Refine
Year of publication
Document Type
- Doctoral Thesis (33)
Has Fulltext
- yes (33)
Is part of the Bibliography
- no (33)
Keywords
- Photosynthese (3)
- Carotinoide (2)
- Ageing (1)
- Altern (1)
- Biochemie (1)
- Biotechnologie (1)
- Carotinoidbiosynthese (1)
- Chlor (1)
- Copper (1)
- Diadinoxanthin (1)
Institute
- Biowissenschaften (31)
- Biochemie und Chemie (1)
- Pharmazie (1)
Untersuchungen zur molekularen Kontrolle der Kupferhomöostase in dem Ascomyceten Podospora anserina
(2007)
Das essentielle Spurenelement Kupfer ist Co-Faktor mehrerer Schlüsselenzyme (z B. Cu/Zn-SOD, Cytochrom c Oxidase). Da Kupfer leicht Elektronen aufnehmen und abgeben kann, eignet es sich besonders gut für Redox-Reaktionen. Wenn Kupfer jedoch mit Sauerstoff reagiert, entstehen hoch cytotoxische reaktive Sauerstoffspezies (ROS), die nach der „freien Radikaltheorie des Alterns“ (nach D. Harman 1956) ursächlich für Alterung und Zelltod sind. Um deren Bildung zu vermeiden, erfolgen alle Aspekte des Kupferstoffwechsels – Aufnahme, Transport und Speicherung - stets proteingebunden. In der vorliegenden Arbeit konnte gezeigt werden, dass sich bis auf drei Ausnahmen die gesamte bislang bekannte Maschinerie der molekularen Kupferhomöostase aus anderen Modellorganismen (z.B. S. cerevisiae oder H. sapiens) auch im Genom des Ascomyceten Podospora anserina mit Homologen bzw. Orthologen wiederfindet. Die drei Ausnahmen betreffen jeweils Proteine, für die in anderen Organismen mehrere Isoformen existieren und P. anserina nur jeweils ein Homolog/Ortholog besitzt. Für mehrere der neu vorhergesagten Gene (PaAtx1, PaCcc2, PaCcs1, PaCox11, PaCox19, PaCox23, PaSco1) konnte eine Expression im Wildstamm nachgewiesen werden. Dazu wurden Standardtechniken (Northern Blot Analyse, RT-PCR) und auch neu etablierte eGFP-Reporterkonstrukte verwendet. In Podospora anserina scheint Kupfer auf zwei verschiedene Arten Einfluss auf die Lebensspanne zu nehmen: Zum einen mittelbar darüber, dass die Verfügbarkeit von Kupfer über die in der mitochondrialen Atmung verwendete Endoxidase entscheidet. Bei Kupfermangel wird eine Eisen-abhängige alternative Oxidase (AOX) induziert. Durch Atmung über die AOX entstehen weniger ROS, was die Lebensspanne verlängert. Anhand einer Vielzahl langlebiger Mutanten konnte dieser Zusammenhang bereits mehrfach demonstriert werden. Zum anderen scheint Kupfer auch eine unmittelbare Rolle in der Seneszenz von P. anserina zu spielen. In früheren Arbeiten konnten mehrere indirekte Hinweise (Transkript- und Aktivitätsanalysen) gesammelt werden, dass im Alter die cytoplasmatische Kupferkonzentration drastisch ansteigt. Durch Messung der Kupferkonzentration mittels einer direkten chemisch-analytische Methode (TXRF) in fraktionierten Zellbestandteilen (Cytoplasma und Mitchondrien) konnten in dieser Arbeit diese Hinweise weiter untermauert werden. Experimente mit in die mitochondriale Matrix geleitetem eGFP brachten zusätzliche Indizien dafür, dass das mitochondriale Kupfer-Reservoir die Quelle des sich in seneszenten Pilzstämmen im Cytoplasma wiederfindenden Kupfers ist. Durch einen Prozess, der größenabhängig reguliert und in anderen Organismen als „Mitochondrial Permeability Transition – MPT“ zu Beginn der Apoptose bekannt ist, ergiesst sich beim Eintritt in die Seneszenz der Inhalt der mitochondrialen Matrix in das Cytosol. Die Bedeutung dieses Vorgangs und v.a. die Folgen der Umverteilung von Kupfer innerhalb der Zelle bleiben im Detail weiter zu klären. Durch die durchgeführten Arbeiten konnte ein weiterer deutlicher Beweis für das Ablaufen apoptotischer Mechansimen im Alterungsprozeß des Ascomyceten P. anserina erbracht werden.
Today the structure of photosystem II, which is the enzyme responsible for the evolution of molecular oxygen by plants, algae and cyanobacteria, is known up to a resolution of about 3.0 Å in cyanobacteria (Loll et al., 2005). Photosystem II of higher plants, which shows some differences compared to the photosystem II of cyanobacteria, is not resolved in such high detail, yet (8-10 Å) (Rhee et al., 1998; Hankamer et al., 2001a). Therefore, the molecular structure of PSII of higher plants and its adjacent antenna complexes remains in the focus of the current research. One of the major problems when working with photosystem II is its relative instability during isolation. Together with the antenna proteins and several other proteins, some of which still have an unclear function, PSII forms a huge multi-protein-complex, which tends to fall apart during classical preparation methods. In order to achieve a faster and milder method of purification for PSII, four different His-tags have been added to one of the subunits of PSII. The gene targeted in this study is called psbE and codes for the α-chain of cytochrome b559, an integral part of PSII. The gene for PsbE is encoded in the chloroplast genome. The His-tags, which were employed in this work, consist of six or ten consecutive histidine aminoacid residues, which were fused to the N-terminus of the protein, either with or without a cleavage site for the protease “Factor Xa”. The N-terminus of PsbE is located on the more accessible stromal side of the thylakoid membrane. After inserting the psbE gene in a vector plasmid, in which the recognition site for the restriction endonuclease SacI had been eliminated, the different His-tags were generated by PCR with purposefully altered primers. In a final cloning step, a gene, which confers resistance to the antibiotics spectinomycin and streptomycin, was added to the DNA construct. Subsequently, the so-called biolistic transformation method (“gene gun”) was applied to introduce this genetically engineered plasmid DNA to Nicotiana tabacum chloroplasts (Bock & Hagemann, 2000). Through the processes of homologous recombination that take place in the chloroplast, the plastid encoded wildtype psbE gene was replaced by its His-tag containing counterparts. After several rounds of regenerating plants on antibiotic-containing medium, successful transformation was confirmed through PCR methods. By self fertilisation of fully regenerated plants, seeds were produced from tobacco strains, which carried only the mutated psbE gene. Plants cultivated from these seeds showed no distinctive phenotype under the chosen growth conditions, in respect to wildtype plants. The presence of the His-tag in this F1 generation was again confirmed with PCR methods. Measurements of oxygen evolution and pulse amplitude modulated fluorescence (PAM), carried out with preparations of wildtype and transgenic tobacco strains, revealed no differences for photochemical or non-photochemical quenching between both types. However, the oxygen evolution capacity of transgenic tobacco thylakoids compared to the wildtype was significantly reduced, although the chlorophyll content in relation to the leaf area was almost identical. This hints at a reduced amount of photosystem II complexes in the thylakoid membranes of transgenic tobacco. This alteration could be related to the mutation of cytochrome b559, because, amongst other functions, this subunit was shown to be important for the assembly of photosystem II (Morais et al., 1998). If solubilised thylakoid preparations of His-tagged plant strains were applied to a Ni-NTA column, photosystem II was selectively bound to the matrix. After washing away most of the contaminations, photosystem II core complexes could be eluted with imidazole-containing buffer. Photosystem II prepared in this way, displayed a drastic reduction of the peripheral light-harvesting complexes (LHCI & LHCII) and photo-system I reaction centres. This could be demonstrated by the loss of chlorophyll b and xanthophyll bands (LHCs) in absorption spectra, a small blue-shift of the chlorophyll a Qy absorption (PSI) and the respective band patterns in polyacrylamide gel electro-phoresis. The photosystem II complexes prepared in this way can now be put to use in different structural studies, like two-dimensional or three-dimensional crystallisation and spectroscopic measurements. Another photosynthetic pigment-protein complex of interest is the fucoxanthin-chlorophyll a/c-binding protein of diatoms, because eukaryotic algae, like diatoms, are important factors of oceanic ecosystems and account for a large part of marine biomass production. In order to facilitate ultra-fast time-resolved transient absorption spectroscopy and subsequent modelling of the kinetic traces, FCPs were prepared by sucrose-gradient ultra-centrifugation and their pigment stoichiometries determined by HPLC. Combining the spectroscopic data (Papagiannakis et al., 2005) with protein sequence alignments (Eppard & Rhiel, 1998) and the structure of the homologous higher plant LHCIIb (Kühlbrandt et al., 1994), a hypothetical model for the structure of FCP could be proposed (Fig. IV.3)
Einleitung: Um die empfindlichen Nervenzellen des Gehirns vor den Einflüssen schädigender Substanzen im systemisch zirkulierenden Blut zu schützen, besitzen höhere Lebewesen einen Barrieremechanismus, der das zentrale Nervensystem (ZNS) nach außen hin abriegelt. Diese Blut-Hirn-Schranke (BHS) wird durch die Gefäßendothelzellen im Gehirn gebildet, die über eine Kombination mehrerer Mechanismen Substanzen vom Eindringen in das Gehirngewebe abhalten. Zum einen stellt die Existenz dieser Barriere einen lebensnotwendigen Schutz dar, zum anderen jedoch bedeutet sie eine große Hürde in der Pharmakotherapie von Erkrankungen des zentralen Nervensystems, da nur wenige Arzneimittel in der Lage sind sie zu überwinden. Eine gute Gehirngängigkeit besitzen in der Regel kleine Moleküle mit einer hohen Lipophilie oder solche, die aktiv über Transporter oder Rezeptoren in das ZNS aufgenommen werden. Alle anderen Substanzen, wie effektiv sie auch im restlichen Körper sein mögen, stehen für die Therapie zerebraler Krankheiten wie z.B. Epilepsie, Alzheimer, Gehirntumore oder ZNS-HIV unter normalen Umständen nicht zur Verfügung. Das Gebiet der kolloidalen Trägersysteme bietet eine Lösung für dieses Problem. Durch den Einsatz von Liposomen oder Nanopartikeln als „Carrier“ können verschiedene Arzneistoffe aktiv in das Gehirn transportiert warden, um dort ihre Wirkung zu entfalten. Des Weiteren führt ein solches „Drug targeting“ nicht nur zu einer Überwindung der BHS sondern gleichzeitig zu einer vermehrten Anreicherung des Arzneistoffs im ZNS und dadurch zu geringeren Nebenwirkungen im restlichen Organismus. Durch die erhöhte Selektivität für das ZNS können kleinere und somit für den Körper verträglichere Dosen des Arzneistoffs eingesetzt werden. In der Vergangenheit konnte gezeigt werden, dass unter anderem Nanopartikel aus humanem Serumalbumin, welche mit Polysorbat 80 überzogen waren oder deren Oberfläche mit Apolipoproteinen modifiziert wurde, Arzneistoffe, die üblicherweise nicht in der Lage sind die Blut-Hirn-Schranke zu überwinden, zentral zur Wirkung brachten. Der genaue Mechanismus, durch den diese Arzneistoffe mithilfe der Trägersysteme ins Gehirn gelangen,war bisher weitgehend ungeklärt. Ein Eindringen des arzneistoffbeladenen Nanopartikels als Ganzes in das Gehirn sowie die Einleitung 2 Vermittlung des Arzneistoff-Transportes durch das Partikel am Endothel oder gar eine unselektive Zerstörung der Barrierefunktion wurden diskutiert. Im Rahmen dieser Arbeit wurden mit Apolipoproteinen modifizierte Partikel aus humanem Serumalbumin hergestellt und hinsichtlich ihrer Größe, der Größenverteilung, des Partikelgehaltes, der Oberflächenladung und ihres morphologischen Erscheinungsbildes charakterisiert. Anschließend wurde die Interaktion dieser kolloidalen Trägersysteme mit isolierten Endothelzellen des Nagergehirns mittels verschiedener Analytiken untersucht. Gleichzeitig wurden in umfangreichen Untersuchungen an Mäusen und Ratten die Geschehnisse in vivo beleuchtet und mit Hilfe eines bildgebenden Verfahrens, der Elektronenmikroskopie, dargestellt. Des Weiteren wurde der Effekt einer nanopartikulären Applikation auf die Integrität der Barrierefunktion der BHS untersucht, wodurch eine schädliche Wirkung der Partikel ausgeschlossen und die der Aufnahme in das ZNS zugrunde liegenden Transportmechanismen aufgeklärt werden konnten.
Photosystem (PS) I is a huge membrane protein complex which coordinates around 200 co-factors. Upon light excitation a charge separation at the PS I reaction centre is induced which leads to an electron transport across the thylakoid membrane and the generation of redox equivalents needed for several biochemical reactions, e.g. the synthesis of sugars. For higher plants and cyanobacteria the crystal structure of PS I complexes were resolved to resolutions of 4.4 Å and 2.5 Å. Furthermore, supramolecular structures of PS I of eukaryotic algae, mainly of the green line, were obtained recently. However, up to now, no structure of diatoms is available yet. Diatoms are key players in global primary production and derived from a secondary endosymbiosis event. Their chloroplasts are surrounded by four envelope membranes and their thylakoids are evenly arranged in bands of three, i.e. no separation in grana and stroma regions is apparent. In this thesis a protocol was developed to isolate a functional PS I complex of diatoms which can be used for structural analysis by transmissional electron microscopy (TEM). A photosystem I-fucoxanthin chlorophyll protein (PS I-FCP) complex was isolated from the pennate diatom Phaeodactylum tricornutum by ion exchange chromatography. Spectroscopic analysis proved that bound Fcp polypeptides function as a light-harvesting complex. An active light energy transfer from Fcp associated pigments, Chl c and fucoxanthin, towards the PS I core was proven by fluorescence spectroscopy. Oxidised minus reduced difference spectroscopy evidenced the activity of the PS I reaction centre P700 and yielded a chlorophyll a/P700 ratio of approximately 200:1. These data indicate that the isolated PS I-FCP complex exceeds the PS I cores from cyanobacteria and higher plants in the numbers of chlorophyll a molecules. Because of the strict conservation of PS I cores among organisms the additional 100 chlorophyll a molecules must either be coordinated by Fcps or function as linker molecules between the Fcp antenna and the PS I core as shown for the PS I-LHC I complex of higher plants. To tell something about the structural organisation, the PS I-FCP complex was compared with its cyanobacterial and higher plant counterparts. Whereas cyanobacterial PS I cores aggregate to trimers, usually without associated antennae, higher plant PS I is a monomer and binds additionally two LHC I heterodimers. BN-PAGE and gel filtration experiments showed that also diatoms contain PS I monomers associated with Fcps as light-harvesting antenna. First TEM studies evidenced these observations. Negatively stained PS I-FCP particles had an increased size compared to PS I cores of other organisms. No PS I trimers or higher oligomers have been found. The calculated diameter and shape of the particles correspond to PS I-LHC I particles obtained from green algae, which also comprise of a higher number of LHC I polypeptides compared to the higher plant x-ray structure. Additionally, the analysis of polypeptides indicates that the PS I associated Fcps differ from the free Fcp pool and also from Fcps of a PS II enriched fraction. The assumption that diatoms harbour just one Fcp antenna that serve both Photosystems equally seems to be wrong. To further study the association of Fcps with the two Photosystems, both complexes plus the free FCP complexes were isolated from the centric diatom Cyclotella meneghiniana. Because of the availability of antibodies directed against specific Fcp polypeptides of Cyclotella the PS I-FCP complex of Phaeodactylum could not be used. A trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb, have already been described for C. meneghiniana. The latter is assumed to be composed of only Fcp5, whereas the FCPa contains Fcp2 and Fcp6. Biochemical and spectroscopical evidences revealed a different subset of associated Fcp polypeptides within the isolated photosystem complexes. Whereas the PS II associated Fcp antenna resembles FCPa, at least three different Fcp polypeptides are associated with PS I. By re-solubilisation of the PS I complex and a further purification step Fcp polypeptides were partially removed from PS I and both fractions were analysed again by biochemical and spectroscopical means, as well as by HPLC. Thereby Fcp4 and a so far undescribed 17 kDa Fcp were found to be strongly coupled to PS I, whereas another Fcp, presumably Fcp5, is only loosely bound to the PS I core. Thus an association of FCPb and PS I is assumed.
Photosystem II (PSII) is a polypeptide-cofactor complex organised as a homodimeric multisubunit protein embedded in the thylakoid membrane. PSII monomers are heterooligomers related to each other by a pseudo-twofold axis perpendicular to the membrane plane (Loll et al. 2005). PSII acts as a photochemical enzyme that through the chlorophylls and the other cofactors catalyses photon capture and electron transfer from water to the plastoquinone pool with concomitant evolution of oxygen. Photon capture and charge separation take place in the PSII core which consists of the D1 and D2 proteins, the cytochrome b559 alpha- and beta-chains (PsbE and F subunits) and the chlorophyll a-binding antenna proteins CP43 and CP47 (Loll et al. 2005). The remaining polypeptides are low molecular mass proteins with not clearly understood fuctions; they include chloroplast-encoded (PsbH, I, J, K, L, M, N, T and Z) and nucleus-encoded (PsbR, S, W and X) proteins consisting of one to four transmembrane helices (Barber et al. 1997). The oxygen-evolving part of PSII consists of a Mn-Ca transition complex called Mn cluster or oxygen evolving complex that is situated on the luminal side of PSII. In higher plants it is stabilised by the PsbO (33 kDa), PsbP (23 kDa) and PsbQ (17 kDa) extrinsic subunits (Soursa et al. 2006; Ifuku et al. 2005). The structure and mechanisms related to the oxygen evolving complex of PSII are not completely clarified. Currently two high resolution structures from the cyanobacteria S. elongatus are available (Loll et al. 2005; Ferreira et al. 2004) Nevertheless structural information is not as well defined in green algae and higher plants as in cyanobacteria. In fact the 8Å structure available from spinach has too low resolution for addressing questions such as the structural and functional differences in respect to PSII from cyanobateria (Rhee et al. 1997).. Therefore it is obvious that for PSII from higher plants the main general questions are still open: is the structure of PSII from higher plants equivalent to the structures observed in cyanobacteria? Is the typical higher plants subunit PsbS stably or transiently bound to PSII? Finding an answer to these questions was the main focus of this work. In this work a simple and rapid protocol to isolate the oxygen-evolving photosystem II (PSII) core complex from Nicotiana tabacum was developed. A PSII having a His-tag extension made of six or ten consecutive histidine residues at the N-terminus of the PsbE subunit was purified by a single-step Ni2+ NTA-affinity column chromatography after solubilisation of the thylakoid membranes using different mild detergents. Characterization of the oxygen evolution and the subunit composition by immunoblotting and mass spectroscopy revealed that the His-tagging did not affect the functional integrity of the PSII reaction center. The final PSII core complex was purified in a single step from solubilised thylakoids in less than 14 hours getting a very pure sample in high amount. The isolated core complex was in a dimeric form as demonstrated by Blue Native PAGE, analytical gel filtration and single particles analysis; with a molecular mass of about 500 kDa, consisting of D1, D2, CP43, CP47, 33 kDa and low molecular weight proteins. The preparation retains a high rate of oxygen-evolving activity but showed different stabilities of the binding of the three extrinsic proteins. The subunit of 33 kDa was always present in the preparations with a constant amount, whereas the 23 and 17 kDa subunits were always in less and unconstant amounts. Nevertheless the oxygen evolution was not depending on the amount of the 23 and 17 kDa subunits. Furthermore the preparation showed a high oxygen-evolving activity of 1390 micromol/mg Chl·h-1 in presence of betaine, while its activity was 440-680 micromol/mg Chl·h-1 in its absence. The presence of 1.0 mol/L betaine during the isolation of PSII increased the preservation of the photochemical activity hence the oxygen evolution. It was inferred from these results that His-tagging does not affect the functional and structural integrity of the PSII core complex and that the “Histag strategy” is highly useful for biochemical, physicochemical and structural studies of higher plant PSII. PSII is directly involved in two essential processes, the efficient capture and funnelling of light energy to the reaction centre and the controlled dissipation of excess excitation energy. Those functions require structural and functional flexibility in order to be performed with high efficiency. Moreover light-harvesting proteins respond to an external signal, the thylakoid pH, to induce feedback control regulating those activities in every moment. This process called non-photochemical quenching (NPQ) is mainly depending on the xanthophyll cycle and the PsbS protein (Szabo et al. 2005). In this work several new evidences related with those two processes were found. The subunit PsbS is a polypeptide whose involvement in the NPQ processes is debated. Nevertheless, its position in the PSII complex and the mechanisms by which this subunit contributes to carry out the NPQ functions are not definitely known. In addition it is not sure if it is a pigment binding protein or not. Currently several lines of evidence indicate that this subunit is able to bind two molecules of zeaxanthin, one of the pigments involved in the xanthophyll cycle. In this work immunolabelling indicated that PsbS is tightly bound to the PSII core dimer, monomer and incomplete PSII particles as Reaction Centre-CP47 (RC-CP47). Furthermore qualitative HPLC indicates a complete absence of zeaxanthin in the sample and the presence of violaxanthin, another pigment involved in the xanthophyll cycle. The absence of zeaxanthin was expected considering that the plants were harvested after the dark period and that the particles were purified in complete dark (or in green light), whereas the presence of violaxanthin was unexpected considering that so far no evidence of violaxanthin bound to PSII cores devoid of LHC proteins was reported. Furthermore the amount of chlorophyll b was not relevant for suspecting this pigment bound to PsbS. Therefore we conclude that if PsbS is able to bind chlorophyll it has to be a chlorophyll a. The results indicate that PsbS could be able to bind not only zeaxanthin but also violaxanthin. The extrinsic subunit Psb27 was also found in this preparation. The presence and the amount of this subunit, reported to be involved in the repair of damaged PSII, was not constant and therefore behaving as the other two extrinsic proteins 23kDa (PsbP) and 17kDa (PsbQ). Electron crystallography studies on spinach PSII particles purified by differential solubilisation resulted in crystalline tubes with new unit cell constants. From data analysis a density map at 15Å resolution was obtained with a P22121 symmetry. However, at this resolution it cannot be said if the internal symmetry axis is related with the two-fold axis of the dimer or the pseudo two-fold axis of the monomer. In conclusion a method to isolate functional, pure PSII core complexes was developped. These samples, together with the improved 2d crystallisation protocol could lead to crystals with higher quality hence better resolution density maps in the future.
In der vorliegenden Arbeit konnte die β-Carotin-Ketolase aus dem Cyanobakterium Synechocystis PCC 6803 nach heterologer Expression in E. coli gereinigt und enzymatisch charakterisiert werden. Die Funktion der β-Carotin-Ketolase wurde in vivo durch Komplementierung von β- Carotin-produzierenden E. coli-Transformanten überprüft. Die β-Carotin-Ketolase agierte hier auch als Diketolase und synthetisierte sowohl Echinenon als auch Canthaxanthin. Untersuchungen der Substratspezifität der β-Carotin-Ketolase in vivo und in vitro ergaben, daß nur Carotinoide erkannt werden, die einen β-Iononring ohne Hydroxygruppe in Position C3 aufwiesen. So wurden die Carotinoide β-Carotin, Echinenon, β-Cryptoxanthin und α-Carotin als Substrate erkannt und zu Echinenon, Canthaxanthin, 3’-Hydroxyechinenon und 4-Keto-α-Carotin umgesetzt. Zeaxanthin, 3’-Hydroxyechinenon, 4-Ketozeaxanthin sind keine Substrate der β-Carotin-Ketolase. Die β-Carotin-Ketolase kann einen ε-Iononring, wie in α-Carotin, nicht modifizieren. Die β-Carotin-Ketolase mit einer apparenten Molmasse von 61 kDa wurde durch pPQE30crtO und pPEU30crtO als rekombinantes Polypeptid mit sechs N-terminalen Histidinen in E. coli heterolog exprimiert. Die kinetischen Parameter der β-Carotin-Ketolase konnten in in vitro-Enzymaktivitätstests bestimmt werden. Der KM-Wert für das Substrat β-Carotin lag bei 41,6 μM und der dazugehörende Vmax-Wert bei 1,318 μmol mg-1 h-1. Für das Substrat Echinenon wurde ein KM-Wert von 35,3 μM und ein Vmax-Wert von 0,339 μmol mg-1 h-1 ermittelt. Die Spezifität der β-Carotin-Ketolase war für β-Carotin dreimal höher als für Echinenon. Es konnte keine Kofaktorabhängigkeit nachgewiesen werden, aber eine starke Abhängigkeit der β-Carotin-Ketolase von molekularem Sauerstoff. Die Zugabe des Detergenz Nonidet P-40 in in vitro-Enzymaktivitätstests erhöhte die enzymatische Aktivität der β-Carotin-Ketolase deutlich. Durch die Metallionen-Affinitätschromatographie konnte das Enzym annährend zur Homogenität (93%) unter Erhalt seiner enzymatischen Aktivität gereinigt werden. Dabei blieb die enzymatische Aktivität der β-Carotin-Ketolase nicht nur erhalten, sondern steigerte sich im Vergleich zur Aktivität in der cytosolischen Fraktion um den Faktor 4,5. Die funktionelle Expression der β-Carotin-Ketolase in höheren Pflanzen Nicotiana tabacum, N. tabacum CrtZ Linie U3, N. glauca und Solanum tuberosum Baltica 47-18 erfolgte unter der Kontrolle des konstitutiven CaMV 35S-Promotors. Außer in der Transformante N. glauca CrtO schien die Integration der Ketolase in das Genom der Pflanzen und die Expression von CrtO die Fitness der Transformanten, gemessen am Chlorophyllgehalt und der photosynthetischen Effizienz, nicht negativ beeinflußt zu haben. Der Gesamtcarotinoidgehalt in den Blättern von N. tabacum CrtO und N. tabacum CrtZ Linie U3 CrtO änderte sich trotz der Integration des crtO-Gens kaum im Vergleich zu den Wildtypen. In Blättern von S. tuberosum Baltica 47-18 CrtO konnte eine leichte Erhöhung des Gesamtcarotinoidgehaltes beobachtet werden. Dagegen kann es in Blättern von N. glauca CrtO zu einer Verdoppelung des Carotinoidgehaltes bei gleichzeitig halbiertem Chlorophyllgehalt. In den Blättern akkumulierten Ketocarotinoide mit Anteilen von 5% in N. tabacum CrtO, 12% in S. tuberosum Baltica 47-18 CrtO, 18% in N. tabacum CrtZ Linie U3 CrtO und 16-33% in N. glauca CrtO. Die Anteile der synthetisierten Ketocarotinoide setzten sich in den Blättern von N. tabacum CrtO und N. tabacum CrtZ Linie U3 CrtO aus Echinenon, 3’-Hydroxyechinenon und Ketolutein zusammen, während in Blättern von N. glauca CrtO und S. tuberosum Baltica 47-18 CrtO Echinenon, 3’-Hydroxyechinenon und 4-Ketozeaxanthin enthalten waren. In Nektarien von N. tabacum CrtO und N. tabacum CrtZ Linie U3 CrtO wurde der Gesamtcarotinoidgehalt verdoppelt bis verdreifacht im Vergleich zu den Nektarien des entsprechenden Wildtyps. Es akkumulierten Echinenon, 3’-Hydroxyechinenon, 4-Ketozeaxanthin und Ketolutein. Dabei enthielten die Nektarien von N. tabacum CrtZ Linie U3 CrtO die meisten Ketocarotinoide. Die Nektarien von N. glauca CrtO enthielten deutlich weniger Ketocarotinoidanteile, obwohl der Gesamtcarotinoidgehalt fast dreimal so hoch ist wie in N. tabacum CrtO und N. tabacum CrtZ Linie U3 CrtO. Es akkumulierten nur Echinenon, 3’-Hydroxyechinenon und Ketolutein. Die anderen Blütenorgane von N. glauca CrtO wiesen deutlich höhere Anteile an Ketocarotinoiden auf, zeigten aber wie die Nektarien gegenüber dem Wildtyp keine deutlichen Unterschiede im Gesamtcarotinoidgehalt. Für die Synthese von Astaxanthin war eine Interaktion zwischen der β-Carotin-Hydroxylase und der β-Carotin-Ketolase von entscheidender Bedeutung. Die Akkumulation von „Intermediaten“ der Astaxanthin-Biosynthese in N. tabacum CrtO, N. tabacum CrtZ Linie U3 CrtO und N. glauca CrtO wies auf eine erfolgreiche Interaktion hin. Einzig in den Knollen der CrtO-Transformanten von S. tuberosum Baltica 47-18 konnte Astaxanthin mit einem Anteil von 2% am Gesamtcarotinoidgehalt nachgewiesen werden. Die Nektarien N. tabacum CrtZ Linie U3 CrtO erwiesen sich neben den Knollen als am besten für die Produktion von ketolierten und hydroxylierten Carotinoiden. Die Transformation von N. glauca mit einem Gen der Carotinoidbiosynthese wurde in der vorliegenden Arbeit erstmals durchgeführt, zeigte aber nicht die erwartete Produktion größerer Mengen an Ketocarotinoiden in Kronblättern. Außerdem ist es in der vorliegenden Arbeit erstmals gelungen, in der Kartoffelknolle durch die Einführung einer cyanobakteriellen β-Carotin-Ketolase die Biosynthese von Ketocarotinoiden zu etablieren, um das für die Ernährung wichtige Ketocarotinoid Astaxanthin zu akkumulieren.
1. Halobacillus halophilus akkumuliert zum Ausgleich geringer, extrazellulärer Wasserpotentiale kompatible Solute. Bei Anzuchten in Gegenwart von 0,4 – 1,5 M NaCl wurden Glutamin und Glutamat als die dominierenden kompatiblen Solute identifiziert, während zwischen 2,0 und 3,0 M NaCl Prolin das dominierende Solut darstellt. Außerdem wurde Ectoin als zweites kompatibles Solut gefunden, das spezifisch bei hohen Salzgehalten akumuliert wird. Die Konzentrationen während der exponentiellen Wachstumsphase war jedoch um den Faktor 6 – 7 geringer im Vergleich zu Prolin. 2. Aus Wachstumsexperimenten in Gegenwart unterschiedlicher Anionen war bekannt, dass Glutamat, im Gegensatz zu Gluconat und Nitrat, in der Lage ist, das Wachstum von H. halophilus auch in Abwesenheit von Chlorid zu ermöglichen. Um der Frage nachzugehen, ob die wachstumsfördernde Wirkung von unphysiologisch hohen Glutamat-Konzentrationen im Medium auf die Verwendung von Glutamat als kompatiblem Solut in den Zellen zurückzuführen ist, wurden Gesamtsolutepools von Chlorid-, Nitrat-, Gluconat- und Glutamat-gezogenen Zellen gemessen. In NaCl-gezogenen Zellen zeigte sich Glutamat als dominantes Solut, während Prolin und Glutamin einen geringeren Teil am Gesamtpool ausmachten. In Nitrat-gezogenen Zellen betrug der Gesamtpool nur noch 83% und in Gluconat-gezogenen Zellen nur noch 27% im Vergleich zu Chlorid-gezogenen Zellen. Zellen, die mit Glutamat gezogen wurden, zeigten jedoch eine Gesamtkonzentration an Soluten, die ca. 100% über dem Vergleichswert aus Chlorid-gezogenen Zellen lag. Die Konzentration an Glutamin in den Zellen stieg dabei um 168%, die Konzentration an Glutamat sogar um 299%. Die Prolinkonzentration verringerte sich um 32%. Diese Daten belegen, dass der wachstumsstimulierende Effekt von Glutamat auf die Verwendung als kompatibles Solut zurückzuführen ist. 3. Zur Untersuchung der molekularen Grundlage der Salzadaptation sowie der Abhängigkeit von Chlorid in H. halophilus wurde in Zusammenarbeit mit der Gruppe von Prof. D. Oesterhelt (MPI für Biochemie, Martinsried) die Sequenzierung des Genoms begonnen. Das Projekt ist zur Zeit noch nicht abgeschlossen und befindet sich in der „Lückenschluß-Phase“. Die bisherigen Sequenzdaten konnten dennoch für die in dieser Arbeit beschriebenen Untersuchungen herangezogen werden. Das Genom besitzt eine Größe von ca. 4,1 Mbp mit einem ungefähren GC-Gehalt von 40%. Außerdem wurden 2 Plasmide identifiziert mit einer Größe von 16047 und 3329 bp. 4. Die Schlüsselgene bekannter Biosynthesewege für Glutamin und Glutamat konnten identifiziert werden. Darunter befinden sich zwei Isogene für eine Glutamatdehydrogenase (gdh1 und gdh2), ein Gen für die große Untereinheit einer Glutamatsynthase (gltA), zwei Gene für die kleine Untereinheit einer Glutamat-Synthase (gltB1 und gltB2) und zwei Isogene für eine Glutaminsynthetase (glnA1 und glnA2). glnA1 befindet sich in einem Cluster zusammen mit einem Gen, das für einen Regulator kodiert (glnR), wie er auch aus B. subtilis bekannt ist. Über reverse Transkription von mRNA und anschließender PCR-Analyse konnte gezeigt werden, dass sowohl gltA/gltB1 als auch glnA1/glnR in einem Operon organisiert sind. 5. Wurde die Transkriptmenge der in Punkt 4 erwähnten Biosynthesegene in Zellen quantifiziert, die in Gegenwart unterschiedlicher Salzkonzentrationen (0,4 – 3,0 M NaCl) gezogen wurden, so zeigte sich keine Abhängigkeit von der Salzkonzentration für die Gene gltA, glnA1 und gdh1. Über die Transkriptmengen von gdh2 ließ sich keine abschließende Aussage treffen, da die gefundenen Transkriptmengen sehr gering waren und daher zu sehr großen Varianzen bei der Quantifizierung führten. Eine klare Abhängigkeit der Transkriptmenge von der im Medium zugesetzten Salzkonzentration konnte für glnA2 gezeigt werden. Die glnA2 mRNA-Menge stieg dabei mit steigender Salzkonzentration an und erreichte bei 1,5 – 2.0 M NaCl ein Maximum. Bei diesen Salzkonzentrationen war die Menge an mRNA ca. 4 mal höher als der Vergleichswert bei 0,4 M NaCl. Bei höhern Salzkonzentrationen sank die Menge an Transkript wieder leicht und war dann ca. nur noch 3 mal so hoch wie bei 0,4 M NaCl. 6. Die zelluläre Konzentration der glnA2-Transkripte in Abhängigkeit unterschiedlicher Anionen im Anzuchtmedium wurde untersucht. Die Quantifizierung der glnA2–mRNA ergab eine 2 mal höhere Transkriptmenge in Gegenwart von Chlorid verglichen mit Nitrat oder Gluconat. 7. Es wurde nach Enzymaktivitäten der bekannten Schlüsselenzyme im Glutamat und Glutamin-Biosyntheseweg gesucht. Eine Glutamatdehydrogenase und eine Glutamatsynthase – Aktivität konnte nicht oder nur in vernachlässigbarem Maße nachgewiesen werden. Im Gegensatz dazu konnt eine Glutaminsynthetase – Aktivität eindeutig belegt werden. Diese Aktivität erwies sich abhängig von der Art und der Konzentration des angebotenen Anions im Medium. Maximale Aktivitäten wurden mit NaCl in einer Konzentration von 2,5 – 3,0 M erreicht. Interessanterweise erwies sich die Glutaminsynthetase – Aktivität auch abhängig von der Art des im Testpuffers verwendeten Anions. Hier zeigte sich eine deutliche Stimulierung der Aktivität durch das Anion Chlorid. [Die für diesen Punkt zugrunde liegenden Daten wurden im Rahmen einer von mir mitbetreuten Diplomarbeit von Jasmin F. Sydow erhoben und sind aus Gründen der vollständigen Darstellung des Projektverlaufes mitaufgeführt!] 8. Wie im Punkt 1 dargelegt, wird Prolin vor allem bei hohen Salzkonzentrationen in H. halophilus - Zellen akkumuliert. Neben der Abhängigkeit von der Salzkonzentration wurde außerdem die Abhängigkeit von der Wachstumsphase untersucht. Die Analyse der Prolinkonzentrationen während verschiedener Wachstumsphasen in Kulturen, die bei 1,0 bzw. 2,5 M NaCl angezogen wurden, zeigte, (i) dass die Prolinkonzentration während der frühen exponentiellen Phase ca. 2,5-fach erhöht war im Vergleich zu Niedrigsalz-Zellen, (ii) dass die Prolinkonzentration beim Übergang von der frühen in die späte exponentielle Phase dramatisch abnahm (um 64% bei 2,5 M NaCl) und dass (iii) in der stationären Phase Prolin praktisch nicht mehr nachzuweisen war. 9. Die Biosynthesegene für die Herstellung von Prolin aus Glutamat konnten im Genom von H. halophilus identifiziert werden. Es handelt sich dabei um ein Cluster von 3 Genen, die für eine putative Pyrrolin-5-carboxylatreductase (proH), eine Glutamat-5-kinase (proJ), und eine Glutamat-5-semialdehyd-dehydrogenase (proA) kodieren. Mittels reverser Transkription von mRNA und anschließenden PCR-Analysen konnte gezeigt werden, dass die drei Gene ein Operon bilden. 10. Eine Quantifizierung der Transkriptmengen der Biosynthesegene proH, proJ und proA mittels quantitativer PCR in Zellen, die bei unterschiedlichen NaCl-Konzentrationen gezogen wurden, zeigte einen deutlichen Zusammenhang zwischen der Salinität des Mediums und der Menge an Transkript. Diese war umso höher, je höher die Salinität des Mediums war. Die maximale Transkriptmenge (6-fach) wurde bei einer Salzkonzentration von 2,5 M NaCl erreicht. Bei noch höherer Salzkonzentration sank die Transkriptmenge auf die ca. 5-fache Menge des Kontrollwertes ab. 11. Um die Regulation und Dynamik der Osmoregulation unabhängig vom Wachstum untersuchen zu können, wurde ein Zellsuspensions-System für H. halophilus etabliert, bei dem eine konzentrierte Zellsuspension direkt von geringen auf hohe Salzkonzentrationen überführt wurde und bei dem die Prozesse der Transkription, Translation und Solut-Biosynthese erhalten blieben. Beispielhaft wurde dieses System an der Produktion von Prolin nach einem Salzschock von 0,8 auf 2,0 M NaCl getestet. Es zeigte sich bei der Analyse, dass sich die Transkriptmengen unmittelbar nach dem Salzschock deutlich erhöhten und bereits nach 1,5 Stunden ein Maximum erreicht wurde. Verglichen mit dem Wert zu Beginn des Versuches waren die Transkriptmengen ca. 13-fach erhöht, sanken im weiteren Verlauf jedoch wieder ab und blieben bei einer 4-fachen Transkriptmenge konstant. Mit der Erhöhung der Transkriptmenge ging auch eine Erhöhung der Prolinkonzentration einher, die ein Maximum von ca. 6 μmol/mg Protein nach 6 Stunden erreichte. Auch diese Konzentration verringerte sich im weiteren Verlauf wieder und erreichte nach 20 Stunden den Ausgangswert. 12. Um den Einfluß diverser Anionen bzw. Osmolyte im Medium auf die Produktion von Prolin zu untersuchen, wurden Zellsuspensionen von H. halophilus einer Erhöhung der Osmolarität von 0,8 M auf 2,0 M unterzogen. Es zeigte sich dabei, dass die maximale Akkumulation von Prolin in Anwesenheit von Chlorid am höchsten war. Nitrat und Glutamat führten zu ähnlichen, aber leicht geringeren maximalen Konzentrationen (92 bzw. 83% des Chloridwertes). Gluconat führte noch zu einer Akkumulation von ca. 51%, während die anderen Osmolyte zu keiner Akkumulation führten. Eine Analyse der Transkriptmengen zeigte jedoch ein völlig anderes Bild. Während Chlorid, Nitrat und Gluconat zu vergleichbaren Anstiegen der Transkripmengen führten, war die maximale Transkriptmenge der Glutamatinkubierten Zellen 3-9 mal höher als in Vergleichszellen mit Chlorid. In anschließenden Titrationsexperimenten mit verschiedenen Glutamatkonzentrationen konnte gezeigt werden, dass eine minimale Konzentration von 0,2 M Glutamat ausreichend ist, um eine 90-fache Steigerung der Transkriptmenge herbeizuführen. 13. Als Antwort auf Hochsalz-Bedingungen akkumuliert H. halophilus neben Prolin auch Ectoin. Die Ectoinkonzentration bei 2,5 M NaCl war ca. 2-3 mal höher als in Zellen, die bei 1,0 M gezogen wurden. Die Bestimmung der intrazellulären Ectoin-Konzentrationen während des Wachstums zeigte außerdem, dass die Produktion von Ectoin wachstumsphasenabhängig ist. Die Konzentration in der stationären Phase war ca. 5-fach höher als in der exponentiellen Phase. Die Entwicklung der Ectoin- Konzentration verhielt sich somit reziprok zur Entwicklung der Prolin-Konzentration während des Wachstums. 14. Es wurde ein Cluster von drei Genen im Genom von H. halophilus identifiziert, deren Genprodukte die Biosynthese von Ectoin aus Aspartatsemialdehyd katalysieren. ectA kodiert dabei für eine putative Diaminobutyrat-Acetyltransferase, ectB für eine putative Diaminobutyrat-2-oxoglutarat-Transaminase und ectC für eine putative Ectoin-Synthase. Mittels reverser Transkription von mRNA und anschließenden PCR-Analysen konnte gezeigt werden, dass die drei Gene ein Operon bilden. 15. Die Transkription der ect-Gene war abhängig von der Salinität des Mediums. Ab 2,0 M stieg die Menge an RNA um das 10-fache an und erreichte bei 3,0 M ein Maximum mit der 23,5-fachen Menge. 16. Nach einem osmotischen Schock stieg die Konzentration an ect-mRNA signifikant und erreichte ein Maximum nach 3 - 4 Stunden. Das Maximum wurde somit 1,5 – 2,5 Stunden später erreicht als bei anderen Genen der Solute-Biosynthese wie etwa gdh1, das für eine Glutamatdehydrogenase, glnA2, das für eine Glutamin-Synthetase oder proH, das für eine Pyrrolin-5-Carboxylase kodiert. Die maximal erreichten Wert lagen 13-fach (ectA), 6,5-fach (ectB) und 3-fach (ectC) über dem Wert vor dem Salzschock. Gegen EctC wurden polyklonale Antikörper generiert. Western-Blot Analysen mit diesem Antikörper zeigten, dass die EctC-Menge nach 4 Stunden um das 2,5-fache stieg, dann aber wieder abfiel auf das 1,6 – 1,7-fache des Ausgangswertes. Der Rückgang an EctC fand keine Entsprechung in der gemessenen Ectoin-Konzentration, welche über einen Zeitraum von 18 Stunden kontinuierlich anstieg. Die maximale Konzentration nach 18 Stunden betrug das ca. 6,3-fache des Ausgangswertes. 17. Wurden H. halophilus Zellen mit anderen Osmolyten außer NaCl geschockt, so ergab sich folgendes Bild der Regulation der Ectoin-Biosynthese: (i) die Transkription der ect-Gene zeigte keine Chlorid-abhängige Regulation. Die maximale Transkriptmenge wurde in Gegenwart von Nitrat erreicht, wohingegen Gluconat zu vergleichbachen mRNA-Mengen führte wie Chlorid. Glutamat führte nur zu schwacher Stimulierung der Transkription. (ii) auf Ebene der Proteinmenge war zu sehen, dass die Menge an EctC nach osmotischem Schock vergleichbar war in Zellen, die mit Chlorid oder Nitrat inkubiert wurden. Gluconat führte nur zu einer 40%-igen Zunahme während andere Osmolyte nahezu wirkungslos auf die Menge an EctC blieben. (iii) die höchste Akkumulation an Ectoin nach einer plötzlichen Erhöhung der Osmolarität wurde erreicht mit Chlorid (6-fache Zunahme) gefolgt von Nitrat (5,6-fache Zunahme). Gluconat führte lediglich zu einer 3,3-fachen und Glutamat nur noch zu einer 2-fachen Steigerung der Ectoinkonzentration. Glutamat hat somit ähnliche Effekte wie Tartrat, Saccharose oder Sulfat. Succinat führte zu keiner Akkumulation und Glycin sogar zu einer deutlichen Abnahme. Die Produktion von Ectoin ist somit hauptsächlich abhängig vom Anion/Osmolyt und nur untergeordnet von der Osmolarität.
Ziel dieser Arbeit war es, einen genaueren Einblick in die Rolle von PaCLPXP für den Energiemetabolismus von P. anserina zu erhalten und mögliche Komponenten zu identifizieren, welche wichtig für die Langlebigkeit der PaClpP-Deletionsmutante sind. Folgende neue Erkenntnisse konnten hierbei gewonnen werden:
1. Die Substrat-Analyse durch eine Cycloheximid-Behandlung und anschließender Proteom-Analyse legte erfolgreich eine Reihe potentieller bisher nicht bekannter Substrate von PaCLPP offen. Interessanterweise waren unter den identifizierten Proteinen viele ribosomale Untereinheiten und Komponenten verschiedener Stoffwechselwege des Energiemetabolismus zu finden. Am auffälligsten unter diesen Substraten war die extreme Anreicherung eines Retikulon-ähnlichen Proteins, das einen neuen Aspekt der möglichen molekularbiologischen Rolle von PaCLPP in P. anserina andeutet.
2. Durch die Zugabe von Butyrat zum Medium, konnte erfolgreich die Autophagie sowohl im P. anserina Wildtyp als auch in der PaClpP-Deletionsmutante reduziert werden. Diese Verminderung der Autophagie sorgt bei ΔPaClpP für eine Verkürzung der Lebensspanne. Dieser Effekt ist spezifisch für die PaClpP-Deletionsmutante, während die Auswirkung von Butyrat auf den Wildtyp nur marginal ist. Dieses Ergebnis untermauert frühere Analysen dieser Deletionsmutante, welche besagen, dass die Langlebigkeit von ΔPaClpP Autophagie abhängig ist (Knuppertz und Osiewacz, 2017).
3. Die Metabolom-Analyse von ΔPaClpP im Vergleich zum Wildtyp zeigt, dass das Fehlen der PaCLPP zu Veränderungen in der Menge der Metaboliten der Glykolyse und des Citratzyklus kommt. Außerdem sind die Mengen der meisten Aminosäuren und der Nukleotide betroffen. Diese Analyse beweist, dass das Fehlen dieser mitochondrialen Protease weitreichende Folgen für die ganze Zelle hat. Durch die signifikante Verringerung von ATP und die Anreicherung von AMP in jungen ΔPaClpP-Stämmen und durch den Umstand der gesteigerten Autophagie in dieser Mutante, fiel das Augenmerk auf die AMPK. Dieses veränderte AMP/ATP-Verhältnis ist ein Indiz für eine gesteigerte AMPK-Aktivität und könnte auch den Umstand der gesteigerten Autophagie in ΔPaClpP erklären.
4. Das Gen codierend für die katalytische α-Untereinheit der AMPK (PaSnf1) konnte erfolgreich in P. anserina deletiert werden. Das Fehlen von PaSNF1 führt zu einer reduzierten Wuchsrate, eine beeinträchtige weibliche Fertilität und eine verzögerte Sporenreifung. Es konnte gezeigt werden, dass die Autophagie infolge einer PaSnf1-Deletion nicht gänzlich unterdrückt wird, PaSNF1 allerdings für die Stress-induzierte Autophagie notwendig ist. Überraschenderweise führt die Abwesenheit von PaSNF1 zu einer verlängerten Lebensspanne im Vergleich zum Wildtyp. Die meisten Effekte infolge einer PaSnf1-Deletion konnten durch die Einbringung eines FLAG::PaSNF1-Konstrukts komplementiert werden.
5. Eine gleichzeitige PaSnf1 und PaClpP-Deletion führt zu eine unerwarteten, extremen Lebenspannenverlängerung, die die Verlängerung der Lebensspanne bei der PaClpP-Deletionsmutante noch übertrifft. Interessanterweise geht dieser Phänotyp nicht mit einer erhöhten Autophagie einher. Des Weiteren konnte beobachtet werden, dass das Fehlen von PaSNF1 sowohl in ΔPaSnf1 als auch in ΔPaSnf1/ΔPaClpP zu einer veränderten Mitochondrien-Morphologie im Alter führt. Die Abwesenheit von PaSNF1 verursacht, dass die Stämme auch im Alter (20d) noch überwiegend filamentöse Mitochondrien aufweisen. Zudem zeigen die drei analysierten Deletionsstämme (ΔPaSnf1, ΔPaClpP und ΔPaSnf1/ΔPaClpP) massive Einschränkungen wenn sie auf die mitochondriale Funktion angewiesen sind.
6. Auffallend war, dass bei ΔPaSnf1, ΔPaClpP und bei ΔPaSnf1/ΔPaClpP die Stämme mit dem Paarungstyp „mat-“ langlebiger sind als die Stämme mit dem Paarungstyp „mat+“. Dieser Effekt ist bei der ΔPaSnf1/ΔPaClpP-Doppelmutante am stärksten ausgeprägt. Weitere Untersuchungen dazu ergaben, dass die Paarungstypen immer dann eine Rolle spielen, wenn die Stämme mitochondrialem Stress ausgesetzt, oder aber auf die mitochondriale Funktion angewiesen sind. Verantwortlich für diese Unterschiede sind zwei rmp1-Allele, die mit den unterschiedlichen Paarungstyp-Loci gekoppelt sind und mit dem jeweiligen Paarungstyp-Locus vererbt werden (rmp1-1 mit „mat-“; rmp1-2 mit „mat+“).
Photosynthesis is one of the most vital processes that takes place on Earth. Due to its global significance related to food, energy and material production, photosynthesis research is one of the leading scientific fields in the contemporary world. Particular interest in photosynthesis research is focused on diatoms and as one of the major players of marine phytoplankton, diatoms have a huge impact on global photosynthesis.
Diatoms originated from a secondary endosymbiosis that took place between a putative photosynthetic red algal ancestor and a heterotrophic eukaryote. Secondary endosymbiosis resulted in the formation of chloroplasts with four membranes. Centric diatoms (e.g. Thalassiosira pseudonana or Cyclotella meneghiniana) usually possess many small chloroplasts, while pennates (e.g. Phaeodactylum tricornutum) have several larger ones, or even only one which can occupy half of the cell volume...
The increasing demand of the high value ω-3 fatty acids due to its beneficial role for human health, explains the huge need for alternative production ways of ω-3 fatty acids. The oleaginous alga Phaeodactylum tricornutum is a prominent candidate and has been investigated as biofactory for ω-3 fatty acids, e.g. the synthesis of eicosapentaenoic acid (EPA). In general, the growth and the lipid content of diatoms can be enhanced by genetic engineering or are influenced by environmental factors, e.g. nutrients, light or temperature.
In this study, the potential of P. tricornutum as biofactory was improved by heterologously expressing the hexose uptake protein 1 (HUP1) from the Chlorophyte Chlorella kessleri.
An in situ localization study revealed that only the full length HUP1 protein fused to eGFP was correctly targeted to the plasma membrane, whereas the N-terminal sequence of the protein is only sufficient to enter the ER. Protein and gene expression data displayed that the gene-promoter combination was relevant for the expression level of HUP1, while only cells expressing the protein under the light-inducible fcpA promoter showed a significant expression. In these mutants an efficient glucose uptake was detectable under mixotrophic growth condition, low light intensities and low glucose concentrations leading to an increased cell dry weight.
In a second approach, the growth and lipid content of wildtype cells were analyzed in a small 1l photobioreactor. Here, a commercial F/2 medium and a common culture medium, ASP and modified versions were compared. There was neither a significant impact on the growth and lipid content in P. tricornutum cells due to the supplemention of trace elements nor due to elevated salt concentrations in the media. In a modified version of ASP medium, with adapted nitrate and phosphate concentration a constantly high biomass productivity was achieved, yielding the highest value of 82 mg l-1 d-1 during the first three days. This was achieved even though light intensity was reduced by 40%. The differences in biomass productivity as well as the lipid content and the lipid composition underlined the importance of the choice of culture medium and the harvest time for enhanced growth and EPA yields in P. tricornutum.