Refine
Year of publication
Document Type
- Doctoral Thesis (39)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- Photosynthese (3)
- Carotinoide (2)
- Metabolic Engineering (2)
- ALE (1)
- Ageing (1)
- Altern (1)
- Biochemie (1)
- Biotechnologie (1)
- Carotinoidbiosynthese (1)
- Chlor (1)
Institute
- Biowissenschaften (37)
- Biochemie und Chemie (1)
- Pharmazie (1)
Today the structure of photosystem II, which is the enzyme responsible for the evolution of molecular oxygen by plants, algae and cyanobacteria, is known up to a resolution of about 3.0 Å in cyanobacteria (Loll et al., 2005). Photosystem II of higher plants, which shows some differences compared to the photosystem II of cyanobacteria, is not resolved in such high detail, yet (8-10 Å) (Rhee et al., 1998; Hankamer et al., 2001a). Therefore, the molecular structure of PSII of higher plants and its adjacent antenna complexes remains in the focus of the current research. One of the major problems when working with photosystem II is its relative instability during isolation. Together with the antenna proteins and several other proteins, some of which still have an unclear function, PSII forms a huge multi-protein-complex, which tends to fall apart during classical preparation methods. In order to achieve a faster and milder method of purification for PSII, four different His-tags have been added to one of the subunits of PSII. The gene targeted in this study is called psbE and codes for the α-chain of cytochrome b559, an integral part of PSII. The gene for PsbE is encoded in the chloroplast genome. The His-tags, which were employed in this work, consist of six or ten consecutive histidine aminoacid residues, which were fused to the N-terminus of the protein, either with or without a cleavage site for the protease “Factor Xa”. The N-terminus of PsbE is located on the more accessible stromal side of the thylakoid membrane. After inserting the psbE gene in a vector plasmid, in which the recognition site for the restriction endonuclease SacI had been eliminated, the different His-tags were generated by PCR with purposefully altered primers. In a final cloning step, a gene, which confers resistance to the antibiotics spectinomycin and streptomycin, was added to the DNA construct. Subsequently, the so-called biolistic transformation method (“gene gun”) was applied to introduce this genetically engineered plasmid DNA to Nicotiana tabacum chloroplasts (Bock & Hagemann, 2000). Through the processes of homologous recombination that take place in the chloroplast, the plastid encoded wildtype psbE gene was replaced by its His-tag containing counterparts. After several rounds of regenerating plants on antibiotic-containing medium, successful transformation was confirmed through PCR methods. By self fertilisation of fully regenerated plants, seeds were produced from tobacco strains, which carried only the mutated psbE gene. Plants cultivated from these seeds showed no distinctive phenotype under the chosen growth conditions, in respect to wildtype plants. The presence of the His-tag in this F1 generation was again confirmed with PCR methods. Measurements of oxygen evolution and pulse amplitude modulated fluorescence (PAM), carried out with preparations of wildtype and transgenic tobacco strains, revealed no differences for photochemical or non-photochemical quenching between both types. However, the oxygen evolution capacity of transgenic tobacco thylakoids compared to the wildtype was significantly reduced, although the chlorophyll content in relation to the leaf area was almost identical. This hints at a reduced amount of photosystem II complexes in the thylakoid membranes of transgenic tobacco. This alteration could be related to the mutation of cytochrome b559, because, amongst other functions, this subunit was shown to be important for the assembly of photosystem II (Morais et al., 1998). If solubilised thylakoid preparations of His-tagged plant strains were applied to a Ni-NTA column, photosystem II was selectively bound to the matrix. After washing away most of the contaminations, photosystem II core complexes could be eluted with imidazole-containing buffer. Photosystem II prepared in this way, displayed a drastic reduction of the peripheral light-harvesting complexes (LHCI & LHCII) and photo-system I reaction centres. This could be demonstrated by the loss of chlorophyll b and xanthophyll bands (LHCs) in absorption spectra, a small blue-shift of the chlorophyll a Qy absorption (PSI) and the respective band patterns in polyacrylamide gel electro-phoresis. The photosystem II complexes prepared in this way can now be put to use in different structural studies, like two-dimensional or three-dimensional crystallisation and spectroscopic measurements. Another photosynthetic pigment-protein complex of interest is the fucoxanthin-chlorophyll a/c-binding protein of diatoms, because eukaryotic algae, like diatoms, are important factors of oceanic ecosystems and account for a large part of marine biomass production. In order to facilitate ultra-fast time-resolved transient absorption spectroscopy and subsequent modelling of the kinetic traces, FCPs were prepared by sucrose-gradient ultra-centrifugation and their pigment stoichiometries determined by HPLC. Combining the spectroscopic data (Papagiannakis et al., 2005) with protein sequence alignments (Eppard & Rhiel, 1998) and the structure of the homologous higher plant LHCIIb (Kühlbrandt et al., 1994), a hypothetical model for the structure of FCP could be proposed (Fig. IV.3)
Einleitung: Um die empfindlichen Nervenzellen des Gehirns vor den Einflüssen schädigender Substanzen im systemisch zirkulierenden Blut zu schützen, besitzen höhere Lebewesen einen Barrieremechanismus, der das zentrale Nervensystem (ZNS) nach außen hin abriegelt. Diese Blut-Hirn-Schranke (BHS) wird durch die Gefäßendothelzellen im Gehirn gebildet, die über eine Kombination mehrerer Mechanismen Substanzen vom Eindringen in das Gehirngewebe abhalten. Zum einen stellt die Existenz dieser Barriere einen lebensnotwendigen Schutz dar, zum anderen jedoch bedeutet sie eine große Hürde in der Pharmakotherapie von Erkrankungen des zentralen Nervensystems, da nur wenige Arzneimittel in der Lage sind sie zu überwinden. Eine gute Gehirngängigkeit besitzen in der Regel kleine Moleküle mit einer hohen Lipophilie oder solche, die aktiv über Transporter oder Rezeptoren in das ZNS aufgenommen werden. Alle anderen Substanzen, wie effektiv sie auch im restlichen Körper sein mögen, stehen für die Therapie zerebraler Krankheiten wie z.B. Epilepsie, Alzheimer, Gehirntumore oder ZNS-HIV unter normalen Umständen nicht zur Verfügung. Das Gebiet der kolloidalen Trägersysteme bietet eine Lösung für dieses Problem. Durch den Einsatz von Liposomen oder Nanopartikeln als „Carrier“ können verschiedene Arzneistoffe aktiv in das Gehirn transportiert warden, um dort ihre Wirkung zu entfalten. Des Weiteren führt ein solches „Drug targeting“ nicht nur zu einer Überwindung der BHS sondern gleichzeitig zu einer vermehrten Anreicherung des Arzneistoffs im ZNS und dadurch zu geringeren Nebenwirkungen im restlichen Organismus. Durch die erhöhte Selektivität für das ZNS können kleinere und somit für den Körper verträglichere Dosen des Arzneistoffs eingesetzt werden. In der Vergangenheit konnte gezeigt werden, dass unter anderem Nanopartikel aus humanem Serumalbumin, welche mit Polysorbat 80 überzogen waren oder deren Oberfläche mit Apolipoproteinen modifiziert wurde, Arzneistoffe, die üblicherweise nicht in der Lage sind die Blut-Hirn-Schranke zu überwinden, zentral zur Wirkung brachten. Der genaue Mechanismus, durch den diese Arzneistoffe mithilfe der Trägersysteme ins Gehirn gelangen,war bisher weitgehend ungeklärt. Ein Eindringen des arzneistoffbeladenen Nanopartikels als Ganzes in das Gehirn sowie die Einleitung 2 Vermittlung des Arzneistoff-Transportes durch das Partikel am Endothel oder gar eine unselektive Zerstörung der Barrierefunktion wurden diskutiert. Im Rahmen dieser Arbeit wurden mit Apolipoproteinen modifizierte Partikel aus humanem Serumalbumin hergestellt und hinsichtlich ihrer Größe, der Größenverteilung, des Partikelgehaltes, der Oberflächenladung und ihres morphologischen Erscheinungsbildes charakterisiert. Anschließend wurde die Interaktion dieser kolloidalen Trägersysteme mit isolierten Endothelzellen des Nagergehirns mittels verschiedener Analytiken untersucht. Gleichzeitig wurden in umfangreichen Untersuchungen an Mäusen und Ratten die Geschehnisse in vivo beleuchtet und mit Hilfe eines bildgebenden Verfahrens, der Elektronenmikroskopie, dargestellt. Des Weiteren wurde der Effekt einer nanopartikulären Applikation auf die Integrität der Barrierefunktion der BHS untersucht, wodurch eine schädliche Wirkung der Partikel ausgeschlossen und die der Aufnahme in das ZNS zugrunde liegenden Transportmechanismen aufgeklärt werden konnten.
Photosystem (PS) I is a huge membrane protein complex which coordinates around 200 co-factors. Upon light excitation a charge separation at the PS I reaction centre is induced which leads to an electron transport across the thylakoid membrane and the generation of redox equivalents needed for several biochemical reactions, e.g. the synthesis of sugars. For higher plants and cyanobacteria the crystal structure of PS I complexes were resolved to resolutions of 4.4 Å and 2.5 Å. Furthermore, supramolecular structures of PS I of eukaryotic algae, mainly of the green line, were obtained recently. However, up to now, no structure of diatoms is available yet. Diatoms are key players in global primary production and derived from a secondary endosymbiosis event. Their chloroplasts are surrounded by four envelope membranes and their thylakoids are evenly arranged in bands of three, i.e. no separation in grana and stroma regions is apparent. In this thesis a protocol was developed to isolate a functional PS I complex of diatoms which can be used for structural analysis by transmissional electron microscopy (TEM). A photosystem I-fucoxanthin chlorophyll protein (PS I-FCP) complex was isolated from the pennate diatom Phaeodactylum tricornutum by ion exchange chromatography. Spectroscopic analysis proved that bound Fcp polypeptides function as a light-harvesting complex. An active light energy transfer from Fcp associated pigments, Chl c and fucoxanthin, towards the PS I core was proven by fluorescence spectroscopy. Oxidised minus reduced difference spectroscopy evidenced the activity of the PS I reaction centre P700 and yielded a chlorophyll a/P700 ratio of approximately 200:1. These data indicate that the isolated PS I-FCP complex exceeds the PS I cores from cyanobacteria and higher plants in the numbers of chlorophyll a molecules. Because of the strict conservation of PS I cores among organisms the additional 100 chlorophyll a molecules must either be coordinated by Fcps or function as linker molecules between the Fcp antenna and the PS I core as shown for the PS I-LHC I complex of higher plants. To tell something about the structural organisation, the PS I-FCP complex was compared with its cyanobacterial and higher plant counterparts. Whereas cyanobacterial PS I cores aggregate to trimers, usually without associated antennae, higher plant PS I is a monomer and binds additionally two LHC I heterodimers. BN-PAGE and gel filtration experiments showed that also diatoms contain PS I monomers associated with Fcps as light-harvesting antenna. First TEM studies evidenced these observations. Negatively stained PS I-FCP particles had an increased size compared to PS I cores of other organisms. No PS I trimers or higher oligomers have been found. The calculated diameter and shape of the particles correspond to PS I-LHC I particles obtained from green algae, which also comprise of a higher number of LHC I polypeptides compared to the higher plant x-ray structure. Additionally, the analysis of polypeptides indicates that the PS I associated Fcps differ from the free Fcp pool and also from Fcps of a PS II enriched fraction. The assumption that diatoms harbour just one Fcp antenna that serve both Photosystems equally seems to be wrong. To further study the association of Fcps with the two Photosystems, both complexes plus the free FCP complexes were isolated from the centric diatom Cyclotella meneghiniana. Because of the availability of antibodies directed against specific Fcp polypeptides of Cyclotella the PS I-FCP complex of Phaeodactylum could not be used. A trimeric FCP complex, FCPa, and a higher FCP oligomer, FCPb, have already been described for C. meneghiniana. The latter is assumed to be composed of only Fcp5, whereas the FCPa contains Fcp2 and Fcp6. Biochemical and spectroscopical evidences revealed a different subset of associated Fcp polypeptides within the isolated photosystem complexes. Whereas the PS II associated Fcp antenna resembles FCPa, at least three different Fcp polypeptides are associated with PS I. By re-solubilisation of the PS I complex and a further purification step Fcp polypeptides were partially removed from PS I and both fractions were analysed again by biochemical and spectroscopical means, as well as by HPLC. Thereby Fcp4 and a so far undescribed 17 kDa Fcp were found to be strongly coupled to PS I, whereas another Fcp, presumably Fcp5, is only loosely bound to the PS I core. Thus an association of FCPb and PS I is assumed.
Photosystem II (PSII) is a polypeptide-cofactor complex organised as a homodimeric multisubunit protein embedded in the thylakoid membrane. PSII monomers are heterooligomers related to each other by a pseudo-twofold axis perpendicular to the membrane plane (Loll et al. 2005). PSII acts as a photochemical enzyme that through the chlorophylls and the other cofactors catalyses photon capture and electron transfer from water to the plastoquinone pool with concomitant evolution of oxygen. Photon capture and charge separation take place in the PSII core which consists of the D1 and D2 proteins, the cytochrome b559 alpha- and beta-chains (PsbE and F subunits) and the chlorophyll a-binding antenna proteins CP43 and CP47 (Loll et al. 2005). The remaining polypeptides are low molecular mass proteins with not clearly understood fuctions; they include chloroplast-encoded (PsbH, I, J, K, L, M, N, T and Z) and nucleus-encoded (PsbR, S, W and X) proteins consisting of one to four transmembrane helices (Barber et al. 1997). The oxygen-evolving part of PSII consists of a Mn-Ca transition complex called Mn cluster or oxygen evolving complex that is situated on the luminal side of PSII. In higher plants it is stabilised by the PsbO (33 kDa), PsbP (23 kDa) and PsbQ (17 kDa) extrinsic subunits (Soursa et al. 2006; Ifuku et al. 2005). The structure and mechanisms related to the oxygen evolving complex of PSII are not completely clarified. Currently two high resolution structures from the cyanobacteria S. elongatus are available (Loll et al. 2005; Ferreira et al. 2004) Nevertheless structural information is not as well defined in green algae and higher plants as in cyanobacteria. In fact the 8Å structure available from spinach has too low resolution for addressing questions such as the structural and functional differences in respect to PSII from cyanobateria (Rhee et al. 1997).. Therefore it is obvious that for PSII from higher plants the main general questions are still open: is the structure of PSII from higher plants equivalent to the structures observed in cyanobacteria? Is the typical higher plants subunit PsbS stably or transiently bound to PSII? Finding an answer to these questions was the main focus of this work. In this work a simple and rapid protocol to isolate the oxygen-evolving photosystem II (PSII) core complex from Nicotiana tabacum was developed. A PSII having a His-tag extension made of six or ten consecutive histidine residues at the N-terminus of the PsbE subunit was purified by a single-step Ni2+ NTA-affinity column chromatography after solubilisation of the thylakoid membranes using different mild detergents. Characterization of the oxygen evolution and the subunit composition by immunoblotting and mass spectroscopy revealed that the His-tagging did not affect the functional integrity of the PSII reaction center. The final PSII core complex was purified in a single step from solubilised thylakoids in less than 14 hours getting a very pure sample in high amount. The isolated core complex was in a dimeric form as demonstrated by Blue Native PAGE, analytical gel filtration and single particles analysis; with a molecular mass of about 500 kDa, consisting of D1, D2, CP43, CP47, 33 kDa and low molecular weight proteins. The preparation retains a high rate of oxygen-evolving activity but showed different stabilities of the binding of the three extrinsic proteins. The subunit of 33 kDa was always present in the preparations with a constant amount, whereas the 23 and 17 kDa subunits were always in less and unconstant amounts. Nevertheless the oxygen evolution was not depending on the amount of the 23 and 17 kDa subunits. Furthermore the preparation showed a high oxygen-evolving activity of 1390 micromol/mg Chl·h-1 in presence of betaine, while its activity was 440-680 micromol/mg Chl·h-1 in its absence. The presence of 1.0 mol/L betaine during the isolation of PSII increased the preservation of the photochemical activity hence the oxygen evolution. It was inferred from these results that His-tagging does not affect the functional and structural integrity of the PSII core complex and that the “Histag strategy” is highly useful for biochemical, physicochemical and structural studies of higher plant PSII. PSII is directly involved in two essential processes, the efficient capture and funnelling of light energy to the reaction centre and the controlled dissipation of excess excitation energy. Those functions require structural and functional flexibility in order to be performed with high efficiency. Moreover light-harvesting proteins respond to an external signal, the thylakoid pH, to induce feedback control regulating those activities in every moment. This process called non-photochemical quenching (NPQ) is mainly depending on the xanthophyll cycle and the PsbS protein (Szabo et al. 2005). In this work several new evidences related with those two processes were found. The subunit PsbS is a polypeptide whose involvement in the NPQ processes is debated. Nevertheless, its position in the PSII complex and the mechanisms by which this subunit contributes to carry out the NPQ functions are not definitely known. In addition it is not sure if it is a pigment binding protein or not. Currently several lines of evidence indicate that this subunit is able to bind two molecules of zeaxanthin, one of the pigments involved in the xanthophyll cycle. In this work immunolabelling indicated that PsbS is tightly bound to the PSII core dimer, monomer and incomplete PSII particles as Reaction Centre-CP47 (RC-CP47). Furthermore qualitative HPLC indicates a complete absence of zeaxanthin in the sample and the presence of violaxanthin, another pigment involved in the xanthophyll cycle. The absence of zeaxanthin was expected considering that the plants were harvested after the dark period and that the particles were purified in complete dark (or in green light), whereas the presence of violaxanthin was unexpected considering that so far no evidence of violaxanthin bound to PSII cores devoid of LHC proteins was reported. Furthermore the amount of chlorophyll b was not relevant for suspecting this pigment bound to PsbS. Therefore we conclude that if PsbS is able to bind chlorophyll it has to be a chlorophyll a. The results indicate that PsbS could be able to bind not only zeaxanthin but also violaxanthin. The extrinsic subunit Psb27 was also found in this preparation. The presence and the amount of this subunit, reported to be involved in the repair of damaged PSII, was not constant and therefore behaving as the other two extrinsic proteins 23kDa (PsbP) and 17kDa (PsbQ). Electron crystallography studies on spinach PSII particles purified by differential solubilisation resulted in crystalline tubes with new unit cell constants. From data analysis a density map at 15Å resolution was obtained with a P22121 symmetry. However, at this resolution it cannot be said if the internal symmetry axis is related with the two-fold axis of the dimer or the pseudo two-fold axis of the monomer. In conclusion a method to isolate functional, pure PSII core complexes was developped. These samples, together with the improved 2d crystallisation protocol could lead to crystals with higher quality hence better resolution density maps in the future.
Ziel dieser Arbeit war es, einen genaueren Einblick in die Rolle von PaCLPXP für den Energiemetabolismus von P. anserina zu erhalten und mögliche Komponenten zu identifizieren, welche wichtig für die Langlebigkeit der PaClpP-Deletionsmutante sind. Folgende neue Erkenntnisse konnten hierbei gewonnen werden:
1. Die Substrat-Analyse durch eine Cycloheximid-Behandlung und anschließender Proteom-Analyse legte erfolgreich eine Reihe potentieller bisher nicht bekannter Substrate von PaCLPP offen. Interessanterweise waren unter den identifizierten Proteinen viele ribosomale Untereinheiten und Komponenten verschiedener Stoffwechselwege des Energiemetabolismus zu finden. Am auffälligsten unter diesen Substraten war die extreme Anreicherung eines Retikulon-ähnlichen Proteins, das einen neuen Aspekt der möglichen molekularbiologischen Rolle von PaCLPP in P. anserina andeutet.
2. Durch die Zugabe von Butyrat zum Medium, konnte erfolgreich die Autophagie sowohl im P. anserina Wildtyp als auch in der PaClpP-Deletionsmutante reduziert werden. Diese Verminderung der Autophagie sorgt bei ΔPaClpP für eine Verkürzung der Lebensspanne. Dieser Effekt ist spezifisch für die PaClpP-Deletionsmutante, während die Auswirkung von Butyrat auf den Wildtyp nur marginal ist. Dieses Ergebnis untermauert frühere Analysen dieser Deletionsmutante, welche besagen, dass die Langlebigkeit von ΔPaClpP Autophagie abhängig ist (Knuppertz und Osiewacz, 2017).
3. Die Metabolom-Analyse von ΔPaClpP im Vergleich zum Wildtyp zeigt, dass das Fehlen der PaCLPP zu Veränderungen in der Menge der Metaboliten der Glykolyse und des Citratzyklus kommt. Außerdem sind die Mengen der meisten Aminosäuren und der Nukleotide betroffen. Diese Analyse beweist, dass das Fehlen dieser mitochondrialen Protease weitreichende Folgen für die ganze Zelle hat. Durch die signifikante Verringerung von ATP und die Anreicherung von AMP in jungen ΔPaClpP-Stämmen und durch den Umstand der gesteigerten Autophagie in dieser Mutante, fiel das Augenmerk auf die AMPK. Dieses veränderte AMP/ATP-Verhältnis ist ein Indiz für eine gesteigerte AMPK-Aktivität und könnte auch den Umstand der gesteigerten Autophagie in ΔPaClpP erklären.
4. Das Gen codierend für die katalytische α-Untereinheit der AMPK (PaSnf1) konnte erfolgreich in P. anserina deletiert werden. Das Fehlen von PaSNF1 führt zu einer reduzierten Wuchsrate, eine beeinträchtige weibliche Fertilität und eine verzögerte Sporenreifung. Es konnte gezeigt werden, dass die Autophagie infolge einer PaSnf1-Deletion nicht gänzlich unterdrückt wird, PaSNF1 allerdings für die Stress-induzierte Autophagie notwendig ist. Überraschenderweise führt die Abwesenheit von PaSNF1 zu einer verlängerten Lebensspanne im Vergleich zum Wildtyp. Die meisten Effekte infolge einer PaSnf1-Deletion konnten durch die Einbringung eines FLAG::PaSNF1-Konstrukts komplementiert werden.
5. Eine gleichzeitige PaSnf1 und PaClpP-Deletion führt zu eine unerwarteten, extremen Lebenspannenverlängerung, die die Verlängerung der Lebensspanne bei der PaClpP-Deletionsmutante noch übertrifft. Interessanterweise geht dieser Phänotyp nicht mit einer erhöhten Autophagie einher. Des Weiteren konnte beobachtet werden, dass das Fehlen von PaSNF1 sowohl in ΔPaSnf1 als auch in ΔPaSnf1/ΔPaClpP zu einer veränderten Mitochondrien-Morphologie im Alter führt. Die Abwesenheit von PaSNF1 verursacht, dass die Stämme auch im Alter (20d) noch überwiegend filamentöse Mitochondrien aufweisen. Zudem zeigen die drei analysierten Deletionsstämme (ΔPaSnf1, ΔPaClpP und ΔPaSnf1/ΔPaClpP) massive Einschränkungen wenn sie auf die mitochondriale Funktion angewiesen sind.
6. Auffallend war, dass bei ΔPaSnf1, ΔPaClpP und bei ΔPaSnf1/ΔPaClpP die Stämme mit dem Paarungstyp „mat-“ langlebiger sind als die Stämme mit dem Paarungstyp „mat+“. Dieser Effekt ist bei der ΔPaSnf1/ΔPaClpP-Doppelmutante am stärksten ausgeprägt. Weitere Untersuchungen dazu ergaben, dass die Paarungstypen immer dann eine Rolle spielen, wenn die Stämme mitochondrialem Stress ausgesetzt, oder aber auf die mitochondriale Funktion angewiesen sind. Verantwortlich für diese Unterschiede sind zwei rmp1-Allele, die mit den unterschiedlichen Paarungstyp-Loci gekoppelt sind und mit dem jeweiligen Paarungstyp-Locus vererbt werden (rmp1-1 mit „mat-“; rmp1-2 mit „mat+“).
Photosynthesis is one of the most vital processes that takes place on Earth. Due to its global significance related to food, energy and material production, photosynthesis research is one of the leading scientific fields in the contemporary world. Particular interest in photosynthesis research is focused on diatoms and as one of the major players of marine phytoplankton, diatoms have a huge impact on global photosynthesis.
Diatoms originated from a secondary endosymbiosis that took place between a putative photosynthetic red algal ancestor and a heterotrophic eukaryote. Secondary endosymbiosis resulted in the formation of chloroplasts with four membranes. Centric diatoms (e.g. Thalassiosira pseudonana or Cyclotella meneghiniana) usually possess many small chloroplasts, while pennates (e.g. Phaeodactylum tricornutum) have several larger ones, or even only one which can occupy half of the cell volume...
Die Studien im Rahmen dieser Arbeit wurden am Modellorganismus Anabaena sp. PCC 7120 (Anabaena) durchgeführt, einem filamentösen Süßwasser-Cyanobakterium. Cyanobakterien sind photosynthetische, Gram-negative Organismen. Sie besitzen eine das Zytosol begrenzende Plasmamembran und eine Äußere Membran. TonB-abhängige Transporter (TBDTs) und Porine der Äußeren Membran bewerkstelligen und regulieren die Aufnahme von Nährstoffen. Typischerweise wenig abundante Substrate für den TBDT-vermittelten, aktiven Transport sind beispielsweise eisenhaltige Siderophore oder VitaminB12. Kleinere gelöste und abundante Stoffe wie Salze oder andere Ionen gelangen hingegen passiv durch Porine in das Periplasma.
In Anabaena wurden neun putative Porine identifiziert. Sieben hiervon wiesen eine porinspezifische Domänenstruktur auf (Alr0834, Alr2231, All4499, Alr4550, Alr4741, All5191 und All7614), und wurden im Rahmen dieser Arbeit näher betrachtet. Die Expression dieser sieben Gene wurde vergleichend untersucht, nachdem der Wildtyp in Standardmedium oder in Medium indem jeweils Mangan, Eisen, Kupfer oder Zink fehlte angezogen wurde. Außerdem wurde das Wachstum der einzelnen Porinmutanten im Vergleich zum Wildtyp auf Festmedium mit hohen Konzentrationen von Salzen, Antibiotika oder anderen Stoffen analysiert. Hierbei konnten den einzelnen Mutanten teilweise spezifische phänotypische Eigenschaften zugeschrieben werden. Zusammengefasst kann anhand der Analysenergebnisse vermutet werden, dass Alr4550 eine besondere Rolle in der Wahrung der Zellhüllenstabilität oder -integrität spielt, wohingegen das Fehlen von Alr5191 auf unbekannte Weise die Fixierung von Stickstoff zu erschweren scheint. Die alr2231-Mutante zeigte eine Resistenz gegenüber hohen Zinkkonzentrationen, was die Vermutung zulässt, dass Zink ein Substrat von Alr2231 darstellt. Für weitere Porine kann ebenfalls ein Zusammenhang zum Transport von Kupfer oder Mangan vermutet werden.
Neben Porinen wurden ebenfalls TonB-ähnliche Proteine in Anabaena untersucht. TonB ist ein plasmamembranständiges Protein, das in Komplex mit ExbB und ExbD die Energie für Transportprozesse über die Äußere Membran bereitstellt. Hierfür bindet TonB C-terminal an TBDTs und induziert dort Strukturänderungen, welche den Substratimport ins Periplasma ermöglichen. Als Energiequelle wird der Protonengradient genutzt, der über die Plasmamembran besteht. In Anabaena wurden vier putative TonB Proteine identifiziert, die sich jeweils in Länge und Domänenstruktur unterscheiden. Im Rahmen dieser Arbeit konnte durch Substrattransport-Experimente und Wachstumsanalysen gezeigt werden, dass TonB3 an der Aufnahme zweier Siderophore (Schizokinen und dem Xenosiderophor Ferrichrom) beteiligt ist, da die entsprechende Mutante sich als unfähig erwies diese zu als Eisenquelle nutzbar zu machen. Daneben wies TonB3 weitere Merkmale auf, die auch TonB-Proteinen anderer Organismen zugeschrieben wurden (Wachstumsdefizit der Mutante unter Eisenmangel, eisenabhängiges Expressionsprofil). Interessanterweise zeigte sich, dass das Siderophor Ferrichrom ebenfalls nicht als Eisenquelle für die tonB4-Mutante zur Verfügung stand, was zum Beispiel auf eine Beteiligung von TonB4 an dessen Transport hinweisen könnte.
TonB1, welches sich durch ein inkomplettes TBDT-Interaktionsmotiv auszeichnet, und TonB2 konnte keine Beteiligung am Siderophoretransport zugeschrieben werden, jedoch zeigten Mutanten der einzelnen Gene spezifische phänotypische Eigenschaften. Die tonB1-Mutante stach hervor durch ein vergleichsweise stark verzögertes Wachstum unter diazotrophen Bedingungen. Es konnte gezeigt werden, dass sowohl die Nitrogenaseaktivität als auch die expression vermindert war im tonB1-Mutantenstamm. Außerdem zeigten die Heterozysten dieser Mutante, die auf die Stickstoffixierung spezialisierten Zellen, eine abnormale Morphologie. Da die Expression von tonB1 jedoch nach dem Überführen von Wildypzellen in stickstoffreies Medium nicht erhöht war, kann eine direkte Beteiligung von TonB1 an der Heterozystendifferenzierung als unwahrscheinlich betrachtet werden. Die Zelleinschnürungen zwischen Heterozysten und vegetativen Zellen waren in I-tonB1 weniger ausgeprägt als im Wildtyp, was durch eine Anfärbung der Zellwand mit einem Fluoreszenzmarker gezeigt werden konnte. Ebenfalls konnte anhand des fluoreszierenden Markers Calcein gezeigt werden, dass die molekulare Diffusionsgeschwindigkeit zwischen Heterozysten und vegetativen Zellen, und auch zwischen zwei benachbarten vegetativen Zellen, in der tonB1-Mutante erhöht ist. Deswegen kann hier vermutlich vermehrt die Nitrogenase schädigender Sauerstoff in Heterozysten eindringen. Die aufgezählten Ergebnisse deuten auf eine Funktion von SjdR im Aufbau der Septumsstrukturen hin, beispielsweise durch Regulation der Peptidoglykansynthese oder -verteilung, weswegen TonB1 umbenannt wurde in SjdR (Septal junction disc regulator).
Die Untersuchung der tonB2-Mutante zeigte bei dieser eine veränderte Pigmentierung, eine vermehrte Lipopolysaccharidproduktion und Filamentaggregation sowie eine erhöhte Resistenz gegenüber bestimmten Antibiotika oder Detergenzien. Letzteres könnte auf die ebenfalls in der tonB2-Mutante beobachtete verringerte Porinexpression zurückgeführt werden. Es wurde außerdem eine vermehrte Anreicherung von Kupfer und Molybdän in der Mutante gemessen, was ein Grund für die Veränderte Pigmentierung sein könnte und ebenfalls die Porinexpression beeinflussen könnte. Insgesamt scheint sich das Fehlen von TonB2 auf die Integrität der Äußeren Membran auszuwirken. Daher kann für TonB2, eine Funktion in Anlehnung an das Tol-system vermutet werden.
Heat stress transcription factors (Hsfs) have an essential role in heat stress response (HSR) and thermotolerance by controlling the expression of hundreds of genes including heat shock proteins (Hsps) with molecular chaperone functions. Hsf family in plants shows a striking multiplicity, with more than 20 members in many species. In Solanum lycopersicum HsfA1a was reported to act as the master regulator of the onset of HSR and therefore is essential for basal thermotolerance. Evidence for this was provided by the analysis of HsfA1a co-suppression (A1CS) transgenic plants, which exhibited hypersensitivity upon exposure to heat stress (HS) due to the inability of the plants to induce the expression of many HS-genes including HsfA2, HsfB1 and several Hsps. Completion of tomato genome sequencing allowed the completion of the Hsf inventory, which is consisted of 27 members, including another three HsfA1 genes, namely HsfA1b, HsfA1c and HsfA1e.
Consequently, the suppression effect of the short interference RNA in A1CS lin e was re-evaluated for all HsfA1 genes. We found that expression of all HsfA1 proteins was suppressed in A1CS protoplasts. This result suggested that the model of single master regulator needs to be re-examined.
Expression analysis revealed that HsfA1a is constitutively expressed in different tissues and in response to HS, while HsfA1c and HsfA1e are minimally expressed in general, and show an induction during fruit ripening and a weak upregulation in late HSR. Instead HsfA1b shows preferential expression in specific tissues and is strongly and rapidly induced in response to HS. At the protein level HsfA1b and HsfA1e are rapidly degraded while HsfA1a and HsfA1c show a higher stability. In addition, HsfA1a and HsfA1c show a nucleocytosolic distribution, while HsfA1b and HsfA1e a strong nuclear retention.
A major property of a master regulator in HSR is thought to be its ability to cause a strong transactivation of a wide range of genes required for the initial activation of protective mechanisms. GUS reporter assays as well as analysis of transcript levels of several endogenous transcripts in protoplasts transiently expressing HsfA1 proteins revealed that HsfA1a can stimulate the transcription of many genes, while the other Hsfs have weaker activity and only on limited set of target genes. The low activity of HsfA1c and HsfA1e can be attributed to the lower DNA capacity of the two factors as judged by a GUS reporter repressor assay.
HsfA1a has been shown to have synergistic activity with the stress induced HsfA2 and HsfB1. The formation of such complexes is considered as important for stimulation of transcription and long term stress adaptation. All HsfA1 members show synergistic activity with HsfA2, while only HsfA1a act as co-activator of HsfB1 and HsfA7. Interestingly, HsfA1b shows an exceptional synergistic activity with HsfA3, suggesting that different Hsf complexes might regulate different HS-related gene networks. Altogether these results suggest that HsfA1a has unique characteristics within HsfA1 subfamily. This result is interesting considering the very high sequencing similarity among HsfA1s, and particularly among HsfA1a and HsfA1c.
To understand the molecular basis of this discrepancy, a series of domain swapping mutants between HsfA1a and HsfA1c were generated. Oligomerization domain and C-terminal swaps did not affect the basal activity or co-activity of the proteins. Remarkably, an HsfA1a mutant harbouring the N-terminus of HsfA1c shows reduced activity and co-activity, while the reciprocal HsfA1c with the N-terminus of HsfA1a cause a gain of activity and enhanced DNA binding capacity.
Sequence analysis of the DBD of HsfA1 proteins revealed a divergence in the highly conserved C-terminus of the turn of β3-β4 sheet. As the vast majority of HsfA1 proteins, HsfA1a at this position comprises an Arg residue (R107), while HsfA1c a Leu and HsfA1e a Cys. An HsfA1a-R107L mutant has reduced DNA binding capacity and consequently activity. Therefore, the results presented here point to the essential function of this amino acid residue for DNA binding function. Interestingly, the mutation did not affect the activity of the protein on Hsp70-1, suggesting that the functionality of the DBD and consequently the transcription factor on different promoters with variable heat stress element number and architecture is dependent on structural peculiarities of the DBD.
In conclusion, the unique properties including expression pattern, transcriptional activities, stability, DBD-peculiarities are likely responsible for the dominant function of HsfA1a as a master regulator of HSR in tomato. Instead, other HsfA1-members are only participating in HSR or developmental regulations by regulating a specific set of genes. Furthermore, HsfA1b and HsfA1e are likely function as stress primers in specific tissues while HsfA1c as a co-regulator in mild HSR. Thereby, tomato subclass A1 presents another example of function diversity not only within the Hsf family but also within the Hsf-subfamily of closely related members. The diversification based on DBD peculiarities is likely to occur in potato as well. Therefore this might have eliminated the functional redundancy observed in other species such as Arabidopsis thaliana but has probably allowed the more refined regulation of Hsf networks possibly under different stress regimes, tissues and cell types.
Aufgrund des großen Potenzials der Nanotechnologie ist in Zukunft eine Zunahme der Produktion und Verwendung von Nanomaterialien zu erwarten, wodurch mit einer steigenden Freisetzung in der Umwelt zu rechnen ist. In der vorliegenden Dissertation werden daher Methoden zur Untersuchung von Nanomaterialien betrachtet und Effekte von NP auf Algen untersucht.
In Teil I wurden Silber-, Titandioxid- und Polystyrol-Nanopartikel sowie Kohlenstoffnano-röhrchen untersucht. Von jedem Nanomaterial standen eine unmodifizierte Form sowie zwei modifizierte Partikeltypen mit geladener Oberfläche und zusätzlich Polystyrol-Mikropartikel zur Verfügung. Zunächst erfolgte eine Charakterisierung der Materialien mittels Transmissions-elektronenmikroskopie, wobei die Größe der Objekte gemessen und das Verhalten beschrieben wurde. Zudem wurde im Fall der Polystyrol-Nanopartikel der Einfluss mehrerer Chemikalien getestet, welche im Zusammenhang mit der Probenvorbereitung für das Elektronen¬mikroskop zum Einsatz kamen. In einem nächsten Schritt erfolgte die Untersuchung von Nanomaterialien in umweltrelevanten Matrices. Hierbei wurden Boden- und Wasserproben sowie humane Körperflüssigkeiten und Fischgewebe elektronenmikroskopisch auf die Anwesenheit von synthetischen Nanomaterialien untersucht und Proben mit Nanomaterialien versetzte, um die Nachweisbarkeit mit dem Elektronenmikroskop bewerten zu können. Zusätzlich wurden verschiedene Zellkulturen und Gewebe auf morphologische Auffälligkeiten im Zusammenhang mit einer Exposition gegenüber Nanomaterialien untersucht.
Die durchgeführten Versuche zeigen, dass die Transmissionselektronenmikroskopie für viele Nanomaterialien ein sinnvolles Charakterisierungswerkzeug darstellt. Die Untersuchung besonders kleiner Partikel mit einem Durchmesser im einstelligen Nanobereich gestaltet sich jedoch schwierig bis unmöglich. Für den Nachweis von Nanomaterialien in Umweltmatrices und Zellen ist die Methode nur bedingt geeignet, wobei insbesondere niedrige Partikelkonzentrationen problematisch sind. Die Methode ist somit lediglich als Ergänzung zu anderen Nachweismethoden zu betrachten, kann jedoch hilfreiche Informationen zur Lokalisation von Nanoobjekten in Zellen und zu ihrem Verhalten in Umweltproben liefern.
In Teil II wurden die beiden Grünalgen Raphidocelis subcapitata und Chlamydomonas reinhardtii sowie die Diatomee Cyclotella meneghiniana gegenüber unterschiedlich modifizierten Silber-, Titandioxid- und Polystyrol-Nanopartikeln exponiert. Die Beurteilung der Toxizität wurde anhand der über die Absorption gemessenen Zellzahl, des Chlorophyll a Gehalts, der über die Chlorophyllfluoreszenz gemessenen Parameter Fv/Fm und NPQ sowie der transmissions¬elektronenmikroskopischen Untersuchung der Algenzellen vorgenommen. Zudem wurde der Einfluss der Beschattung von Algenzellen durch die Nanopartikel experimentell untersucht.
Die Untersuchungen zeigen, dass Nanomaterialien bei Absorptionsmessungen in Abhängigkeit von ihrem Grundmaterial, ihrer Oberflächenmodifikation und dem umgebenden Medium ein mehr oder weniger starkes Streuungsverhalten zeigen. Auch die Anwesenheit von Algen kann einen deutlichen Einfluss haben. Trotz der Beeinflussung der Lichtstreuung hat die Beschattung von Algen durch die Trübung des Mediums durch Nanomaterialien keinen Einfluss auf das Wachstum der Testorganismen. Die direkte Exposition der Algen gegenüber den Nanomaterialien zeigt, dass Silber-Nanopartikel die toxischste Wirkung haben. Die Abgabe von Silberionen durch die Partikel kann hierbei die auftretenden Effekte erklären. Auch Titandioxid-Nanopartikel führen zu negativen Effekten, wobei mögliche Gründe die Toxizität des Materials und die physikalische Isolierung der Zellen sind. Die Polystyrol-Nanopartikel haben eine stimulierende Wirkung auf die Algenzellen, welche auf einer Präferenz von adhäsivem Wachsen und dem Hormesis-Effekt beruhen kann. Die Oberflächenmodifikation der Nanomaterialien hat zwar einen Effekt auf die Toxizität, ihr Einfluss wird jedoch durch andere Faktoren überlagert. In Bezug auf die unterschiedlichen Methoden zum Nachweis der Toxizität, ist die Bestimmung des Chlorophyll a-Gehalts als besonders sensitiv zu bewerten und kann zudem auf alle Partikel angewandt werden. Hinsichtlich der Absorptionsmessung besteht teilweise ein Einfluss durch die Partikelstreuung. Die Messung der Chlorophyllfluoreszenz scheint einer starken Beeinflussung durch externe Faktoren und ggf. die Nanomaterialien selbst zu unterliegen. Die elektronenmikroskopische Untersuchung ist vergleichsweise wenig sensitiv, kann jedoch ergänzende Informationen bezüglich der Wirkweise von Nanomaterialien liefern. Der Vergleich der Testorganismen zeigt, dass Raphidocelis subcapitata empfindlicher reagiert als Chlamydomonas reinhardtii. Eine allgemeingültige Sensitivitätsabstufung zwischen den Grünalgen und der Diatomee ist nicht möglich, da die Reaktionen in Abhängigkeit von Medium bzw. Partikelgrundmaterial unterschiedlich ausfallen.
Ziel dieser Dissertation war es, die biologische Rolle der Autophagie für die Entwicklung, Alterung und mitochondriale Qualitätskontrolle in dem Ascomyceten Podospora anserina zu untersuchen. Folgende Ergebnisse wurden dabei erzielt:
1. Der Verlust einer funktionalen Autophagie-Maschinerie ist in P. anserina mit einem Defekt der Sporen-Entwicklung bzw. -Keimung charakterisiert.
2. Es konnten drei Methoden zur Untersuchung der Autophagie in P. anserina etabliert werden: 1) Die Verwendung eines Gfp::PaAtg8-Stamms ermöglicht die Fluoreszenzmikroskopische Bestimmung der Autophagosomen-Anzahl; 2) Die phänotypische Charakterisierung des PaAtg1-Deletionsstamms unter verschiedenen Stressbedingungen (z. B. Stickstoffmangel, Rapamycin) liefert Hinweise auf eine mögliche Autophagie-abhängige Stressadaption; 3) Die Verwendung des „GFPcleavage assays“ ermöglicht einen quantitativen Nachweis genereller und selektiver Autophagie (hier: Mitophagie).
3. In zwei voneinander unabhängigen Experimenten wurde ein altersabhängiger Anstieg der Autophagie für P. anserina demonstriert: Das Autophagie-Niveau nimmt in gealterten P. anserina-Kulturen zu. Gleichzeitig resultiert der Verlust der Autophagie in ∆PaAtg1 in eine reduzierte Lebensspanne. Unter Stressbedingungen (hier: Stickstoffmangel) wird dieser positive Einfluss der Autophagie auf die Lebensspanne im Wildtyp sogar noch verstärkt.
4. Der unerwartet „gesunde“ Phänotyp der PaSod3-Deletionsmutante ist abhängig von einer funktionalen Autophagie-Maschinerie. Der Mitophagie wurde eine besondere Rolle als Kompensationsmechanismus für den Verlust von PaSOD3 zugeteilt, da das Mitophagie-Niveau in dieser Mutante erhöht ist. Am Beispiel dieser Mutante, für die ein erhöhter Superoxid-Ausstoß nachgewiesen wurde, konnte eine Dosis-abhängige Wirkung von ROS in P. anserina identifiziert werden. Eine geringe zelluläre ROSMenge verursacht eine mitohormetische Reaktion, die eine Induktion der Mitophagie zur Folge hat und sich positiv auf den Organismus auswirkt. Übersteigt die zelluläre ROS-Dosis einen kritischen Punkt, kommt es zur Induktion des autophagischen Zelltods und damit zum vorzeitigen Tod des Individuums.
5. Der Verlust der PaCLPXP-Protease führt zu Beeinträchtigungen in der Funktion und Zusammensetzung der mitochondrialen Atmungskette. Dieses Defizit im Energiemetabolismus wird über eine Induktion der AOX, vor allem aber über eine ZUSAMMENFASSUNG 127 gesteigerte Autophagie kompensiert. Die deutlich verlängerte Lebensspanne der verschiedenen PaClpXP-Deletionsmutanten (∆PaClpX, ∆PaClpP und ∆PaClpXP) ist abhängig von einer funktionalen Autophagie-Maschinerie. Interessanterweise konnte keine kompensatorische Funktion der Autophagie oder Mitophagie für den Verlust der mitochondrialen i-AAA-Protease PaIAP in P. anserina nachgewiesen werden.
Autophagie/Mitophagie stellt einen übergeordneten Qualitätskontrollmechanismus in P. anserina dar, der den Organismus sehr effektiv vor zellulären Schäden und Dysfunktionen bewahrt und einen positiven Einfluss auf die Alterung, Entwicklung und Energieversorgung einnimmt.