suggesting that the design of variant-specific ABCB1 inhibitors may be possible. Further, we showed that ABCC1 confers YM155 resistance. Previously, p53 depletion had resulted in decreased YM155 sensitivity. However, TP53-mutant cells were not generally less sensitive to YM155 than TP53 wild-type cells in this study. Finally, YM155 cross-resistance profiles differed between cells adapted to drugs as similar as cisplatin and carboplatin. In conclusion, the large cell line panel was necessary to reveal an unanticipated complexity of the YM155 response in neuroblastoma cell lines with acquired drug resistance. Novel findings include that ABCC1 mediates YM155 resistance and that YM155 cross-resistance profiles differ between cell lines adapted to drugs as similar as cisplatin and carboplatin.
Survivin is a drug target and its suppressant YM155 a drug candidate mainly investigated for high-risk neuroblastoma. Findings from one YM155-adapted subline of the neuroblastoma cell line UKF-NB-3 had suggested that increased ABCB1 (mediates YM155 efflux) levels, decreased SLC35F2 (mediates YM155 uptake) levels, decreased survivin levels, and TP53 mutations indicate YM155 resistance. Here, the investigation of 10 additional YM155-adapted UKF-NB-3 sublines only confirmed the roles of ABCB1 and SLC35F2. However, cellular ABCB1 and SLC35F2 levels did not indicate YM155 sensitivity in YM155-naïve cells, as indicated by drug response data derived from the Cancer Therapeutics Response Portal (CTRP) and the Genomics of Drug Sensitivity in Cancer (GDSC) databases. Moreover, the resistant sublines were characterized by a remarkable heterogeneity. Only seven sublines developed on-target resistance as indicated by resistance to RNAi-mediated survivin depletion. The sublines also varied in their response to other anti-cancer drugs. In conclusion, cancer cell populations of limited intrinsic heterogeneity can develop various resistance phenotypes in response to treatment. Therefore, individualized therapies will require monitoring of cancer cell evolution in response to treatment. Moreover, biomarkers can indicate resistance formation in the acquired resistance setting, even when they are not predictive in the intrinsic resistance setting.
The CDK inhibitor SNS-032 had previously exerted promising anti-neuroblastoma activity via CDK7 and 9 inhibition. ABCB1 expression was identified as major determinant of SNS-032 resistance. Here, we investigated the role of ABCB1 in acquired SNS-032 resistance. In contrast to ABCB1-expressing UKF-NB-3 sub-lines resistant to other ABCB1 substrates, SNS-032-adapted UKF-NB-3 (UKF-NB-3rSNS- 032300nM) cells remained sensitive to the non-ABCB1 substrate cisplatin and were completely re-sensitized to cytotoxic ABCB1 substrates by ABCB1 inhibition. Moreover, UKF-NB-3rSNS-032300nM cells remained similarly sensitive to CDK7 and 9 inhibition as UKF-NB-3 cells. In contrast, SHEPrSNS-0322000nM, the SNS-032-resistant sub-line of the neuroblastoma cell line SHEP, displayed low level SNS-032 resistance also when ABCB1 was inhibited. This discrepancy may be explained by the higher SNS-032 concentrations that were used to establish SHEPrSNS-0322000nM cells, since SHEP cells intrinsically express ABCB1 and are less sensitive to SNS-032 (IC50 912 nM) than UKF-NB-3 cells (IC50 153 nM). In conclusion, we show that ABCB1 expression represents the primary (sometimes exclusive) resistance mechanism in neuroblastoma cells with acquired resistance to SNS-032. Thus, ABCB1 inhibitors may increase the SNS-032 efficacy in ABCB1-expressing cells and prolong or avoid resistance formation.
Resistance formation after initial therapy response (acquired resistance) is common in high-risk neuroblastoma patients. YM155 is a drug candidate that was introduced as a survivin suppressant. This mechanism was later challenged, and DNA damage induction and Mcl-1 depletion were suggested instead. Here we investigated the efficacy and mechanism of action of YM155 in neuroblastoma cells with acquired drug resistance. The efficacy of YM155 was determined in neuroblastoma cell lines and their sublines with acquired resistance to clinically relevant drugs. Survivin levels, Mcl-1 levels, and DNA damage formation were determined in response to YM155. RNAi-mediated depletion of survivin, Mcl-1, and p53 was performed to investigate their roles during YM155 treatment. Clinical YM155 concentrations affected the viability of drug-resistant neuroblastoma cells through survivin depletion and p53 activation. MDM2 inhibitor-induced p53 activation further enhanced YM155 activity. Loss of p53 function generally affected anti-neuroblastoma approaches targeting survivin. Upregulation of ABCB1 (causes YM155 efflux) and downregulation of SLC35F2 (causes YM155 uptake) mediated YM155-specific resistance. YM155-adapted cells displayed increased ABCB1 levels, decreased SLC35F2 levels, and a p53 mutation. YM155-adapted neuroblastoma cells were also characterized by decreased sensitivity to RNAi-mediated survivin depletion, further confirming survivin as a critical YM155 target in neuroblastoma. In conclusion, YM155 targets survivin in neuroblastoma. Furthermore, survivin is a promising therapeutic target for p53 wild-type neuroblastomas after resistance acquisition (neuroblastomas are rarely p53-mutated), potentially in combination with p53 activators. In addition, we show that the adaptation of cancer cells to molecular-targeted anticancer drugs is an effective strategy to elucidate a drug’s mechanism of action.
Six p53 wild-type cancer cell lines from infrequently p53-mutated entities (neuroblastoma, rhabdomyosarcoma, and melanoma) were continuously exposed to increasing concentrations of the murine double minute 2 inhibitor nutlin-3, resulting in the emergence of nutlin-3-resistant, p53-mutated sublines displaying a multi-drug resistance phenotype. Only 2 out of 28 sublines adapted to various cytotoxic drugs harboured p53 mutations. Nutlin-3-adapted UKF-NB-3 cells (UKF-NB-3rNutlin10 μM, harbouring a G245C mutation) were also radiation resistant. Analysis of UKF-NB-3 and UKF-NB-3rNutlin10 μM cells by RNA interference experiments and lentiviral transduction of wild-type p53 into p53-mutated UKF-NB-3rNutlin10 μM cells revealed that the loss of p53 function contributes to the multi-drug resistance of UKF-NB-3rNutlin10 μM cells. Bioinformatics PANTHER pathway analysis based on microarray measurements of mRNA abundance indicated a substantial overlap in the signalling pathways differentially regulated between UKF-NB-3rNutlin10 μM and UKF-NB-3 and between UKF-NB-3 and its cisplatin-, doxorubicin-, or vincristine-resistant sublines. Repeated nutlin-3 adaptation of neuroblastoma cells resulted in sublines harbouring various p53 mutations with high frequency. A p53 wild-type single cell-derived UKF-NB-3 clone was adapted to nutlin-3 in independent experiments. Eight out of ten resulting sublines were p53-mutated harbouring six different p53 mutations. This indicates that nutlin-3 induces de novo p53 mutations not initially present in the original cell population. Therefore, nutlin-3-treated cancer patients should be carefully monitored for the emergence of p53-mutated, multi-drug-resistant cells.
Adaptation of wild-type p53 expressing UKF-NB-3 cancer cells to the murine double minute 2 inhibitor nutlin-3 causes de novo p53 mutations at high frequency (13/20) and multi-drug resistance. Here, we show that the same cells respond very differently when adapted to RITA, a drug that, like nutlin-3, also disrupts the p53/Mdm2 interaction. All of the 11 UKF-NB-3 sub-lines adapted to RITA that we established retained functional wild-type p53 although RITA induced a substantial p53 response. Moreover, all RITA-adapted cell lines remained sensitive to nutlin-3, whereas only five out of 10 nutlin-3-adapted cell lines retained their sensitivity to RITA. In addition, repeated adaptation of the RITA-adapted sub-line UKF-NB-3rRITA10 μM to nutlin-3 resulted in p53 mutations. The RITA-adapted UKF-NB-3 sub-lines displayed no or less pronounced resistance to vincristine, cisplatin, and irradiation than nutlin-3-adapted UKF-NB-3 sub-lines. Furthermore, adaptation to RITA was associated with fewer changes at the expression level of antiapoptotic factors than observed with adaptation to nutlin-3. Transcriptomic analyses indicated the RITA-adapted sub-lines to be more similar at the gene expression level to the parental UKF-NB-3 cells than nutlin-3-adapted UKF-NB-3 sub-lines, which correlates with the observed chemotherapy and irradiation sensitivity phenotypes. In conclusion, RITA-adapted cells retain functional p53, remain sensitive to nutlin-3, and display a less pronounced resistance phenotype than nutlin-3-adapted cells.
The survivin suppressant YM155 is a drug candidate for neuroblastoma. Here, we tested YM155 in 101 neuroblastoma cell lines (19 parental cell lines, 82 drug-adapted sublines). 77 cell lines displayed YM155 IC50s in the range of clinical YM155 concentrations. ABCB1 was an important determinant of YM155 resistance. The activity of the ABCB1 inhibitor zosuquidar ranged from being similar to that of the structurally different ABCB1 inhibitor verapamil to being 65-fold higher. ABCB1 sequence variations may be responsible for this, suggesting that the design of variant-specific ABCB1 inhibitors may be possible. Further, we showed that ABCC1 confers YM155 resistance. Previously, p53 depletion had resulted in decreased YM155 sensitivity. However, TP53-mutant cells were not generally less sensitive to YM155 than TP53 wild-type cells in this study. Finally, YM155 cross-resistance profiles differed between cells adapted to drugs as similar as cisplatin and carboplatin. In conclusion, the large cell line panel was necessary to reveal an unanticipated complexity of the YM155 response in neuroblastoma cell lines with acquired drug resistance. Novel findings include that ABCC1 mediates YM155 resistance and that YM155 cross-resistance profiles differ between cell lines adapted to drugs as similar as cisplatin and carboplatin.
Survivin is a drug target and the survivin suppressant YM155 a drug candidate for high-risk neuroblastoma. Findings from one YM155-adapted subline of the neuroblastoma cell line UKF-NB-3 had suggested that increased ABCB1 (mediates YM155 efflux) levels, decreased SLC35F2 (mediates YM155 uptake) levels, decreased survivin levels, and TP53 mutations indicate YM155 resistance. Here, the investigation of ten additional YM155-adapted UKF-NB-3 sublines only confirmed the roles of ABCB1 and SLC35F2. However, cellular ABCB1 and SLC35F2 levels did not indicate YM155 sensitivity in YM155-naïve cells, as indicated by drug response data derived from the Cancer Therapeutics Response Portal (CTRP) and the Genomics of Drug Sensitivity in Cancer (GDSC) databases. Moreover, the resistant sublines were characterised by a remarkable heterogeneity. Only seven sublines developed on-target resistance as indicated by resistance to RNAi-mediated survivin depletion. The sublines also varied in their response to other anti-cancer drugs. In conclusion, cancer cell populations of limited intrinsic heterogeneity can develop various resistance phenotypes in response to treatment. Therefore, individualised therapies will require monitoring of cancer cell evolution in response to treatment. Moreover, biomarkers can indicate resistance formation in the acquired resistance setting, even when they are not predictive in the intrinsic resistance setting.
Novel treatment options are needed for the successful therapy of patients with high-risk neuroblastoma. Here, we investigated the cyclin-dependent kinase (CDK) inhibitor SNS-032 in a panel of 109 neuroblastoma cell lines consisting of 19 parental cell lines and 90 sublines with acquired resistance to 14 different anticancer drugs. Seventy-three percent of the investigated neuroblastoma cell lines and all four investigated primary tumor samples displayed concentrations that reduce cell viability by 50% in the range of the therapeutic plasma levels reported for SNS-032 (<754 nM). Sixty-two percent of the cell lines and two of the primary samples displayed concentrations that reduce cell viability by 90% in this concentration range. SNS-032 also impaired the growth of the multidrug-resistant cisplatin-adapted UKF-NB-3 subline UKF-NB-3rCDDP1000 in mice. ABCB1 expression (but not ABCG2 expression) conferred resistance to SNS-032. The antineuroblastoma effects of SNS-032 did not depend on functional p53. The antineuroblastoma mechanism of SNS-032 included CDK7 and CDK9 inhibition-mediated suppression of RNA synthesis and subsequent depletion of antiapoptotic proteins with a fast turnover rate including X-linked inhibitor of apoptosis (XIAP), myeloid cell leukemia sequence 1 (Mcl-1), baculoviral IAP repeat containing 2 (BIRC2; cIAP-1), and survivin. In conclusion, CDK7 and CDK9 represent promising drug targets and SNS-032 represents a potential treatment option for neuroblastoma including therapy-refractory cases.