Refine
Year of publication
Document Type
- Doctoral Thesis (27)
Has Fulltext
- yes (27)
Is part of the Bibliography
- no (27)
Keywords
- AlignMe (1)
- Alignment (1)
- Arzneimitteldesingn (1)
- Arzneimittelentwicklung (1)
- Bioenergetik (1)
- Carrier-Proteine (1)
- Cytochrom c Oxidase (1)
- Cytochromoxidase (1)
- EPR spectroscopy (1)
- Elektronenspinresonanzspektroskopie (1)
Institute
- Biochemie und Chemie (18)
- Biochemie, Chemie und Pharmazie (5)
- Biowissenschaften (2)
- MPI für Biophysik (1)
- Pharmazie (1)
- Physik (1)
G protein coupled receptors (GPCRs) constitute the largest family of cell-surface receptors in mammals and are key players in signal transduction. By responding to a plethora of extracellular stimuli ranging from photons to amines to fatty acids to peptides and proteins, these receptors trigger intracellular signalling cascades and regulate a variety of cellular responses. Approximately 800 genes in humans encode GPCRs which are classified according to sequence conservation into rhodopsin-like, glutamate, adhesion, frizzled/taste2 and secretin receptors. GPCRs share a seven transmembrane domain fold undergoing a conformational change upon ligand binding which is translated to the intracellular surface of the receptor thereby allowing a heterotrimeric G protein to couple. Heterotrimeric G proteins consist of a Ga, Gb and Gg subunit and dissociate into their Ga and Gbg entities upon activation by a GPCR. Subsequently, distinct signalling cascades are triggered by each G protein protomer.
Membrane proteins and GPCRs in particular, are highly important targets in drug design and development as currently approximately 60% of all marketed drugs target membrane proteins. Although these classes of proteins are of high therapeutic interest, our understanding of their mechanism of action and structure remains limited. The first structure of a human GPCR was determined in 2007 and required the development of protein engineering and innovative crystallisation techniques. Since then, approximately 130 GPCR structures of less than 40 individual receptors have been determined providing insights into the structural arrangement of the transmembrane helices, ligand binding pockets and G protein interactions. Combined with spectroscopic methods, these studies allowed a more detailed understanding of the molecular aspects of GPCR activation and signalling. Despite the tremendous advances in GPCR structural biology, certain aspects of GPCR function still remain poorly understood. Due to their size and inherent flexibility, the interaction of protein and peptide ligands with their receptors remains a challenging aspect in the structural characterisation of GPCRs. Moreover, structural information on subtype selectivity of peptide ligands continues to be scarce. To contribute functional and structural information on the molecular mechanisms of peptide interactions with GPCRs, this thesis focused on characterising receptors from the chemoattractant cluster using radioligand binding assays as well as NMR spectroscopy.
The chemoattractant cluster mainly groups the kinin, angiotensin, anaphylatoxin chemotactic complement and apelin receptors according to conserved residues in their ligand binding cavities. All receptors in this cluster bind to peptide ligands deriving from high molecular weight protein precursors upon proteolytic processing. Comparable to the conserved binding pocket of the chemoattractant receptors, the peptide ligands display a certain sequence conservation although they differ strongly in size. The largest ligands used in this thesis are the anaphylatoxins complement 3a and 5a, comprising 77 or 74 residues, respectively. Due to their size and complex fold involving three intramolecular disulphide bonds, solid phase synthesis is impossible, which prompted us to develop a modified cell-free expression system to produce these ligands in tritiated form for subsequent functional characterisation of the complement receptors. To demonstrate the versatility of the developed system, it was applied to another disulphidebond containing peptide ligand, the 21 amino acid endothelin-1. We describe a reliable and multifaceted tool to generate custom labelled peptide ligands for the structural and functional characterisation of GPCRs. The system allows the production of custom radioligands, peptides labelled for NMR studies or with fluorescent amino acids.
Apart from the modulation of GPCR activity by orthosteric ligands, GPCR signalling has long been described to be regulated by allosteric ligands including peptides, small molecules and ions. In this thesis, the influence of sodium ions on the activity state of the chemoattractant cluster receptors and in particular on the apelin, bradykinin 2 and angiotensin II type 1 receptors was examined. In recent high resolution crystal structures an allosteric sodium ion pocket beneath the orthosteric ligand binding cavity was identified and residues contributing to the coordination of sodium ions are conserved throughout the chemoattractant cluster receptors. This allosteric sodium ion coordinated within the transmembrane domain bundle has been described to negatively influence the affinity of agonists but not of antagonists. It was found that sodium ions have distinct influences on the affinity state as well as the available number of binding sites of the chemoattractant receptors. In case of the apelin and bradykinin 2 receptors, sodium ions drastically reduced the number of available binding sites whereas the affinity of peptide ligands to the bradykinin 2 receptors remained constant and the ligand binding affinities to the apelin receptor were completely abolished. In contrast, the angiotensin II type 1 receptor affinity state towards the endogenous peptide ligand angiotensin II is highly dependent on the presence of sodium ions, whereas binding of the synthetic peptide antagonist Sar1-Ile8-angiotensin II remained unaffected by the sodium ion concentration. As differential effects irrespective of the efficacy class but dependent on the amino acid composition of the applied ligands are observed, it can be concluded that electrostatic interactions between charged residues of the peptide ligands and amino acids on the extracellular surface of the receptors are influenced by sodium ions thereby adding another layer of complexity on GPCR signalling.
To elucidate the structure-function relationship of ligand selectivity between the kinin receptors, the structure of desArg10-kallidin (DAK) bound to the bradykinin 1 receptor was determined using solid state NMR (SSNMR) in the course of this thesis. The kinin peptides DAK and bradykinin bind with high affinity and high selectivity to either the bradykinin 1 or bradykinin 2 receptor, respectively. The binding pockets of the receptors are highly conserved and the two peptide ligands only differ in one amino acid at their N- and C-termini whereas the remaining eight amino acids are fully conserved. DAK adopts a U-shaped structure when bound to the bradykinin 1 receptor which resembles a horse shoe-like conformation. Using 2D TEDOR spectroscopy it could furthermore be demonstrated that positively charged residues at the N-terminal part of the peptide engage in ionic interactions with negatively charged amino acids on the extracellular surface of the bradykinin 1 receptor. In contrast, bradykinin displays a distinct b-turn at the C-terminus and an S-shaped conformation of the N-terminal segment when bound to the bradykinin 2 receptor. By using SSNMR to study the binding mode of DAK on the bradykinin 1 receptor we could determine that subtype selectivity between the kinin receptors is conferred by distinct conformational restraints within the peptide ligands and by the formation of specific ionic interaction between charged residues on the peptide and receptor, respectively.
In brief, this thesis contributes structural and functional data on the binding mechanisms and binding mode of different peptide-ligand GPCRs helping to understand subtype selectivity and allosteric modulation of the chemoattractant cluster receptors. In addition, a versatile cell-free expression system was developed that allows the custom synthesis of isotopically labelled peptides containing disulphide bonds for the functional characterisation of GPCRs.
Nicotinic acid has been used in the clinical treatment of elevated blood lipid levels for over 50 years. Although it has a beneficial effect on myocardial infarction and blood lipid profiles, its widespread use has been hampered by side effects such as skin rashes and a burning sensation on the upper body. Since elevated blood lipid levels, especially ones of VLDL and LDL cholesterol are a frequent indication and high risk factor for coronary and cardiac diseases, finding a compound with an enhanced pharmacological profile, still holding the desired effects, but without inconvenient side effects, is a very appealing aim to many pharmaceutical companies. These efforts have already produced two marketed drugs, Acipimox and Acifran, but they have not been able to overcome the restrictions already imposed on the treatment by nicotinic acid. Although proposed long before, in the year 2000 the gene for the nicotinic acid receptor in mouse PUMA-G was cloned, and in 2003 the discovery of the genes HM74 and HM74A followed, which comprise the homologous low and high affinity receptors for nicotinic acid in humans. The discovery of this G Protein-coupled receptor target allowed a more directed approach for the search of alternative compounds. This work is the first report of the heterologous overexpression of the high affinity GPCR gene HM74A in the methylotrophic yeast Pichia pastoris. The protein product, NAR1, was pharmacologically characterized, and displayed a binding affinity of 224.8 nM to its ligand nicotinic acid, showing a similar activity profile compared to those displayed in human tissue, which were determined to be 60 nM to 90 nM. Additionally, inhibitory constants (Ki) for Acifran and Acipimox were determined to be 4.5 µM and 50.5 µM, respectively. Furthermore, the total yield of NAR1 reached 42 pmol/mg membrane protein, which corresponds to 0.4 mg of receptor produced per liter yeast culture, opening up the perspective of large scale protein production to facilitate high throughput screening drug discovery efforts and structural studies. In addition, NAR1 could be solubilized in n-decyl-β-D-maltopyranoside and purified to homogeneity after immobilized metal affinity chromatography and a second affinity chromatography step on immobilized monomeric avidin, yielding a single peak on gel filtration, while the purified receptor was able to bind ligand, as shown in NMR Saturation Transfer Difference (STD) measurements. It could be shown that NAR1 is desensitized by β-arrestin 1 in vivo in confocal microscopy studies on HEK and BHK cells. This finding provides a native binding partner for the stabilization of the receptor upon solubilization and purification. Finally human β-arrestin 1 could be produced as a constitutively active variant, comprising residues 1-382 in Pichia pastoris and Escherichia coli. The purified protein was used for in vitro binding experiments and shown to be capable of interacting with NAR1. Although the interaction and formation of the complex was only possible to a limited extent, it leaves open the perspective of crystallizing NAR1 in its active conformation, bound to nicotinic acid and β-arrestin 1.
Cytochrome c oxidases are among the most important and fundamental enzymes of life. Integrated into membranes they use four electrons from cytochrome c molecules to reduce molecular oxygen (dioxygen) to water. Their catalytic cycle has been considered to start with the oxidized form. Subsequent electron transfers lead to the E-state, the R-state (which binds oxygen), the P-state (with an already split dioxygen bond), the F-state and the O-state again. Here, we determined structures of up to 1.9 Å resolution of these intermediates by single particle cryo-EM. Our results suggest that in the O-state the active site contains a peroxide dianion and in the P-state possibly an intact dioxygen molecule, the F-state may contain a superoxide anion.
Membrane proteins play vital role in a variety of cellular processes, such as signal transduction, transport and recognition. In turn they are involved in numerous human diseases and currently represent one of the most prevalent drug targets. A comprehensive understanding of the mechanisms mediated by membrane proteins requires information about their structures at near-atomic resolution, although structural studies of membrane proteins remain behind those of soluble proteins. A bottleneck in the study of membrane proteins resides in the difficulties that are encountered during their high-level production in cell based systems. However, many toxic effects attributed to the over production of membrane proteins are eliminated by cell-free expression, as viable host cells are no longer required. Therefore, the objective of this study was to obtain adequate amounts of selected membrane transport proteins for their structural studies using a cell-free expression system. For the establishment of the cell-free system for membrane proteins, the transporters YbgR and YiiP from Salmonella typhimurium LT2, PF0558 and PF1373 from Pyrococcus furiosus, from the cation diffusion family (CDF), BetP from Corynebacterium glutamicum from the betaine/carnitine/choline transporter (BCCT) family and Aq-2030 from Aquifex aeolicus VF5 from the monovalent cation/proton antiporter-2 (CPA2) family were selected. An Escherichia coli S-30 extract based cellfree system was established by generating the best expression constructs of the target proteins, preparing T7 RNA polymerase and an S-30 extract with high translation efficiency. The functionality of the S-30 extract was shown by the cell-free expression of correctly folded Green Fluorescent Protein (GFP). Essential factors of the cell-free system such as the Mg2+ concentration, the bacterial S-30 extract proportion in the reaction mixture and the time-course of cell-free reactions have been optimized. For the cell-free production of membrane proteins in soluble form, the possibility to supplement cell-free reactions with detergents was explored. A wide range of non-ionic or zwitterionic detergents, were found to be compatible with cell-free synthesis, while ionic detergents and non-ionic detergents at high concentrations had an inhibitory effect. Moreover, high concentrations of polyoxyethylene-alkyl-ethers (Brij) detergents were found to have enhancing effect on the production levels as well as on the solubility of cell-free produced proteins. As membrane proteins tend to misfold and aggregate in a membrane-free translation system, the possibility to supplement the cell-free reactions with inner membrane vesicles (IMVs) to obtain correctly folded target transport proteins was explored. All the target proteins were successfully produced in the batch cell-free reactions and were found to be incorporated in the IMVs. A continuous exchange cell-free (CECF) system was established, where consumable substrates (amino acids, nucleotides and energy regenerating compounds) were supplied to the cell-free reaction mixture through a dialysis membrane, which in consequence resulted in high-level production of target proteins compared to the batch system. The osmosensing and osmoregulated sodium-coupled symporter BetP from C. glutamicum was chosen for the large scale production in CECF set-up. The protein is easily produced in E. coli and is functional as assayed by its transport activity, after purification and reconstitution in liposomes. It is therefore possible to compare in-vivo and cell-free production. High-level cell-free production of BetP was achieved in CECF mode in different forms: (i) as precipitate, (ii) as soluble form in detergent, and (iii) incorporated in IMVs. Cell-free production of BetP resulted in the yield of about 0.5 mg of purified BetP from 1 ml of CECF reaction. The yield of purified BetP was increased to 1.6 fold by addition of 1% polyoxyethylene-(20)-cetyl-ether (Brij58) detergent in the reaction mixture. Moreover, the high level cell-free production of BetP (0.5 mg purified BetP/ml reaction mixture) incorporated in IMVs was shown for the first time in this work.However, it was observed that oligomerization of BetP was not efficient in the cell-free system. Factors that can promote the folding of membrane proteins such as lipids and chaperones were investigated. Addition of lipids and molecular chaperone GroE facilitated correct folding of BetP resulting in increased yield and stability of cell-free produced BetP. The results obtained indicate that most of the cell-free produced BetP exists in functional oligomeric form. The possibility of obtaining milligram amounts of BetP, a 12 trans-membrane protein from the cell-free reactions holds promise for structural and functional studies of other membrane proteins. In any case, the strategies adapted in this study should prove extremely valuable for the production of membrane proteins in the E. coli cell-free expression system.
NADH:ubiquinone oxidoreductase (Complex Ⅰ) is the first and largest enzyme in the respiratory chain. It catalyzes the transfer of two electrons from NADH to ubiquinone via a series of enzyme-bound redox centers - Flavin mononucleotide (FMN) and iron-sulfur (Fe-S) clusters – and couples the exergonic reaction with the endergonic translocation of four protons across the membranes. Bacteria contain the minimal form of complex I, which is composed of 14 conserved core subunits with a molecular mass of around 550 kDa. Complex Ⅰ has an L-shaped structure which can be subdivided into two major parts (arms). The hydrophilic arm protruding into the bacterial cytosol (or mitochondrial matrix) harbors the binding site for the substrate NADH, the two- to one-electron switch FMN and all one-electron transferring Fe-S clusters and therefore considered as the catalytic unit. The membrane arm consists of the membranespanning subunits and conducts the proton pumping process. The Quinone binding site is located at the interface of both arms. ...
The members of the multidrug/oligosaccharidyl-lipid/polysaccharide (MOP) transporter superfamily mediate export of a wealth of molecules of physiological and pharmacological importance. According to the Transporter Classification Database (TCDB), the MOP superfamily is mainly categorized into six distantly related families functionally characterized families: the multidrug and toxic compound extrusion (MATE), the polysaccharide transporter (PST), the oligosaccharidyl-lipid flippase (OLF), the mouse virulence factor (MVF) the agrocin 84 antibiotic exporter (AgnG), and the progressive ankylosis (Ank) family. Among these, the multidrug resistance MATE family transporters are most ubiquitous, being present in all domains of life: Archaea, Bacteria and Eukarya. As secondary active transporters, they utilize transmembrane electrochemical ion gradients of Na+ and/or H+ in order to drive the efflux of xenobiotics or cytotoxic metabolic waste products with specificity mainly for polyaromatic and cationic substrates. Active efflux of drugs and toxic compounds carried out by multidrug transporters is one of the strategies developed by bacterial pathogens to confer multidrug resistance. MATE proteins provide resistance to, e.g., fluoroquinolone, aminoglycoside antibiotics, and anticancer chemotherapeutical agents, thus serving as promising pharmacological targets for tackling a severe global health issue. Based on their amino acid sequence similarity, the MATE family members are classified into the NorM, the DNA-damage-inducible protein F (DinF), and the eukaryotic subfamilies. Structural information on the alternate conformational states and knowledge of the detailed mechanism of the MATE transport are of great importance for the structure-aided drug design. Over the past decade, the crystal structures of representative members of the NorM, DinF and eukaryotic subfamilies have been presented. They all share similar overall architecture comprising 12 transmembrane helices (TMs) divided into two domains, the N-terminal domain (TMs 1-6) and the C-terminal domain (TMs 7-12), connected by a cytoplasmic loop between TM6 and TM7 (Fig. II.1). Since all available MATE family structures are known only in V-shaped outward-facing states with the central binding cavity open towards the extracellular side, a detailed understanding of the complete transport cycle has remained elusive. In order to elucidate the underlying steps of the MATE transport mechanism, structures of distinct intermediates, particularly inward-facing conformation, are required.In my PhD project, structural and functional studies have been performed on a MATE family (DinF subfamily) transporter, PfMATE, from the hyperthermophilic and anaerobic archaeon Pyrococcus furiosus. This protein was produced homologously in Pyrococcus furiosus as well as heterologously in Escherichia coli, and used for the subsequent purification and crystallization trials by the vapor diffusion (VD) and lipidic cubic phase (LCP) method. To the best of my knowledge, PfMATE is the first example of a successful homologous production of a membrane protein in P. furiosus. Due to the very low final amount of the purified protein from the native source, the heterologously produced PfMATE samples were typically used for the extensive structural studies. Crystal structures of PfMATE have been previously determined in an outward-facing conformation in two distinct states (bent and straight) defined on the arrangement of TM1. A pH dependent conformational transition of this helix regulated by the protonation state of the conserved aspartate residue Asp41 was proposed. However, it has been discussed controversially, leading to the hypothesis about TM1 bending to be rather affected by interactions with exogenous lipids (monoolein) present under the crystallization conditions. Based on these open questions, an experimental approach to investigate the role of lipids as structural and functional modulators of PfMATE has been taken in the course of my PhD project. The interplay between membrane proteins and lipids can affect membrane protein topology, structure and function. Considering differences between archaeal and bacterial lipid composition, cultivation of P. furiosus cells and extraction of its lipids was followed by the mass spectrometry (MS) based lipidomics for identification of individual lipid species in the archaeal extract. In order to assess the effects of lipids on PfMATE, different lipid molecules were used for co-purification and co-crystallization trials. This dissertation presents a workflow leading to the structure determination of a MATE transporter in the long sought-after inward-facing state, which has been achieved upon purification and crystallization of the heterologously produced PfMATE in the presence of lipids from its native source P. furiosus. Also, the PfMATE outward-facing state obtained from the crystals grown at the acidic pH conditions sheds light on the previously proposed pH-dependent structural alterations within TM1. It is interesting to note that the inward and outward-facing states of PfMATE were obtained from the crystals grown under similar conditions, but in the presence and absence of native lipids, respectively. This observation supports the hypothesis about physiologically relevant lipids to act as conformational modulators or/and a new class of substrates, expanding the substrate spectrum of the MATE family transporters. Comparative analysis of two PfMATE states reveals that transition from the outward to the inward-facing state involves rigid body movements of TMs 2-6 and 8-12 to form an inverted V, facilitated by a loose binding of TMs 1 and 7 to their respective bundles and their conformational flexibility. Local fluctuations within TM1 in the inward-facing structure, including bending and unwinding in the intracellular half of the helix, invoke its highly flexible nature, which is suitable for ion and substrate gating.
...
Der Cytochrom-bc1-Komplex katalysiert die Elektronenübertragung von Ubihydrochinon auf Cytochrom c in der Atmungskette und in der bakteriellen Photosynthese. Das Enzym stellt somit das Bindeglied zwischen den Ubihydrochinon bildenden Dehydrogenasen und der Cytochrom c oxidierenden Cytochrom-c-Oxidase dar. Im Rahmen der vorliegenden Arbeit wurden die Wechselwirkungen des Cytochrom-bc1-Komplexes aus Saccharomyces cerevisiae mit seinen Substraten Ubichinon und Cytochrom c sowie mit Phospholipiden der inneren Mitochondrienmembran untersucht. Durch Analyse von Gesamtlipidextrakten aus Proben des Cytochrom-bc1-Komplexes konnte gezeigt werden, daß das Enzym in Anwesenheit von vier verschiedenen Phospholipiden gereinigt und kristallisiert werden kann. In der Kristallstruktur des Enzyms bei 2,3 Å Auflösung wurden fünf Bindungsstellen für Phospholipide und eine Bindungsstelle für ein Detergensmolekül identifiziert. Die Bindungsstelle für eines der Phospholipide, ein Cardiolipin-Molekül, liegt am Eingang eines von zwei Protonierungspfaden für die Ubichinon-Reduktionsstelle (Qi-Bindungsstelle). Ein Phosphatidylinosit-Molekül befindet sich in einer außergewöhnlichen Position unweit der flexiblen "Linker"-Region des Rieske Eisen-Schwefel-Proteins und trägt vermutlich zur Stabilisierung dieser katalytischen Untereinheit bei. Durch Röntgenbeugung an Kokristallen bestehend aus Cytochrom-bc1-Komplex und gebundenem Cytochrom c konnte die dreidimensionale Struktur dieses transienten Enzym-Substrat-Komplexes bei 2,97 Å ermittelt werden. Die Kristallstruktur ist die erste Struktur des Cytochrom c im Komplex mit einem seiner beiden Redoxpartner aus der Atmungskette. Sie zeigt, daß das Cytochrom c hauptsächlich durch hydrophobe Wechselwirkungen an das Cytochrom c1 bindet und daß die Nähe der beiden c-Typ Hämgruppen eine schnelle Reduktion des Cytochrom c erlaubt. Im homodimeren Cytochrom-bc1-Komplex ist nur eine der beiden Bindungsstellen für Cytochrom c besetzt. Diese hälftige Substratbindung zeigte sich auch für das Ubichinon in der Qi- Bindungsstelle und weist darauf hin, daß die beiden Monomere des Enzyms unabhängig voneinander oder sequentiell arbeiten können. Möglicherweise dient dies der Regulation der Enzymaktivität des Cytochrom-bc1-Komplexes. Durch partielle Reduktion des Cytochrom-bc1-Komplexes in Anwesenheit von Ubichinon konnte ein proteingebundenes Ubisemichinonradikal erzeugt und durch Schockgefrieren stabilisiert werden. Die spektralen Eigenschaften dieses Radikals sind typisch für ein Ubisemichinon an der Qi-Bindungsstelle. Durch Spektroskopie an einer Probe, die einem Wasserstoff/Deuterium-Austausch unterzogen wurde, konnte gezeigt werden, daß dieses Radikal von Protonen koordiniert wird, die mit dem Solvens im Austausch stehen. Dies steht in Übereinstimmung mit der Theorie des Q-Zyklus und wurde durch die hochauflösenden Kristallstruktur des Enzyms bei 2,3 Å vorhergesagt. Die erzielten Ergebnisse zeigen neue Informationen zum Wechselspiel des Cytochrom- bc1-Komplexes mit Phospholipiden aus der inneren Mitochondrienmembran. Die Bestimmung der Struktur des transienten Komplexes bestehend aus Enzym und Cytochrom c erweitert das Bild über den Elektronentransfer durch Cytochrom c zwischen dem Cytochrom-bc1-Komplex und der Cytochrom-c-Oxidase. Das mögliche Zusammenwirken der Bindungstellen für Cytochrom c und Ubichinon ist ein neuer mechanistischer Aspekt, der auf eine Regulation der Enzymaktivität schließen läßt.
The electron transport chain (ETC) is used by cells to create an electrochemical proton gradient which can be used by the ATP synthase to produce ATP. ETC, also called respiratory chain, is formed in mitochondria by four complexes (complex I-IV) and mediated by two electron carriers: cytochrome c and ubiquinone. Electrons are passed from one complex to another in a series of redox reactions coupling proton pumping from the negative (N) side of the membrane to the positive (P) side. Complex I can introduce electrons into the ETC by oxidizing NADH to NAD+ and reducing quinone (Q) to quinol (QH2). The process accomplishes pumping of four protons across the membrane. Complex II is another electrons entry point. It catalyzes the oxidation of succinate to fumarate while reducing Q to QH2. Complex III, also called cytochrome bc1 complex, can transfer the electrons from QH2 to cytochrome c and couple to proton pumping. In complex III the Q-cycle contributes four proton translocations: two protons are required for the reduction of one quinone to a quinol and two protons are released to the P side. Complex IV (cytochrome c oxidase), the terminal complex of the ETC, catalyzes the electron transfer to oxygen and pumps four protons to the P side. Structures of ETC complexes are available. However, the structure of a hyperthermophilic cytochrome bc1 complex has not been elucidated till now. Additionally, the dimeric crystal structure of cytochrome c oxidase from bovine has been discussed controversially.
To build up a functional complex, cofactors are required. The active site of A- and B-type cytochrome c oxidases contain the high spin heme a which is synthesized by the integral membrane protein heme A synthase (HAS). HAS can form homooligomeric complexes and its oligomerization is essential for the biological function of HAS. HAS is evolutionarily conserved among prokaryotes and eukaryotes. Despite its importance, little is known about the detailed structural properties of HAS oligomers.
During my PhD studies, I focused on the cytochrome c oxidase (AaCcO), the cytochrome bc1 complex (Aabc1) and the heme A synthase (AaHAS) from Aquifex aeolicus. This organism is one of the most hyperthermophilic ones and can live at extremely high temperatures, even up to 95 °C. Respiratory chain complexes provide energy for the metabolism of organisms, and their structures have been studied extensively in the past few years. However, there has been a lack of atomic structures of complexes from hyperthermophilic and ancient bacteria, so little is known about the mechanism of these macromolecular machines under hyperthermophilic conditions. Therefore, my PhD studies had four main objectives: 1) to structurally and functionally characterize AaCcO, 2) to reveal the mechanism of Aabc1 thermal stability based on its structure, 3) to determine the oligomerization of AaHAS, 4) to provide valuable insights into the relationship between function and oligomerization of AaHAS.
1) Structure of AaCcO
Heme-copper oxidases (HCOs) catalyze the oxygen reduction reaction being the terminal enzymes in the plasma membranes in many prokaryotes or of the aerobic respiratory chain in the inner mitochondrial membrane. By coupling this exothermic reaction to proton pumping across the membrane to the P side, they contribute to the establishment of an electrochemical proton gradient. The energy in the proton electrochemical proton gradient is used by the ATP synthase to generate ATP. HCOs are classified into three major families: A, B and C, based on phylogenetic comparisons. The well-studied aa3-type cytochrome c oxidase from Paracoccus denitrificans (P. denitrificans) represents A-family HCOs. So far, the only available structure of the ba3-type cytochrome c oxidase from Thermus thermophilus represents the B-family of HCOs. This family contains a number of bacterial and archaeal oxidases. The C-family contains only cbb3-type cytochrome c oxidases.
The AaCcO is one of the ba3-type cytochrome c oxidases. Based on the genomic DNA sequence analysis, it has been revealed that A. aeolicus possesses two operons coding for cytochrome c oxidases (two different subunit I genes, two different subunit II genes and one subunit III gene). So far, only subunits CoxB2 and CoxA2 were identified. The presence of the additional subunit IIa was reported in 2012. Moreover, a previous paper reported that AaCcO can use horse heart cytochrome c and decylubiquinol as electron donors and the typical cytochrome c oxidase inhibitor cyanide does not block the reaction completely.
In the course of my PhD studies, I performed heterologous expression of AaCcO in Pseudomonas stutzeri (P. stutzeri) and co-expression with AsHAS in Escherichia coli, respectively. The subcomplex CoxA2 and CoxB2 can be purified from P. stutzeri, however, it lacks heme A. Additionally, a protocol for the heterologous production of cytochrome c555 from A. aeolicus was established. In parallel, I also purified the AaCcO from native membranes according to previously reported methods with some modifications. The activity of AaCcO with its native substrate, cytochrome c555, was 14 times higher than with horse heart cytochrome c.
To enable a detailed investigation and comparison of AaCcO and other cytochrome c oxidases, the cryo-EM structure of AaCcO was determined to 3.4 Å resolution. It shows that the three subunits CoxA2, CoxB2, and IIa are tightly bound together to form a dimer in the membrane. Surprisingly, CoxA2 contains two additional TMHs (TMH13 and TMH14) to enhance the protein stability. The cofactors heme a3, heme b, CuA and CuB are also identified. Interestingly, two molecules of 1,4-naphthoquinone and cardiolipin were observed in the dimer interface. Based on the structure analysis, the AaCcO possesses only the K-pathway for proton delivery to the active site and proton pumping.
...
G protein-coupled receptors (GPCRs) constitute an important class of integral membrane proteins that are involved in several signaling pathways. About 50% of the currently available drugs are targeted against these receptors and high-resolution structures of these receptors will be of immense importance from the perspective of designing specific and potent drugs. However, structure determination of these receptors and of membrane proteins in general, has been a very challenging task till date. A major limitation in the structure determination of these proteins is that they are present in minute amounts in the native tissues and therefore, they must be produced heterologously. Additionally, crystallization of GPCRs is difficult owing to their flexible nature and limited hydrophilic surface area available for crystal contacts. The aim of my Ph.D. thesis work is two fold, first, to address the problem of GPCR crystallization by using a fusion protein complex approach and second, to tailor Rhodobacter sphaeroides as an expression system for the heterologous production of GPCRs. In the first approach, R. sphaeroides was used as an expression system to generate a fusion protein complex of the photosynthetic reaction center (RC) with a GPCR, expecting that such a complex would be easier to crystallize than the receptor alone. The notion behind this approach is that the RC will act as a scaffold in providing surface area to create crystal contacts and at the same time, it will also reduce the flexibility of the receptor, hopefully without perturbing the functionality of the receptor. Based on the computational modelling experiments, two ways to generate a fusion complex were assigned. Long linkers were inserted between the subunits of the RC and the GPCR. The linkers were designed with a possibility of straightforward alteration of their length as they contained a number of restriction enzyme sites. A series of these constructs were designed and expressed in R. sphaeroides deletion strain, which did not possess the chromosomal RC genes. Though most of these fusion constructs could be successfully expressed, as analyzed by western blot, majority of them were not functional in terms of ligand binding of the GPCR component of the fusion complex. Interestingly, one of these constructs, where the M subunit of RC was directly fused to the human angiotensin II type 1a receptor (AT1aR), exhibited significant functional expression. Based on saturation binding analysis using [125I] iodotyrosyl4Sar1Ile8-angiotensin II (an AT1aR subtype specific antagonist), an expression level of 40+5 pmol/mg of total membrane protein was calculated. This expression level corresponds to approximately 0.3 mg of functional receptor per liter culture and it is significantly higher than the AT1aR expression in native tissues. Additionally, the binding affinity of the recombinant receptor for its endogenous ligand angiotensin II was found to be 1±0.1 nM, which is similar to that observed for the AT1aR in native tissues. More interestingly, the RC part of the fusion complex was structurally assembled in other words, properly folded as judged by the presence of the characteristic peaks at 760 nm, 800 nm and 850 nm by absorption spectroscopy. However, a slight change in the intensity of the peak at 800 nm was observed while comparing the spectra of native RC with that in the fusion protein complex. This slight variation might be due to the change in the protein environment. The fusion protein complex RC-AT1aR was functionally solubilized and purified using a decahistidine tag fused at the c-terminus of the AT1aR. Subsequently, the monodispersity and integrity of the complex was confirmed by size exclusion chromatography, which revealed a homogeneous peak. Additionally, it was also possible to solubilize and purify this complex in the presence of a fluorescein tagged angiotensin II ligand which provides a nice tool to judge the functionality of the AT1aR and integrity of the complex at the same time. The purified RC-AT1aR fusion complex was then subjected to three-dimensional (3-D) crystallization trials and it was possible to obtain reproducible crystals of this complex. The crystals were fluorescent (as the complex was purified in presence of fluorescently labelled angiotensin II) and needle or tetragonal in shape, but produced a powdery diffraction pattern. Further attempts to improve the crystallization condition and to optimize the cryo-conditions are underway. In addition, attempts are also being made to obtain the crystals of this complex with the antagonist (e.g. losartan) bound to the receptor. In view of several limitations in the heterologous expression of GPCRs, as the second part of my Ph.D. thesis, I decided to explore the possibilities of developing a novel expression system based on R. sphaeroides for production of recombinant GPCRs. The notion behind using this host is that lack of inclusion bodies and high concentration of membranes in R. sphaeroides would result in efficient functional overexpression of recombinant membrane proteins. For this purpose, a R. sphaeroides strain, modified by the deletion of the genes encoding the RC and the light harvesting proteins LH1 and LH2, was used. The genes for RC and LHs constitute about 85-90% of total membrane proteins in a R. sphaeroides cell. These membranes are normally housed in special membrane vesicles called intracytoplasmic membranes (ICMs) that can fill almost the entire cell volume under certain growth conditions. Synthesis of a heterologous protein under the control of the moderately strong photosynthetic superoperonic promoter should be coordinated with the synthesis of new membranes to harbour these proteins, thus acting as a natural induction system. Moreover, as most of the native membrane proteins are absent in this deletion strain, heterologously produced protein should not experience a shortage of molecular chaperones for proper folding and insertion. Additionally, the absence of inclusion bodies in this host should enhance the functional and homogenous population of the recombinant proteins. Three human GPCRs, namely the adenosine A2a receptor (A2a), the angiotensin II type 1a receptor (AT1aR) and the bradykinin subtype 2 receptor (B2R) were tested for expression and functionality in this system. Two different constructs were used to determine the optimal position and ribosome-binding site (RBS) in the superoperon for the highest expression level. Of these three receptors, the AT1aR and B2R were successfully produced, while the A2aR failed to express, producing green carotenoid free R. sphaeroides mutants, for unknown reasons. For the recombinant B2R, [3H] bradykinin binding analysis revealed a low functional expression level of 0.7-0.8 pmol/mg of total membrane protein. This expression level corresponds to 0.01 mg functional receptor per liter of culture and is not sufficient for large-scale expression of this receptor. However, for the recombinant AT1aR, [125I] iodotyrosyl4Sar1Ile8- angiotensin II binding analysis revealed an expression level of 12±1 pmol/mg of total membrane protein. This expression level corresponds to approximately 0.1 mg functional receptor per liter culture and this is significantly higher than the AT1aR expression in native tissues. This expression system is still in the nascent stages of development and there are several parameters, which are still to be assessed for the optimal use of this system for the production of GPCRs and other membrane proteins. In conclusion, my Ph.D. work presents a novel fusion protein complex based approach for obtaining crystallizable GPCRs and a novel expression system for producing heterologous GPCRs. It was possible, for the first time, to produce a functional RC-GPCR complex that could easily be crystallized, though further finetuning of the system is required. R. sphaeroides based novel expression system was successfully used to produce functional human GPCRs under the control of a moderately strong photosynthetic superoperonic promoter. This expression system represents a naturally induced system where the expression of a heterologous protein is coordinated with the synthesis of new membranes to harbour the recombinant protein. The fusion protein complex approach and the expression system presented here can hopefully be used as a general method to facilitate the expression and crystallization of other membrane proteins.
Im Mittelpunkt der vorliegenden Arbeit steht der humane β2-adrenerge Rezeptor, ein intrinsisches Membranprotein und Mitglied der Superfamilie G Protein-gekoppelter Rezeptoren (GPCRs).
Es wurden im Wesentlichen zwei Themenschwerpunkte bearbeitet. Den ersten Schwerpunkt bildeten die heterologe Produktion des β2-adrenergen Rezeptors in der methylotrophen Hefe Pichia pastoris sowie dessen chromatographische Reinigung und Charakterisierung. Hierbei konnten in allen wesentlichen Punkten signifikante Verbesserungen im Vergleich zu früheren Arbeiten erzielt werden: Die Ausbeute an heterolog produziertem, funktionellem Rezeptor konnte um das bis zu Fünffache gesteigert werden; Die Gesamtausbeute nach chromatographischer Reinigung wurde um 60% erhöht; Es gelang die Darstellung reiner, monodisperser Rezeptorpräparationen mit einer spezifischen Ligandenbindungsaktivität von 94% und einer Halbwertszeit der Ligandenbindungsaktivität von >50 Tagen bei 4 °C. Eine pharmakologische Charakterisierung des Rezeptors erfolgte sowohl in Membranen als auch in solubilisiert-gereinigter Form. Ferner konnte die in vitro-Interaktion des solubilisiert-gereinigten Rezeptors mit einer konstitutiv aktiven β-Arrestin Variante nachgewiesen werden.
Ziel des zweiten Themenschwerpunkts der vorliegenden Arbeit war die Auffindung und Charakterisierung von rezeptorspezifischen, nicht auf Immunglobulinen basierenden Bindeproteinen, um diese später vorrangig zur Kokristallisation einsetzen zu können. Mit der zellfreien Selektionsmethode des ribosome display ist es hierbei gelungen, aus einer naiven, auf Ubiquitin als Gerüstprotein basierenden Bibliothek hochaffine, spezifische Bindeproteine gegen den β2-adrenergen Rezeptor zu isolieren. Für Monomere dieser sog. Affiline® wurden Dissoziationskonstanten bis etwa 450 nM gefunden, die durch Homodimerisierung auf etwa 70 nM verringert werden konnten. Zusätzlich wurde mit einer Affinitätsmaturierung ausgewählter Varianten begonnen.
Die Superfamilie der G Protein-gekoppelten Rezeptoren (GPCRs) bildet die größte und auch diverseste der vier Hauptgruppen membranständiger Rezeptoren. Im Rahmen der Signaltransduktion vermitteln diese die Umwandlung eines extrazellulären Signals in eine spezifische intrazelluläre Reaktion und nehmen so eine Schlüsselposition bei der Kommunikation zwischen Zellen ein. Bei GPCRs erfolgt die Weitergabe der ligandeninduzierten Konformationsänderung vorwiegend über Kopplung an und Aktivierung von Guanin-Nukleotidebindenden Proteinen (G Proteine), die dann ihrerseits mit verschiedenen Effektorsystemen in Wechselwirkung treten. Da ein Großteil aller zurzeit auf dem Markt befindlichen Medikamente ihre Wirkung durch Bindung an einen GPCR entfaltet, ist diese Proteinfamilie von besonders großem pharmakologischem Interesse. Auch der humane β2-adrenerge Rezeptor (β2AR) zählt zu den kommerziell wichtigen drug targets und ist zudem nach bovinem Rhodopsin der erste GPCR, für dessen Struktur experimentell bestimmte, atomare Modelle vorgelegt werden konnten.
Zur funktionellen Überproduktion des β2AR hatte sich bereits die methylotrophe Hefe Pichia pastoris bewährt. In der vorliegenden Arbeit konnte gezeigt werden, dass durch Anwendung hier erarbeiteter, optimierter Bedingungen das Produktionsniveau aller acht für dieses Expressionssystem zur Verfügung stehenden bzw. in dieser Arbeit hergestellten Konstrukte gegenüber früheren Ergebnissen deutlich gesteigert werden konnte. Hierbei wurde, je nach Konstrukt, eine Verdopplung bis Verfünffachung der Produktion an aktivem, bindungsfähigem Rezeptor erzielt. Bei drei der acht Konstrukte konnte das Produktionsniveau auf ≥ 50 pmol/mg Membranprotein gesteigert werden, was bis zu 1,1 mg aktivem Rezeptor in Membranen pro Liter Schüttelkultur entspricht. Die im Rahmen der Produktionsoptimierung der verschiedenen Konstrukte gewonnenen Erkenntnisse über den Einfluss sowohl von Art als auch Lokalisation eines bestimmten Anhängsels innerhalb der Expressionskassette auf das zu erwartende Produktionsniveau konnten genutzt werden, um bei einem mit bestimmten Eigenschaften neu zu erstellenden Konstrukt – einem Baukastensystem gleich – jene Anhängsel mit den gewünschten (und bekannten) Auswirkungen zu kombinieren. Auf dies Weise konnten auf Anhieb sehr gute Produktionsniveaus für neu erstellte Konstrukte erzielt werden.
Durch Optimierung einer zweischrittigen affinitätschromatographischen Reinigung konnte zum einen die Gesamtausbeute an gereinigtem β2AR um 60% gegenüber früheren Ergebnissen gesteigert werden. Zum anderen gelang es, für derartige, nach SDS-PAGE und analytischer Gelfiltration als homogen und frei von jeglichen Aggregationen befundenen Präparationen, die spezifische Aktivität (Radioligandenbindung) auf 94 ± 4% zu steigern. Die Halbwertszeit der spezifischen Aktivität derartiger Präparationen bei 4 °C lag bei über 50 Tagen. Im Rahmen einer alternativen Reinigungsstrategie konnte der praktische Nutzen proteolytisch abspaltbarer Affinitätsanhängsel in Fällen mit inhomogener posttranslationaler Prozessierung des rekombinanten Proteins durch das Expressionssystem nachgewiesen werden.
Durch Integration einer inversen Affinitätschromatographie in das Reinigungsschema konnte bei bestimmten Konstrukten die Homogenität und Dispersität der Präparation verbessert werden, bei gleichzeitiger vollständiger Entfernung sowohl der abgetrennten Anhängsel als auch der verwendeten Protease.
Die Ligandenbindung des β2AR wurde sowohl in Membranen als auch in solubilisiertgereinigter Form charakterisiert. Die hierbei für den Rezeptor in Membranen mit dem tritiierten Liganden [5,7-3H]-(-)-CGP-12177 erhaltene Dissoziationskonstante (KD) von 4,1 ± 0,2 nM befindet sich in guter Übereinstimmung mit den Literaturwerten für dieses Expressionssystem.
Bei der Charakterisierung der Ligandenbindung des β2AR in solubilisiert-gereinigter Form wurde ein stark modulierender Effekt von Lipiden auf die KD beobachtet: Die Dissoziationskonstante des soubilisiert-gereinigten Rezeptors wurde zu 8 ± 0,6 nM bestimmt, ließ sich jedoch durch gleichzeitige Verwendung von solubilisiertem Phosphatidylcholin und Cholesterinhemisuccinat im Bindungstest auf ein Viertel (2,13 ± 0,2 nM) diese Wertes reduzieren. Der Effekt der Affinitätsmodulation war voll reversibel und die Gesamtmenge (Bmax) an bindungsfähigem Rezeptor blieb praktisch unbeeinflusst.
Des weiteren konnte die spezifische Interaktion des solubilisiert-gereinigten β2AR mit rekombinantem, konstitutiv aktivem β-Arrestin in vitro nachgewiesen werden. Dies ist sowohl für die Etablierung etwaiger funktioneller Assays als auch für Ansätze zur Kokristallisation des β2AR mit einem physiologischen Bindungspartner für von Interesse.
Im Rahmen des zweiten Themenkomplexes wurde die Methode des ribosome display (RD) erfolgreich eingesetzt, um Bindeproteine gegen den β2AR zu selektieren. Ziel war es hier, diese später zur Kokristallisation mit dem Zielprotein einsetzen zu können. Das RD als zellfreie (in vitro) Selektionsmethode findet für lösliche Proteine bereits seit längerem breite Anwendung.
Für Membranproteine wurde es bisher hingegen nur sehr selten erfolgreich verwendet und der Einsatz bei GPCRs ist als neu zu bezeichnen. Im Rahmen dieser Arbeit wurde eine hochdiverse (theoretische Diversität: 1013, funktionelle Größe 1010 – 1011), naive Bibliothek verwendet, die auf Ubiquitin als Gerüstprotein basiert und von SCIL Proteins, Halle unter der Bezeichnung Affilin® entwickelt wurde. Es handelt sich somit um alternative, d. h. nicht auf Antikörpern oder deren Fragmenten beruhenden Bindeproteine. Zielprotein der in dieser Arbeit durchgeführten Selektionen war solubilisiert-gereinigter β2AR. Sämtliche Arbeiten unter Beteiligung des Zielproteins fanden zur Bewahrung dessen Aktivität in Anwesenheit von Detergenz statt. Die verschiedenen Schritte des RD mussten daher zunächst an die speziellen Erfordernisse des Zielproteins angepasst und geeignete Bedingungen zur Durchführung einer Selektion gefunden werden. Durch entsprechende Vorversuche wurde dann verifiziert, dass der Rezeptor unter den gewählten Selektions- und Immobilisierungsbedingungen seine Ligandenbindugsaktivität beibehält. Es wurden insgesamt sechs RD-Selektionsrunden durchgeführt und der abschließend vorliegende Bindeprotein-Subpool war noch divers (keine Reduktion auf eine Konsensus-Sequenz). Zur Charakterisierung der angereicherten Varianten wurde eine Abfolge von Hochdurchsatzverfahren sowie abschließenden Einzelanalysen eingesetzt. Hierbei gelang es, hochaffine, spezifische Bindeproteine gegen den β2AR zu isolieren. Die beobachteten Dissoziationskonstanten (KD) der detailliert charakterisierten Affilin-Monomere reichen von etwa 15 μM bis hin zu 450 nM. Nach Homodimerisierung ausgewählter, zuvor charakterisierter Varianten wurde eine Verringerung der Dissoziationskonstanten bis auf etwa 70 nM beobachtet. Damit decken die selektierten Bindeproteine einen Affinitätsbereich ab, der verschiedenartige Anwendungsgebiete eröffnet: Vom Einsatz zur affinitätschromatographischen Reinigung des Zielproteins, über dessen immunologischen Nachweis bzw. dem Einsatz in Assaysystemen bis hin zur Kokristallisation mit dem Zielprotein. Die Spezifität der Bindeproteine wurde gegenüber verschiedenen Negativkontrollen wie etwa dem verwendeten Immobilisierungssystem aber auch gegenüber anderen GPCRs mit homologer Auswahl an Affinitätsanhängseln verifiziert. Durch geeignete Konditionierung (prepanning) der in den eigentlichen Selektionsprozess eingehenden ternären Komplexe war es gelungen, die Anreicherung unerwünschter, gegen das zur Immobilisierung verwendete Biotin/Streptavidin-System gerichteter Varianten wirkungsvoll zu verhindern.
Die selektierten Bindeproteine konnten in verschiedenen Maßstäben (von 1 ml bis 1 l) mit sehr hohen Ausbeuten in E. coli produziert werden. Nach Affinitätschromatographie und präparativer Gelfiltration wurden hochreine, monodisperse Präparationen erhalten. Die Gesamtausbeuten an gereinigtem Bindeprotein lagen bei etwa 15 mg/l Kulturvolumen.
Neben der Affinitätsbestimmung wurde die Bindung einzelner Affilin-Varianten an den β2AR sowohl mittels pull-down Assay als auch analytischer Gelfiltration verifiziert. Parallel zur Homo- und Hetero-Dimerisierung wurde eine Affinitätsmaturierung ausgewählter Varianten begonnen. Diese Affinitätsmaturierung der Monomere erfolgte in einem evolutiven Ansatz bestehend aus Zufallsmutagenese zuvor charakterisierter Varianten und anschließender Selektion im Rahmen eines erneuten RD.
Systematische Ansätze zur Kokristallisation des β2AR mit mehreren der aus der Selektion hervorgegangenen alternativen Bindeproteine wurden durchgeführt.