Refine
Year of publication
Document Type
- Doctoral Thesis (17)
Language
- English (17)
Has Fulltext
- yes (17)
Is part of the Bibliography
- no (17)
Keywords
- Quark-Gluon-Plasma (3)
- Anisotropie (1)
- Boltzmann equation (1)
- Cluster Hadronization (1)
- Collective Flow (1)
- Color Glass Condensate (1)
- Colour (1)
- Correlations (1)
- Exotic Hadrons (1)
- Exotische Hadronen (1)
Institute
- Physik (17)
In this work we investigate phenomenological aspects of an anisotropic quark-gluon plasma. In the first part of this thesis, we formulate phenomenologicalmodels that take into account the momentumspace anisotropy of the system developed during the expansion of the fireball at early-times. By including the proper-time dependence of the parton hard momentum scale, phard(), and the plasma anisotropy parameter, Xi, the proposed models allow us to interpolate from 0+1 pre-equilibrated expansion at early-times to 0+1 ideal hydrodynamics at late times. We study dilepton production as a valuable observable to experimentally determine the isotropization time of the system as well as the degree of anisotropy developed at early-times. We generalize our interpolating models to include the rapidity dependence of phard and consider its impact on forward dileptons. Next, we discuss how to constrain the onset of hydrodynamics by demanding two requirements of the solutions to the equations of motion of viscous hydrodynamics. We show this explicitly for 0+1 dimensional 2nd-order conformal viscous hydrodynamics and find that the initial conditions are non-trivially constrained. Finally, we demonstrate how to match the initial conditions for 0+1 dimensional viscous hydrodynamics from pre-equilibrated expansion. We analyze the dependence of the entropy production on the pre-equilibrium phase and discuss limitations of the standard definitions of the non-equilibrium entropy in kinetic theory.
In order to fully understand the new state of matter formed in heavy ion collisions, it is vital to isolate the always present final state hadronic contributions within the primary Quark-Gluon Plasma (QGP) experimental signatures. Previously, the hadronic contributions were determined using the properties of the known mesons and baryons. However, according to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M = 2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are "missing" hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these "missing" Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. One can conclude that the time scales to produce the required amount of hadronic yields are too long to allow for the hadrons to reach chemical equilibrium within the lifetime of a cooling hadronic fireball. Because gluon fusion can quickly produce strange quarks, it has been suggested that the hadrons are born into chemical equilibrium following the Quantum Chromodynamics (QCD) phase transition. However, we show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X X pairs (where X = p, K, Lambda, or Omega) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. We compare the thermodynamic properties of our model to recent lattice results and find that for both critical temperatures, Tc = 176 MeV and Tc = 196 MeV, the hadrons can reach chemical equilibrium on very short time scales. Furthermore the ratios p/pi, K/pi , Lambda/pi, and Omega/pi match experimental values well in our dynamical scenario. The effects of the "missing" Hagedorn states are not limited to the chemical equilibration time. Many believe that the new state of matter formed at RHIC is the closet to a perfect fluid found in nature, which implies that it has a small shear viscosity to entropy density ratio close to the bound derived using the uncertainty principle. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, eta/s, of hadronic matter near Tc that is close to 1/(4pi). Furthermore, the large trace anomaly and the small speed of sound near Tc computed within this model agree well with recent lattice calculations. We also comment on the behavior of the bulk viscosity to entropy density ratio of hadronic matter close to the phase transition, which qualitatively has a different behavior close to Tc than a hadron gas model with only the known resonances. We show how the measured particle ratios can be used to provide non-trivial information about Tc of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the "missing" Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, TH , and leads to a slight overall improvement of thermal fits. We find that for Au+Au collisions at RHIC at sqrt{sN N} = 200 GeV the best square fit measure, chi^2 , occurs at TH = Tc = 176 MeV and produces a chemical freeze-out temperature of 172.6 MeV and a baryon chemical potential of 39.7 MeV.
In this thesis hard probes are studied in the partonic transport model BAMPS (Boltzmann Approach to MultiParton Scatterings). Employing Monte Carlo techniques, this model describes the 3+1 dimensional evolution of the quark gluon plasma phase in ultra-relativistic heavy-ion collisions by propagating all particles in space and time and carrying out their collisions according to the Boltzmann equation. Since hard probes are produced in hard processes with a large momentum transfer, the value of the running coupling is small and their interactions should be describable within perturbative QCD (pQCD). This work focuses on open heavy flavor, but also addresses the suppression of light parton jets, in particular to highlight differences due to the mass. For light partons, radiative processes are the dominant contribution to their energy loss. For heavy quarks, we show that also binary interactions with a running coupling and an improved Debye screening matched to hard-thermal-loop calculations play an important role. Furthermore, the impact of the mass in radiative interactions, prominently named the dead cone effect, and the interplay with the Landau-Pomeranchuk-Migdal (LPM) effect are studied in great detail. Since the transport model BAMPS has access to all medium properties and the space time information of heavy quarks, it is the ideal tool to study the dissociation and regeneration of J/psi mesons, which is also investigated in this thesis.
In this thesis, Hanbury-Brown-Twiss (HBT) interferometry is used together with the Ultrarelativistic Quantum Molecular Dynamics (UrQMD) to analyse the time and space structure of heavy-ion collisions.
The first chapter after the introduction gives an overview of the different types of models used in the field of heavy-ion collisions and a introduction of the UrQMD model in more detail. The next chapter explains the basics of Hanbury-Brown-Twiss correlations, including azimuthally sensitive HBT (asHBT).
Results section:
4. Charged Multiplicities from UrQMD
5. Formation time via HBT from pp collisions at LHC
6. HBT analysis of Pb+Pb collisions at LHC energies
7. HBT scaling with particle multiplicity
8. Compressibility from event-by-event HBT
9. Tilt in non-central collisions
10. Shape analysis of strongly-interacting systems
11. Measuring a twisted emission geometry
This thesis covers the standard integrated HBT analyses, extracting the Pratt-Bertsch radii, at LHC energies. The analyses at these energies showed a too soft expansion in UrQMD probably related to the absence of a partonic phase in UrQMD. The most promising results in this thesis at these energies are the restriction of the formation time to a value smaller than 0.8 fm/c and furthermore, the results from the asHBT analyses. In simulations of non-central heavy-ion collisions at energies of Elab= 6, 8 and 30 AGeV the validity of the formulae to calculate the tilt angle via asHBT has been checked numerically, even for the case of non-Gaussian, flowing sources. On this basis has been developed and test in the course of this thesis that allows to measure a scale dependent tilt angle experimentally. The signal should be strongest at FAIR energies.
Diese Dissertation stellt die systematische Einbeziehung von Eichkorrekturen in die Theorie der thermischen Leptogenese vor, welche eine Erklärung für die Frage nach dem Ursprung der Materie in unserem Universum bereitstellt.
Geht man vom weithin anerkannten Urknallmodell aus, so müsste hierbei zu gleichen Teilen Materie sowie Antimaterie entstanden sein. Aufgrund von Annihilationsprozessen sollte demnach die gesamte Materie zerstrahlt sein und ein leeres Universum zurückbleiben. Da dies aber nicht der Fall ist, stellt sich die Frage, wie das Ungleichgewicht zwischen Materie und Antimaterie entstehen konnte. Der Wert der Asymmetrie lässt sich mit Hilfe von Experimenten sehr genau bestimmen. Für eine systematische theoretische Beschreibung dieser Problematik stellte A. Sacharow drei Bedingungen auf: 1. die Verletzung der Baryonenzahl, 2. die Verletzung der Invarianz von Ladungskonjugation C sowie der Zusammensetzung von Ladungskonjugation und Parität CP sowie 3. eine Abweichung vom thermischen Gleichgewicht.
Da das Urknallmodell und das Standardmodell der Teilchenphysik nicht in der Lage sind, diese Asymmetrie zu beschreiben, beschäftigt sich die vorliegende Dissertation mit der Theorie der thermischen Leptogenese, welche statt von einer ursprünglichen Baryonenasymmetrie von einer Leptonenasymmetrie ausgeht. Zu einem späteren Zeitpunkt wird diese dann mittels Sphaleron-Prozesse, welche die Baryonenzahl verletzen, in eine Baryonenasymmetrie übertragen. Hierzu werden neue Teilchen zum Standardmodell hinzugefügt: schwere Majorana-Neutrinos. Diese zerfallen im thermischen Nichtgleichgewicht CP-verletzend in die bekannten Standardmodell-Leptonen und Higgs-Teilchen.
In dieser Arbeit wird eine hierarchische Anordnung der drei schweren Neutrinomassen betrachtet. Dies hat zur Folge, dass zwei der drei Majorana-Neutrinos ausintegriert werden können und eine effektive Theorie aufgestellt werden kann. Dieses Modell wird auch vanilla leptogenesis genannt und im Folgenden verwendet.
Die Dissertation ist wie folgt gegliedert. Die einleitenden Betrachtungen sind Gegenstand der Kapitel 1 und 2. Dort werden weiterhin andere Modelle zur Lösung des Problems der Baryonenasymmetrie kurz vorgestellt. Die thermische Leptogenese wird eingeführt und der See-saw-Mechanismus sowie die CP-Asymmetrie genauer beschrieben. Am Ende des Kapitels wird der klassische Ansatz für Leptogenese über Boltzmann Gleichungen präsentiert.
In Kapitel 3 werden die Grundlagen für Quantenfeldtheorien im Nichtgleichgewicht eingeführt. Die wichtigsten Definitionen im Falle des thermischen Gleichgewichts werden gegeben, anschließend findet sich die Verallgemeinerung auf Nichtgleichgewichtszustände. Die Bewegungsgleichungen, die sogenannten Kadanoff-Baym-Gleichungen, werden im Folgenden sowohl für skalare Teilchen als auch für Fermionen gelöst.
Kapitel 4 stellt die Notwendigkeit der Einbeziehung von Eichkorrekturen im Kontext der thermischen Leptogenese vor. Durch die Definition einer Leptonenzahlmatrix lässt sich die Asymmetrie durch die Kadanoff-Baym Gleichung für Leptonen umschreiben. Da der Vergleich von Boltzmann und Kadanoff-Baym Gleichungen im letzten Teil dieses Kapitels Unterschiede im Zeitverhalten zeigt, werden im Kadanoff-Baym Ansatz thermische Standardmodell-Breiten des Higgsfeldes und der Leptonen per Hand eingeführt. Mit dieser naiven Erweiterung erhält man ein gleiches Verhalten für die Leptonenzahlmatrix, lokal in der Zeit wie die Lösung der Boltzmann Gleichung. Eine systematische Einführung von Standardmodellkorrekturen für thermische Leptogenese ist daher unumgänglich, weshalb im Rahmen der vorliegenden Dissertation von Grund auf Eichkorrekturen der Diagramme, die zur Asymmetrie führen, berücksichtigt werden.
Die vier für diese Arbeit wichtigen Skalenbereich bedingen zwei Resummationsschemata, Hard Thermal Loop (HTL) und Collinear Thermal Loop (CTL), welche in Kapitel 5 vorgestellt werden. Dies führt schließlich auf zwei Differenzialgleichungen für die Berechnung der thermischen Produktionsrate des Majorana-Neutrinos, welche in Kapitel 6 numerisch weiter ausgewertet werden.
In Kapitel 7 erfolgt zunächst eine naive Berechnung aller eichkorrigierter 3-Schleifen-Diagramme, die zu den beiden die Asymmetrie verursachenden Diagrammen gehören. Da eine einfache Berechnung der 3-Schleifen-Diagramme nicht ausreicht, wird an dieser Stelle ein neues, zylindrisches Diagramm eingeführt, welches alle wichtigen Beiträge, insbesondere die HTL- und CTL-resummierten, enthält. Am Ende des Kapitels findet sich der erste geschlossene Ausdruck für die eichkorrigierte Leptonenzahlmatrix in führender Ordnung in allen Kopplungen.
Abschließend gibt es eine kurze Zusammenfassung und einen Ausblick in Kapitel 8. In dieser Dissertation findet sich zum ersten Mal ein systematischer Zugang zur Berücksichtigung aller Eichwechselwirkungen in der Theorie der thermischen Leptogenese. Ein geschlossener Ausdruck für die eichkorrigierte Leptonenasymmetrie konnte vorgestellt werden.
In dieser Arbeit wurden thermodynamische Eigenschaften eines chiralen Quark Meson Modelles untersucht. Das chirale Quark Meson Model beschreibt die starke Wechselwirkung über den Austausch von Mesonen und zudem die thermische und dichteabhängige Entwicklung der Quarkmassen im Medium über die chirale Symmetrie.Im SU(2) Model wurde zunächst in mean field approximation gearbeitet, um im Anschluss den divergenten Vakuumterm mit einzubeziehen. Nach eingehender Untersuchung der Ergebnisse, wurden dann die thermischen Mesonenfluktuationen studiert. In beiden Ansätzen verschiebt die Nullpunktsenergie den chiralen Phasenübergang zu höheren Temperaturen, wodurch die Massen bei höheren Temperaturen entarten. Beide Ansätze wurden dann zu einem gemeinsamen Modell kombiniert, um den Einfluss der Mesonenfluktuationen auf Ordnungsparameter, Massen und thermodynamische Grössen zu untersuchen. Als Fazit der Studie kann behauptet werden, dass sich der Einfluss der Mesonenfluktuationen in grösserem Maÿ auf die Thermodynamik, als auf den Ordnungsparameter und die Massen auswirkt. Im SU(3) Modell wurden ebenfalls regularisiert und zudem Vektormesonen mitberücksichtigt, welche die Repulsion zwischen den einzelnen Freiheitsgraden modelliert. Die Zustandsgleichung wird durch den Vakuum Term etwas softer und zeigt ein ähnliches Verhalten im niederen Energiebereich. Untersucht wurde neben der Temperatur T, die Elektron Baryon Rate Ye, die Sigma Meson Masse noch der Einfluss der Vektorkopplung. Aus der Zustandsgleichung konntendann Isentropen im T-mu Phasendiagramm errechnet werden, welche in naher Zukunft Aufschluss über eine dritte Familie von kompakten Sternen in Zusammenhang mit der entsprechenden Supernova Explosion geben könnte. Um die Existenz von kompakten Sternen genauer zu analysieren, wurde das chiraleSU(3) Quark Meson Modell bei T = 0 benutzt, um über die aus dem Formalismusgewonnenen Grössen Druck und Energiedichte die Tolmann-Oppenheimer-Volkoff zu lösen. Diese stellen die Masse-Radius Beziehungen kompakter Objekte dar. Auf der Suche nach Twin Stern Lösungen aus dem chiralen SU(3) Quark Meson Model wurde zunächst ein Modell für Hybridsterne entwickelt. Im untersuchten Parameterbereich fanden wir Hybrid Stern Lösungen, bei welchen der Einfluss der Quarkmaterie auf die Stabilität des Sternes untersucht wurde, denn das Einsetzen des Phasenüberganges übt einen zusätzlichen gravitativen Zug auf die hadronische Kruste aus. Der Stern ist stabil, wenn der Druck der Quarkmaterie diesem zusätzlichen Zug standzuhalten vermag. Für einen zu grossen Sprung in der Energiedichte werden die Lösungen jedoch instabil. Zwillingssterne waren nicht unter den Lösungen, da der Übergangsdruck relativklein sein muss, während der Energiedichtesprung eher gross sein sollte. Das Auftreten zweier stabiler Äste in der Masse Radius Relation kann allerdingsmit dem SU(3) Modell und entsprechendem chiralen Phasenübergang modelliert werden. Für einen gewissen Parameterbereich einhergehend mit kleinem Wert des Vakuum Druckes B konnten Nicht-Linearitäten in der Zustangsgleichungzur Lösung der TOV Gleichung beitragen. Im Weitern ist das Zusammenspiel der Vektorkopplung und der Sigma Mesonen Masse einflussreich auf die Lösungen, welche auf Kausalität, Stabilität und neben der 2 Sonnenmassen Bedingung noch auf Restriktionen vom millisecond pulsar PSR J1748-2446ad untersucht wurden.Mit Weltraummissionen wie etwa NICER (Neutron star Interior CompositionExploreR) sollte die Radiusbestimmung kompakter Objekte in Zukunft bis auf einen Kilometer genau bestimmt werden können. Die Entdeckung von zweiSternen mit der gleichen Masse und unterschiedlichen Radien wäre in der Tat ein Beweis für die Existenz von Zwillingssternen, welche dann die Theorie des Phasenüberganges in dichter Materie untermauern würde. Das Kollaps-Szenario eines Zwillingssternes würde weiteren Aufschluss über Neutrino-Emmissivität, Gamma-ray burster und Gravitationswellen Signale geben können. Dynamische Simulationen in allgemein relativistischem Kontext für compact star merger mit den hier diskutierten Zustandsgleichungen sind bereits in Planung, um Eigenschaftenwie beispielsweise das Temperatur- und Dichteprofil solcher Objekte genauer zu analysieren.
The theory of strong interactions — Quantum Chromodynamics (QCD) — is well-defined mathematically. However, direct applications of this theory to experiment are rather limited due to significant technical obstacles. Even some general features of QCD remain unclear to date.
Hence, phenomenological input is important and needed for practical applications, e.g. for theoretical analysis of the heavy-ion collision experiments. In this thesis the role of hadronic interactions is studied in the hadron resonance gas (HRG) model — a popular model for the confined phase of QCD. The description of hadronic interactions is based on the famous van der Waals (VDW) equation and its quantum statistical generalization. While this is not the conventional choice for nuclear/hadronic physicspplications, the simplicity of the VDW approach makes it extremely useful.
In particular, this framework allows to include the two most basic ingredients of hadron-hadron interaction: the short-range repulsion, modeled by excluded-volume (EV) corrections, and the intermediate range attraction. The first part of the thesis considers just the repulsive EV interactions between hadrons. A hitherto unknown, but surprisingly strong sensitivity of the long known thermal fits to heavy-ion hadron yield data to the choice of hadron eigenvolumes is uncovered. It challenges the robustness of the chemical freeze-out temperature and baryochemical potential determination from the thermal fits. However, at the same time, the extracted value of the entropy per baryon is found to be a robust observable which depends weakly on this systematic uncertainty of the HRG model.
A Monte Carlo procedure to treat EV interactions in HRG is also introduced in this thesis. It allows to study simultaneous effects of EV and of exact charge conservation in HRG for the first time. Generalizations of the classical VDW equation are required for its applications in hadronic physics. he grand canonical ensemble (GCE) formulation of the classical VDW equation is presented. Remarkably, this important aspect of the VDW equation was not discovered before. The GCE formulation yields the analytic structure of the critical fluctuations, both in the vicinity of and far off the critical point. These critical fluctuations are presently actively being used as probes for the QCD critical point. Another extension is the hitherto undiscovered generalization of the VDW equation to include quantum Bose-Einstein and Fermi-Dirac statistics. It is performed for both single-component and multi-component fluids. The Fermi-Dirac VDW equation is applied for the first time. It is used to describe nucleons and basic properties of nuclear matter. The quantum statistical generalization of the VDW equation developed in this work is quite general, and can be applied for any fluid. Thus, its applications are not restricted to QCD physics, but may also find themselves in chemistry and/or industry. The quantum statistical VDW equation is used to describe baryonic interactions in full HRG. The VDW parameters $a$ and $b$ are fixed to the nuclear ground state and the predictions of the model are confronted with lattice QCD calculations. The inclusion of baryonic interactions leads to a qualitatively different behavior of the fluctuations of conserved charges in the crossover region. In many cases it resembles the lattice data. These results suggest that hadrons do not melt quickly with increasing temperature, as one could conclude on the basis of the common simple ideal HRG model. Calculations at finite chemical potentials show that the nuclear liquid-gas transition manifests itself by non-trivial fluctuations of the net baryon number in heavy ion collisions. In the final part of the thesis the pure glue initial scenario for high-energy hadron and heavy-ion collisions is explored. This scenario is shown not to spoil the existing agreement of the hadronic and electromagnetic observables description in Pb+Pb collisions at energies available at the CERN Large Hadron Collider. Hydrodynamic calculations suggest that collisions of small-sized nuclei at lower collision energies available at the BNL Relativistic Heavy Ion Collider are promising in the search for the traces of the chemically non-equilibrium gluon-dominated phase transition.
In this work the main emphasis is put on the investigation of relativistic shock waves and Mach cones in hot and dense matter using the microscopic transport model BAMPS, based on the relativistic Boltzmann equation. Using this kinetic approach we study the complete transition from ideal-fluid behavior to free streaming. This includes shock-wave formation in a simplified (1+1)-dimensional setup as well as the investigation of Mach-cone formation induced by supersonic projectiles and/or jets in (2+1)- and (3+1)-dimensional static and expanding systems. We further address the question whether jet-medium interactions inducing Mach cones can contribute to a double-peak structure observed in two-particle correlations in heavy-ion collision experiments. Furthermore, BAMPS is used as a benchmark to compare kinetic theory to several relativistic hydrodynamic theories in order to verify their accuracy and to find their limitations.
In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schrödinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavyquark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma.
In this thesis we work on the theoretical description of relativistic heavy-ion collisions, focussing on electromagnetic probes. We present mainly four topics: electric conductivity and diffusion properties of the hot plasma and hadronic matter, response of the quark-gluon plasma to external magnetic fields, direct photon production in the quark-gluon plasma and a study about initial and final state effects in small systems. The latter topic aims, i.a., at a better understanding of the initial state, which is crucial for electromagnetic probes. In all research areas we make use of the Boltzmann transport equation, whereby the presented methods provide analytical and numerical solutions. We pay particular attention to the construction of complete leading order photon production processes in numerical transport simulations of the quark-gluon plasma.
To begin with, our findings are the complete conserved charge diffusion matrix and electric conductivity. Those properties are important ingredients, e.g., for future simulations of baryon rich collisions. Next, we find that the influence of external magnetic fields to the QGP dynamics is not quantifiable in observables.
We present results for a variety of direct photon observables and we can partly explain experimental data. We emphasize the importance of the chemical composition and non-equilibrium nature of the medium to the direct photon puzzle. Lastly, we observe the interesting dynamic behavior of azimuthal correlations in small systems and identify signatures of the initial state in final observables. This will also be of interest for more precise simulations of electromagnetic probes and allows for various future studies.