Refine
Year of publication
Document Type
- Doctoral Thesis (19)
- Diploma Thesis (1)
Has Fulltext
- yes (20)
Is part of the Bibliography
- no (20)
Keywords
Institute
- Biochemie und Chemie (19)
- Biowissenschaften (1)
Ein früherer Vorschlag zum Reaktionsmechanismus der DFPase, der eine Wasseraktivierung durch den Rest H287 postulierte, mußte nach neuen experimentellen Daten verworfen werden. Daher lag zu Beginn der hier vorliegenden Arbeit kein Vorschlag für den Mechanismus der DFPase vor, der die experimentellen Daten erklären konnte. Für das längerfristige Ziel, die katalytischen Eigenschaften der DFPase gezielt verändern zu können, war es daher notwendig, zunächst den Mechanismus der Hydrolyse von Verbindungen wie DFP durch die DFPase näher zu untersuchen. Durch computergestützte Modellierung im aktiven Zentrum der DFPase (Docking) wurde die Bindung von DFP und anderen Substraten der DFPase genauer untersucht und mit vorhandenen experimentellen Daten verglichen. Diese Arbeiten führten auch zur theoretischen Untersuchung des Bindungsverhaltens von O,O-Dialkylphosphoroamidaten als potentiellen Inhibitoren der DFPase. Diese den Dialkylfluorophosphaten strukturell sehr ähnlichen Substanzen werden durch die DFPase nicht umgesetzt. Die Ergebnisse der Dockinguntersuchung führten schließlich zu der Synthese von drei Phosphoroamidaten unter der Untersuchung ihres Verhaltens als Inhibitoren der DFPase. DIe Charakterisierung erfolgte dabei über enzymkinetische Methoden sowie NMR-Experimente. Mit dem stärksten Inhibitor O,O-Dicyclopentylphosphoroamidat gelang die Kristallisation eines Komlexes mit der DFPase, der mit der Methode der Röntgenbeugung strukturell bestimmt werden konnte. Dieser Komplex belegt die Bindung der Phosphorylgruppe von Substraten an das katalytisch wirksame Calciumion im aktiven Zentrum der DFPase und zeigt die vorherrschenden Bindungskräfte zwischen Ligand und Protein auf. Eine Reihe von Mutanten der DFPase, bei denen gezielt die koordinierenden Aminosäuren des katalytischen Calciumions verändert wurden, ergänzte die bereits in früheren Arbeiten erzeugten Mutanten. Die katalyischen Eigenschaften dieser Mutanten und ihre Fähigkeit zur Metallbindung gestatten es, diese Metallbindungsstelle genauer zu beschreiben und lassen zusammen mit den Dockingexperimenten und der Struktur des Inhibitor-Enzymkomplexes vermuten, dass der calciumkoordinierende Aminosäurerest D229 als aktives Nukleophil im Reaktionsmechanismus der DFPase fungiert. Diese Vermutung ließ sich mit experimentellen Daten untermauern. Durch 18O-Isotopenmarkierung konnte gezeigt werden, dass ein Sauerstoffatom von D229 auf das entstehende Produkt übertragen wird. Hierdurch konnte die Existenz eines Phosphoenzymintermediats nachgewiesen werden. Des weiteren gelang es, Kristalle der DFPase zu züchten, die für Neutronenbeugungsexperimente geeignet waren. Im Rahmen dieser Experimente gelang die Aufnahme eines vollständigen Datensatzes und die Lösung der Neutronenbeugungsstruktur der DFPase in einer Auflösung von 2,2 Å. Diese Neutronenstruktur, in der Wasserstoffatome im Unterschied zu Röntgenstrukturen gut sichtbar sind, zeigt eindeutig, dass der Rest D229 wie erforderlich deprotoniert und dass das in der Bindungstasche an das Calciumion koordinierende Wassermolekül nicht als Hydroxid vorliegt. Damit ließ sich die direkte Aktivierung von Wasser durch das Metallion ausschließen. Neben wichtigen Informationen über die Bindungstasche der DFPase lieferte die Neutronenstruktur auch detaillierte Einblicke in das Wasserstoffbrückennetzwerk im zentralen, wassergefüllten Tunnel des Proteins. Über die Bestimmung des Wasserstoff/Deuteriumaustausches von Proteinrückgradamiden konnten weitere Aussagen über die Solvenszugänglichkeit von verschiedenen Proteinbereichen gemacht werden. Für die DFPase konnten strukturell und funktionell ähnliche Proteine identifiziert werden. Neben der Paraoxonase 1 waren dies das Calciumbindeprotein Regucalcin aus Agrobacterium thumefaciens sowie das Drug Resistance Protein 35 aus Staphylococcus aureus. Es konnte gezeigt werden, dass diese Proteine eine der katalytischen Calciumbindestelle der DFPase vergleichbare Metallbindestelle aufweisen und verschiedene Enzymaktivitäten dieser Proteine durch einen Mechanismus mit einem zu D229 analogen Nukleophil erklärt werden können. Ein direkter Vergleich zwischen der DFPase und der humanen Paraoxonase gelang durch Untersuchungen mit fluorogenen Organophosphaten als Substrate. Hierbei konnte zum ersten Mal gezeigt werden, dass die DFPase in der Lage ist, Substrate mit einer P-O Bindung hydrolytisch zu spalten. Die unterschiedlich gute Umsetzung der verschiedenen Substrate durch die beiden Enzyme konnte auf der Grundlage der Proteinstrukturen erklärt werden, wobei für die Paraoxonase postuliert wurde, dass der calciumbindende Aminosäurerest D269 als zu D229 analoges Nukleophil wirkt. Abschließend gelang es, zusätzlich eine Zusammensetzung für eine Enzympräparation zu finden, die eine Gefriertrocknung der DFPase mit nur geringem Verlust an enzymatischer Aktivität erlaubt. Ein solches lagerstabiles Enzympulver ist ein notwendiger Schritt hin zu einer praktischen Anwendung der DFPase für die technische Dekontamination von hochtoxischen Nervenkampfstoffen.
Human epidermal-type fatty acid binding protein (E-FABP) belongs to a family of intracellular non-enzymatic 14-15 kDa lipid binding proteins (LBP) that specifically bind and facilitate the transport of fatty acids, bile acids or retinoids. Their functions have also been associated with fatty acid signalling, cell growth, regulation and differentiation. As a contribution to better understand the structure-function relationship of this protein, the features of its solution structure determined by NMR spectroscopy are reported here. Both unlabeled and 15N-enriched samples of recombinant human E-FABP were used for multidimensional high-resolution NMR. The sequential backbone as well as side-chain resonance assignments have been completed. They are reported here and are also available at the BioMagResBank under the accession number BMRB-5083. The presence of six cysteines in the amino acid sequence of human E-FABP is highly unusual for LBPs. Four of the six cysteines are unique to the E-FABPs: C43, C47, C67 and C87. In the three-dimensional structure of E-FABP, two cysteine pairs (C67/C87 and C120/C127) were identified by X-ray analysis to be close enough to allow disulfide bridge formation, but a S-S bond was actually found only between C120 and C127 [Hohoff et al., 1999]. Since the exclusion of a disulfide bridge between C67 and C87 improved the Rfree factor of the crystallographic model, the existence of a covalent bond between these two side- chains was considered unlikely. This agrees with the NMR data, where SCH resonances have been observed for the cysteine residues C43, C67 (tentative assignment) and C87, thus excluding the possibility of a second disulfide bridge in solution. Based on the NOE and hydrogen exchange data, an ensemble of 20 energy-minimized conformers representing the solution structure of human E-FABP complexed with stearic acid has been obtained. The analysis of homonuclear 2D NOESY and 15N-edited 3D NOESY spectra led to a total of 2926 NOE-derived distance constraints. Furthermore, 37 slow- exchanging backbone amide protons were identified to be part of the hydrogen-bonding network in the >-sheet and subsequently converted into 74 additional distance constraints. Finally, the disulfide bridge between C120 and C127 was defined by 3 upper and 3 lower distance bounds. The structure calculation program DYANA regarded 998 of these constraints as irrelevant, i.e., they did not restrict the distance between two protons. Out of the remaining 2008 non-trivial distance constraints, 371 were intraresidual (i = j), 508 sequential (|i - j| = 1), 233 medium-range (1 < |i - j| £ 4), and 896 long-range (|i - j| > 4) NOEs. The protein mainly consists of 10 antiparallel -strands forming a >-barrel structure with a large internal cavity. The three-dimensional solution structure of human E-FABP has been determined with a root-mean-square deviation of 0.92 ± 0.11 Å and 1.46 ± 0.10 Å for the backbone and heavy atoms, respectively, excluding the terminal residues. Without the portal region (i.e., for residues 4-26, 40-56, 63-75 and 83-134; the portal region apparently represents the only opening in the protein surface through which the fatty acid ligand can enter and exit the internal binding cavity), an average backbone RMSD of 0.85 ± 0.10 Å was obtained, thus reflecting the higher conformational dispersion in the portal region. Superposition with the X-ray structure of human E-FABP (excluding the terminal residues) yielded average backbone RMSD values of 1.00 ± 0.07 Å for the entire residue range and 0.98 ± 0.06 Å without the portal region. This indicates a close similarity of the crystallographic and the solution structures. The structure coordinates have been deposited at the RCSB data bank under PDB ID code 1JJJ. The measurement of 15N relaxation experiments (T1, T2 and heteronuclear NOE) at three different fields (500, 600 and 800 MHz) provided information on the internal dynamics of the protein backbone. Nearly all non-terminal backbone amide groups showed order parameters S2 > 0.8, with an average value of 0.88 ± 0.04, suggesting a uniformly low backbone mobility in the nanosecond-to-picosecond time range throughout the entire protein sequence. Moreover, hydrogen/deuterium exchange experiments indicated a direct correlation between the stability of the hydrogen-bonding network in the >-sheet structure and the conformational exchange (Rex) in the millisecond-to-microsecond time range. The features of E-FABP backbone dynamics elaborated here differ from those of the phylogenetically closely related heart-type FABP and the more distantly related ileal lipid binding protein. The results on protein dynamics obtained in this work allow to conclude that the different LBP family members E-FABP, H-FABP and ILBP are characterized by varying stabilities in the protein backbone structures. Hydrogen/deuterium exchange experiments displayed significant differences in the chemical exchange with the solvent for the backbone amide protons belonging to the hydrogen-bonding network in the >-sheets. The >-barrel structure of H- FABP appears to be the most rigid, with exchange processes presumably slower than the millisecond-to-microsecond time range. ILBP, on the other hand, shows the fastest hydrogen exchange as well as a significant number of exchange parameters (Rex), implying a decreased stability in the >-sheet structure. E-FABP, finally, appears to rank between these two proteins based on the hydrogen/deuterium exchange, with Rex terms in the >-strands indicating millisecond-to-microsecond exchange processes like in ILBP.
Ziel dieser Arbeit war es, mit der Methode der NMR-Spektroskopie strukturelle und funktionelle Eigenschaften von Fettsäurebindungsproteinen zu untersuchen. NMR-Spektren von Proteinen mit hohem -Faltblattanteil, wie H-FABP, zeigen häufig eine große Dispersion mit einer typischen Verteilung tief- und hochfeldverschobener Signale. Es wurden 1D/2D 1H-NMR Spektren für den Wildtyp und mehrere Mutanten (F4E, F4S, F4S/W8E, W8E, F16E, F16S, K21I, F64S, L66G und E72S) des humanen H-FABP aufgenommen und so weit wie möglich zugeordnet. Auf diese Weise ließ sich bestimmen, ob die typische -Faßstruktur des Wildtyp bei den Mutanten noch intakt ist. Fast alle Mutanten wiesen eine Signalaufspaltung von 10,2 bis 0,4 ppm wie der Wildtyp auf, nur die W8- Mutanten W8E und F4S/W8E zeigen keine Struktur mehr. H-FABP zeigt in NMR-Spektren sogenannte Spinsystem-Heterogenitäten, die auf mehrere parallel existierende konformationelle Zustände zurückzuführen sind und im NMR- Zeitfenster ( < 200 ms) nicht untereinander austauschen. Diese Spinsystem-Heterogenitäten werden nicht direkt durch Liganden verursacht, da sie auch in delipidierten H-FABP-Spektren vorhanden sind. Noch sind sie abhängig von der Position der in räumlicher Nachbarschaft befindlichen Seitenkette des F57, da sie auch in den Spektren einer F57S-Mutante anwesend sind. Eine Relipidierung der H-FABP Proben mit unterschiedlichen Fettsäuren führte zu einer selektiven Bevorzugung einzelner Spinsysteme. So konnte gezeigt werden, daß die Ligandenbindung beim H-FABP nach einem ,,selected-fit" Mechanismus abläuft, bei dem je nach gebundenem Liganden (Palmitin-, Palmitolein-, Stearin- oder Ölsäure) unterschiedliche, schon vorher vorliegende Konformationen des Proteinrückgrates bevorzugt werden. Ein weiterer Teil der hier vorliegenden Arbeit war die Bestimmung der Lösungsstruktur des humanen B-FABP. Es wurde zur Strukturaufklärung die holo-Form des Proteins verwendetet, die ein Fettsäuregemisch endogener Fettsäuren enthielt. Durch den Einsatz mehrdimensionaler homonuklearer und 15N-editierter NMR-Experimente gelang es, nahezu alle 1H und 15N Resonanzen der Aminosäuren zuzuordnen. Lediglich für K37 konnten in den Spektren keine Signale gefunden werden. Nach einer automatisierten Zuordnung der aus den NOESY-Spektren gewonnenen Abstandsbeschränkungen wurde zur Verfeinerung der Lösungsstruktur des humanen B-FABP ein strukturgefilterter Iterationsprozeß durchlaufen. Mit 2490 Abstandsrandbedingungen zwischen Protonenpaaren sowie 106 stereospezifischen Zuordnungen wurden Torsionswinkeldynamikrechnungen mit abschließender Energieminimierung durchgeführt. Ein mittlerer globaler RMSD-Wert der Proteinrückgratatome von 0,85 ± 0,12 Å erfüllt die Ansprüche einer hochaufgelösten Struktur. Die Tertiärstruktur entspricht einem -Faß bzw. einer -Muschel. Sie besteht aus zehn antiparallelen -Faltblattsträngen und einer kurzen Helix-Turn-Helix Domäne. Die - Faltblattstränge bilden zwei nahezu orthogonale -Faltblätter von jeweils fünf Strängen. Die Lösungsstruktur ähnelt trotz teilweise niedriger Sequenzhomologie den bereits bekannten Strukturen der FABPs aus unterschiedlichsten Organismen. Eine sehr gute Übereinstimmung wurde im Vergleich mit der Lösungsstruktur des H-FABP beobachtet. Die enge Verwandtschaft beider zur Unterfamilie IV gehörenden Proteine äußert sich durch die hohe Sequenzhomologie (67%), die Ähnlichkeit der Konformation und Bindungsaffinität der Liganden, die helikale Konformation am N-Terminus (V1-F4) und ein vergleichbares Wasserstoffbrückennetzwerk innerhalb der Bindungstasche.
Ziel der Arbeit war es, die strukturellen Eigenschaften einer flüssigen Vorstufe einer Mullitkeramik mit Hilfe der NMR-Spektroskopie zu untersuchen. Die fertige Keramik soll später im Triebwerksbau in der Luft- und Raumfahrttechnik eingesetzt werden. Dazu wurden NMR-Messungen an den Kernen 1 H , 13 C, 27 Al und 29 Si durchgeführt. Als Experimente kamen dabei sowohl eindimensionale als auch zweidimensionale Methoden der NMR-Spektroskopie zum Einsatz. Zur Bildung von Strukturhypothesen wurden verschiedene Modellsysteme im Rechner simuliert. Eine besondere Herausforderung bei der Messung und Interpretation der Spektren stellte die hohe Viskosität der verwendeten Proben dar. Diese hohe Viskosität der Proben führte zu einer starken Verbreiterung der Resonanzlinien in den NMR-Spektren und zu den gezeigten Schwierigkeiten bei den Diffusionsmesungen. Die in der Literatur beschriebene strukturelle Vielfalt der Aluminiumalkoholate konnte nicht nur, wie in der Literatur bekannt, mit Hilfe von Aluminiumspektren, sondern auch über Protonen und Kohlenstoffspektren nachgewiesen und beschrieben werden. Insbesondere konnten Struktureinheiten jenseits der bekannten dimeren, trimeren und tertameren Strukturen der Aluminumalkoholate beschrieben werden. Das trimere Aluminiumsekundärbutylat steht mit einer dimeren Form im Gleichgewicht. Durch Temperaturerhöhung wird dieses Gleichgewicht in Richtung der dimeren Form verschoben. Im Falle der Verbindung [Al(OBu) 2n (iP rEtO) n ] konnte die direkte Nachbarschaft der 2-Butanol und iso-Propoxyethanolreste im Komplex über Signale im ROESY-Spektrum aufgezeigt werden. Es konnte eine sehr exakte und reproduzierbare Methode zur Bestimmung von Diffusionskonstanten in viskosen, gelartigen Lösungen mittels NMR-Messungen gefunden und erfolgreich auf die zu beobachtenden Systeme adaptiert und verwendet werden. Nur mit Hilfe dieser Methode war es möglich, den supramolekularen Charakter der Vorstufen einer Mullit-Keramik nachzuweisen. Insbesondere konnte gezeigt werden, daß das vorgestellte System eine hochgeordnete Struktur aufweist, und daß die einzelnen molekularen Einheiten über nicht kovalente Wechselwirkungen miteinander verbunden sind.
Der Ein-Elektron Transporter Adrenodoxin spielt in der Steroidhormonbiosynthese eine entscheidende Rolle. Bislang konnte der Elektronentransportmechanismus zwischen der Adrenodoxin-Reduktase und dem Cytochrom P450 mittels Adrenodoxin nicht eindeutig nachgewiesen werden. Um die molekularen Wechselwirkungen besser verstehen zu können wurden in der vorliegenden Arbeit strukturelle Untersuchungen am Rinderadrenodoxin durchgeführt. Nachdem es bereits 1998 gelang die Struktur des oxidierten Zustands des Adrenodoxins aufzuklären [Müller et al. 1998], sollte die Struktur des reduzierten Zustands Aufschluss über mögliche redoxbedingte konformationelle Änderungen geben. Die Strukturaufklärung mittels NMR erfordert hohe Expressionsausbeuten und effektive Aufreinigungsstrategien des rekombinant hergestellten Proteins. Deshalb wurde zunächst eine Steigerung der Expression von löslichem Adrenodoxin in E.coli angestrebt. In Minimalmedium lieferte die Expression unter Zusatz von 2,5g Glycerin und 1g Glucose optimale Ergebnisse. So konnte nach Optimierung der Aufreinigungsabfolge aus einem Liter M9-Medium bis zu 50 mg homogenes Protein isoliert werden. Nach Optimierung der Expressionsbedingungen und der Aufreinigungsstrategie konnte das Adrenodoxin mit den NMR aktiven Isotopen 15N sowie 13C angereichert werden. Die Reduktion des Adrenodoxins erfolgte durch Zusatz von Natriumdithionit unter strikt anaeroben Bedingungen. Die strukturelle Untersuchung mittels NMR setzt eine Zuordnung der Proteinresonanzen voraus. Diese erfolgte unter Verwendung verschiedener Tripleresonanzexperimente. Eine Zuordnung war aufgrund des stark ausgeprägten Paramagnetismus nur für solche Reste möglich, die sich mindestens 8 Å vom [2Fe-2S]-Cluster des Adrenodoxins entfernt befinden. Trotzdem konnten wichtige Regionen, die sich außerhalb des Einflussbereichs des [2Fe-2S]- Clusters befinden, zugeordnet und mit dem oxidierten Zustand verglichen werden. Aus den 15N-NOESY-HSQC und 13C-NOESY-HSQC-Spektren wurden für den reduzierten Zustand unter Zuhilfenahme des Programms NMR2st 1300 effektiv abstandsbeschränkende NOESignale eindeutig zugeordnet. Nach Minimierung der Zielfunktion wurden im letzten Schritt 50 Strukturen mit dem Strukturkalkulationsprogramm DYANA berechnet. Die 20 Strukturen mit den besten Targetfunkionen wurden als Strukturensemble dargestellt. Für das Proteinrückrat beträgt der RMSD 2,34 Å. Anhand der chemischen Verschiebungsänderungen konnten erste Unterschiede zwischen oxidierten und reduzierten Zustand des Adrenodoxins festgestellt werden. Besonders markant sind diese Veränderungen im Bereich des C-Terminus und des Loops 80-86. Änderungen konnten auch im "Chemical Shift Index" und beim Vergleich der NOE-Konnektivitäten beider Redoxzustände beobachtet werden. Gerade für die Aminosäurereste Asp76 und Asp79, die für die Wechselwirkung zu den Redoxpartnern essentiell sind, konnten Veränderungen im Aufspaltungsmuster der "NOE-Pattern" nachgewiesen werden, was auf konformationelle Änderungen im Bereich der Wechselwirkungsdomäne hindeutet. Der Vergleich der beiden Tertiärstrukturen lieferte weitere Indizien dafür, dass der C-Terminus redoxbedingte konformationelle Änderungen erfährt. Während des Erstellens dieser Arbeit konnte eine US-amerikanische Gruppe durch Zufall die Existenz eines Adrenodoxin (oxidiert) Dimers bei physiologisch relevanten Konzentrationen nachweisen [Pikuleva et al. 2000]. Bei der Dimerisierung spielt der C-Terminus eine entscheidende Rolle. Zwei intermolekulare Wasserstoffbrücken bilden sich zwischen CTerminus und Protein des jeweils anderen Partners aus. Redoxbedingte konformationelle Änderungen im Bereich des C-Terminus sollten die Auflösung des Dimers begünstigen. Um diese Vermutung zu bestätigen wurden Cross-Linking Experimente mit dem reduzierten und oxidierten Zustand des Adrenodoxins durchgeführt. Die Ergebnisse bestätigten die Annahme, dass sich das Adrenodoxin Dimer nach Reduktion auflöst. Außerdem konnte anhand der voll funktionsfähigen C-terminal verkürzten Mutante Adx(4-108) die tragende Rolle des CTerminus bei der Dimerbildung bewiesen werden. Aus den experimentell erhaltenen Daten wurde ein neuer Elektronentransportmechanismus postuliert, der sowohl Adrenodoxin Dimere als auch Adrenodoxin Monomere als Elektronentransporter annimmt [Beilke et al. 2002]. Die streng kontrollierte Steroidhormonbiosynthese wird durch den Einsatz von Adrenodoxin Dimeren beschleunigt und durch die redoxbedingte Auflösung der Dimere optimert. Die redoxbedingte Auflösung eines Dimers ist in der Biochemie einzigartig und kann zum Verständnis molekularer Wechselwirkungen beitragen. Für die gesamte Gruppe der vertebraten Ferredoxine sind aufgrund der Struktur- und Sequenzhomologie ähnliche Ergebnisse zu erwarten. Im zweiten Teil der Arbeit sollte die Ferredoxin-NADP -Reduktase (FNR) für strukturelle Untersuchungen mittels NMR zugänglich gemacht werden. Durch Verwendung von bakteriellen Expressionssystemen, insbesondere dem pQE30-Expressionssystem, konnte der Anteil an löslichem Protein im Vergleich zum Ursprungssystem um den Faktor 12 erhöht werden. Dabei führten möglichst niedrige Expressionstemperaturen und IPTG Konzentrationen zu den höchsten Proteinausbeuten. Ein verbessertes Isolationsverfahren wurde etabliert und ermöglicht die Darstellung von bis zu 90 mg FNR aus einem Liter LB-Medium. Eine Verlängerung der Expressionsdauer, hervorgerufen durch das Wachstum in M9-Medium und in D2O, verringerte den Anteil an vollständig intaktem Protein, weshalb auf eine kostspielige Proteinpräparation in dreifach angereicherten Minimalmedium verzichtet wurde.
Bestimmung der Lösungsstruktur von Rinder-Adrenodoxin durch Auswertung hochaufgelöster NMR-Spektren
(2001)
Ziel dieser Arbeit war die Bestimmung der Strukturen von RinderAdrenodoxin im oxidierten und im reduzierten Zustand. Die rekombinante Form dieses Elektronentransportproteins aus 128 Aminosäuren und dem [2Fe2S]EisenSchwefel Cluster mit einer Molmasse von 14,4 kDa wurde in E. coli exprimiert. Die hergestellten Proben wurden entweder mit 15 N oder 15 N, 13 Cangereichert, was den Einsatz einer breiten Palette heteronuklearer NMRExperimente ermöglichte. Nach der Zuordnung individueller Werte der chemischen Verschiebung für die NMRaktiven Kerne konnten durch 15 N und 13 Ceditierte dreidimensionale NOESYExperimente 1800 strukturrelevante Interprotonenabstände qualitativ bestimmt werden. Insgesamt konnten 70 Prozent der Resonanzen der NMR aktiven Kerne der jeweiligen Proteinzustände zugeordnet werden. Bedingt durch den paramagnetischen Einfluß des EisenSchwefelClusters waren durch enorme Linienbreiten und sehr schnelle T 1 Relaxationszeiten 30 Prozent der zu erwartenden Signale des Proteins nicht detektierbar. Zusätzlich konnten durch die Anwendung eines ct( 15 N, 1 H)HSQC Experiments weitere 18 Abstandsparameter von Amidprotonen im Einflußbereich des EisenSchwefelCluster, die aber gerade noch detektiert werden konnten, zu dem jeweiligen näheren Eisenkern gewonnen werden. Für die Strukturrechnung mußte der EisenSchwefelCluster künstlich mit der Aminosäure C46 verbunden werden, da das Programm DYANA keine Eisen Atome erkennt. Anschließend wurde dieser 'künstliche' Aminosäurerest neu benannt (CYSC). Diese neue Aminosäure wurde dann nach Energieminimierung in die DYANA Bausteinbibliothek eingebracht. Es zeigte sich, daß der EisenSchwefelCluster die Struktur wie eine 'Klammer' zusammenhält. Ohne die Einbindung des EisenSchwefelCluster kommt es nach der Strukturrechnung zu keiner Struktur, sondern zu einem ungeordneten 'Knäuel'. Bei der Interpretation der Strukturensembles wurde deutlich, daß Rinder Adrenodoxin ein relativ rigides Protein ist. Scheinbar hohe flexible Bereiche im Protein mußten korreliert werden mit den Bereichen des Proteins, die aufgrund von fehlenden Zuordnungen nicht gut genug definiert werden konnten. Es ist somit nicht definitiv zu bestimmen, woher diese Abweichung in den Strukturen herrührt. Allerdings wurde bei der Betrachtung von Aminosäureresten in der Wechselwirkungsdomäne deutlich, daß an den Positionen der Aminosäurereste D72, E73, D76 und D79 es zu Bewegungen beim Übergang aus dem oxidierten in den reduzierten Zustand kommen muß, da speziell die Aminosäurereste D72 und E73 ihre Position dramatisch verändern. Entsprechende Änderungen der Werte der X1 Diederwinkeleinstellungen wurden beobachtet und lokale Ramachandran Diagramme ergeben sich aus den Rechnungen. Weiterhin konnte gezeigt werden, daß im reduzierten Zustand S112 mit einer T 1 Relaxationszeit von 62,5 ms im Einflußbereich des EisenSchwefelCluster liegen könnte. Ein Hinweis darauf ist auch die Änderung der Geometrie des C Terminus, da im oxidierten Zustand dieser gerade vom Proteinkörper wegweist, während im reduzierten Zustand das Cterminale Ende sich in Richtung Proteinkörper biegt. Bisher wurde angenommen, daß dem CTerminus keine funktionelle Rolle zukommt. Die Struktur des Adrenodoxins wurde nach der Distanzgeometrierechnung unter Berücksichtigung aller experimenteller Daten erhalten. RinderAdrenodoxin ist klassifiziert als ein (alpha beta)Protein welches 22% betaFaltblatt, 17% alphaHelix und 6% 3 10 Helix besitzt. Für den oxidierten und den reduzierten Zustand konnten jeweils 5 betaFaltblätter und 4 Helices identifiziert werden. Beim oxidierten Zustand erstrecken sich die 5 betaFaltblätter auf die Aminosäurereste 812, 1822, 5759, 8889 und 103106, während beim reduzierten Adrenodoxin sie sich auf die Aminosäurereste 612, 2124, 5758, 8889 und 103106 erstrecken. Die 4 identifizierten Helices erstrecken sich im oxidierten Zustand auf die Reste 2935, 6466, 7229 und 98100. Die 4 Helices für den reduzierten Zustand werden durch die Reste 3336, 6164, 7275 und 98100 charakterisiert. Der EisenSchwefelCluster ist kovalent an die vier CysteinReste 46, 52, 55 und 92 gebunden. Mit einem mittleren globalen RMSDWert der Rückgratatome zur Mittelstruktur für das oxidierte Adrenodoxin von 0,94 Å und für das reduzierte Andrenodoxin von 1,53 Å sind die Anforderungen an relativ gut aufgelöste Strukturen erfüllt. Die hier bestimmten Strukturen entsprechen in ihrer Güte einer Kristallstruktur mit der Auflösung von 2.0 Å (Programm PROCHECK) für den reduzierten und den oxidierten Zustand von RinderAdrenodoxin und sind somit zufriedenstellend aufgelöst.
Die Ermittlung von Proteinstukturen mittels NMR-Spektroskopie ist ein komplexer Prozess, wobei die Resonanzfrequenzen und die Signalintensitäten den Atomen des Proteins zugeordnet werden. Zur Bestimmung der räumlichen Proteinstruktur sind folgende Schritte erforderlich: die Präparation der Probe und 15N/13C Isotopenanreicherung, Durchführung der NMR Experimente, Prozessierung der Spektren, Bestimmung der Signalresonanzen ('Peak-picking'), Zuordnung der chemischen Verschiebungen, Zuordnung der NOESY-Spektren und das Sammeln von konformationellen Strukturparametern, Strukturrechnung und Strukturverfeinerung. Aktuelle Methoden zur automatischen Strukturrechnung nutzen eine Reihe von Computeralgorithmen, welche Zuordnungen der NOESY-Spektren und die Strukturrechnung durch einen iterativen Prozess verbinden. Obwohl neue Arten von Strukturparametern wie dipolare Kopplungen, Orientierungsinformationen aus kreuzkorrelierten Relaxationsraten oder Strukturinformationen, die sich in Gegenwart paramagnetischer Zentren in Proteinen ergeben, wichtige Neuerungen für die Proteinstrukturrechnung darstellen, sind die Abstandsinformationen aus NOESY-Spektren weiterhin die wichtigste Basis für die NMR-Strukturbestimmung. Der hohe zeitliche Aufwand des 'peak-picking' in NOESY-Spektren ist hauptsächlich bedingt durch spektrale Überlagerung, Rauschsignale und Artefakte in NOESY-Spektren. Daher werden für das effizientere automatische 'Peak-picking' zuverlässige Filter benötigt, um die relevanten Signale auszuwählen. In der vorliegenden Arbeit wird ein neuer Algorithmus für die automatische Proteinstrukturrechnung beschrieben, der automatisches 'Peak-picking' von NOESY-Spektren beinhaltet, die mit Hilfe von Wavelets entrauscht wurden. Der kritische Punkt dieses Algorithmus ist die Erzeugung inkrementeller Peaklisten aus NOESY-Spektren, die mit verschiedenen auf Wavelets basierenden Entrauschungsprozeduren prozessiert wurden. Mit Hilfe entrauschter NOESY-Spektren erhält man Signallisten mit verschiedenen Konfidenzbereichen, die in unterschiedlichen Schritten der kombinierten NOE-Zuordnung/Strukturrechnung eingesetzt werden. Das erste Strukturmodell beruht auf stark entrauschten Spektren, die die konservativste Signalliste mit als weitgehend sicher anzunehmenden Signalen ergeben. In späteren Stadien werden Signallisten aus weniger stark entrauschten Spektren mit einer größeren Anzahl von Signalen verwendet. Die Auswirkung der verschiedenen Entrauschungsprozeduren auf Vollständigkeit und Richtigkeit der NOESY Peaklisten wurde im Detail untersucht. Durch die Kombination von Wavelet-Entrauschung mit einem neuen Algorithmus zur Integration der Signale in Verbindung mit zusätzlichen Filtern, die die Konsistenz der Peakliste prüfen ('Network-anchoring' der Spinsysteme und Symmetrisierung der Peakliste), wird eine schnelle Konvergenz der automatischen Strukturrechnung erreicht. Der neue Algorithmus wurde in ARIA integriert, einem weit verbreiteten Computerprogramm für die automatische NOE-Zuordnung und Strukturrechnung. Der Algorithmus wurde an der Monomereinheit der Polysulfid-Schwefel-Transferase (Sud) aus Wolinella succinogenes verifiziert, deren hochaufgelöste Lösungsstruktur vorher auf konventionelle Weise bestimmt wurde. Neben der Möglichkeit zur Bestimmung von Proteinlösungsstrukturen bietet sich die NMR-Spektroskopie auch als wirkungsvolles Werkzeug zur Untersuchung von Protein-Ligand- und Protein-Protein-Wechselwirkungen an. Sowohl NMR Spektren von isotopenmarkierten Proteinen, als auch die Spektren von Liganden können für das 'Screening' nach Inhibitoren benutzt werden. Im ersten Fall wird die Sensitivität der 1H- und 15N-chemischen Verschiebungen des Proteinrückgrats auf kleine geometrische oder elektrostatische Veränderungen bei der Ligandbindung als Indikator benutzt. Als 'Screening'-Verfahren, bei denen Ligandensignale beobachtet werden, stehen verschiedene Methoden zur Verfügung: Transfer-NOEs, Sättigungstransferdifferenzexperimente (STD, 'saturation transfer difference'), ePHOGSY, diffusionseditierte und NOE-basierende Methoden. Die meisten dieser Techniken können zum rationalen Design von inhibitorischen Verbindungen verwendet werden. Für die Evaluierung von Untersuchungen mit einer großen Anzahl von Inhibitoren werden effiziente Verfahren zur Mustererkennung wie etwa die PCA ('Principal Component Analysis') verwendet. Sie eignet sich zur Visualisierung von Ähnlichkeiten bzw. Unterschieden von Spektren, die mit verschiedenen Inhibitoren aufgenommen wurden. Die experimentellen Daten werden zuvor mit einer Serie von Filtern bearbeitet, die u.a. Artefakte reduzieren, die auf nur kleinen Änderungen der chemischen Verschiebungen beruhen. Der am weitesten verbreitete Filter ist das sogenannte 'bucketing', bei welchem benachbarte Punkte zu einen 'bucket' aufsummiert werden. Um typische Nachteile der 'bucketing'-Prozedur zu vermeiden, wurde in der vorliegenden Arbeit der Effekt der Wavelet-Entrauschung zur Vorbereitung der NMR-Daten für PCA am Beispiel vorhandener Serien von HSQC-Spektren von Proteinen mit verschiedenen Liganden untersucht. Die Kombination von Wavelet-Entrauschung und PCA ist am effizientesten, wenn PCA direkt auf die Wavelet-Koeffizienten angewandt wird. Durch die Abgrenzung ('thresholding') der Wavelet-Koeffizienten in einer Multiskalenanalyse wird eine komprimierte Darstellung der Daten erreicht, welche Rauschartefakte minimiert. Die Kompression ist anders als beim 'bucketing' keine 'blinde' Kompression, sondern an die Eigenschaften der Daten angepasst. Der neue Algorithmus kombiniert die Vorteile einer Datenrepresentation im Wavelet-Raum mit einer Datenvisualisierung durch PCA. In der vorliegenden Arbeit wird gezeigt, dass PCA im Wavelet- Raum ein optimiertes 'clustering' erlaubt und dabei typische Artefakte eliminiert werden. Darüberhinaus beschreibt die vorliegende Arbeit eine de novo Strukturbestimmung der periplasmatischen Polysulfid-Schwefel-Transferase (Sud) aus dem anaeroben gram-negativen Bakterium Wolinella succinogenes. Das Sud-Protein ist ein polysulfidbindendes und transferierendes Enzym, das bei niedriger Polysulfidkonzentration eine schnelle Polysulfid-Schwefel-Reduktion katalysiert. Sud ist ein 30 kDa schweres Homodimer, welches keine prosthetischen Gruppen oder schwere Metallionen enthält. Jedes Monomer enhält ein Cystein, welches kovalent bis zu zehn Polysulfid-Schwefel (Sn 2-) Ionen bindet. Es wird vermutet, dass Sud die Polysulfidkette auf ein katalytischen Molybdän-Ion transferiert, welches sich im aktiven Zentrum des membranständigen Enzyms Polysulfid-Reduktase (Psr) auf dessen dem Periplasma zugewandten Seite befindet. Dabei wird eine reduktive Spaltung der Kette katalysiert. Die Lösungsstruktur des Homodimeres Sud wurde mit Hilfe heteronuklearer, mehrdimensionaler NMR-Techniken bestimmt. Die Struktur beruht auf von NOESY-Spektren abgeleiteten Distanzbeschränkungen, Rückgratwasserstoffbindungen und Torsionswinkeln, sowie auf residuellen dipolaren Kopplungen, die für die Verfeinerung der Struktur und für die relative Orientierung der Monomereinheiten wichtig waren. In den NMR Spektren der Homodimere haben alle symmetrieverwandte Kerne äquivalente magnetische Umgebungen, weshalb ihre chemischen Verschiebungen entartet sind. Die symmetrische Entartung vereinfacht das Problem der Resonanzzuordnung, da nur die Hälfte der Kerne zugeordnet werden müssen. Die NOESY-Zuordnung und die Strukturrechnung werden dadurch erschwert, dass es nicht möglich ist, zwischen den Intra-Monomer-, Inter-Monomer- und Co-Monomer- (gemischten) NOESY-Signalen zu unterscheiden. Um das Problem der Symmetrie-Entartung der NOESY-Daten zu lösen, stehen zwei Möglichkeiten zur Verfügung: (I) asymmetrische Markierungs-Experimente, um die intra- von den intermolekularen NOESY-Signalen zu unterscheiden, (II) spezielle Methoden der Strukturrechnung, die mit mehrdeutigen Distanzbeschränkungen arbeiten können. Die in dieser Arbeit vorgestellte Struktur wurde mit Hilfe der Symmetrie-ADR- ('Ambigous Distance Restraints') Methode in Kombination mit Daten von asymetrisch isotopenmarkierten Dimeren berechnet. Die Koordinaten des Sud-Dimers zusammen mit den NMR-basierten Strukturdaten wur- den in der RCSB-Proteindatenbank unter der PDB-Nummer 1QXN abgelegt. Das Sud-Protein zeigt nur wenig Homologie zur Primärsequenz anderer Proteine mit ähnlicher Funktion und bekannter dreidimensionaler Struktur. Bekannte Proteine sind die Schwefeltransferase oder das Rhodanese-Enzym, welche beide den Transfer von einem Schwefelatom eines passenden Donors auf den nukleophilen Akzeptor (z.B von Thiosulfat auf Cyanid) katalysieren. Die dreidimensionalen Strukturen dieser Proteine zeigen eine typische a=b Topologie und haben eine ähnliche Umgebung im aktiven Zentrum bezüglich der Konformation des Proteinrückgrades. Die Schleife im aktiven Zentrum umgibt das katalytische Cystein, welches in allen Rhodanese-Enzymen vorhanden ist, und scheint im Sud-Protein flexibel zu sein (fehlende Resonanzzuordnung der Aminosäuren 89-94). Das Polysulfidende ragt aus einer positiv geladenen Bindungstasche heraus (Reste: R46, R67, K90, R94), wo Sud wahrscheinlich in Kontakt mit der Polysulfidreduktase tritt. Das strukturelle Ergebnis wurde durch Mutageneseexperimente bestätigt. In diesen Experimenten konnte gezeigt werden, dass alle Aminosäurereste im aktiven Zentrum essentiell für die Schwefeltransferase-Aktivität des Sud-Proteins sind. Die Substratbindung wurde früher durch den Vergleich von [15N,1H]-TROSY-HSQC-Spektren des Sud-Proteins in An- und Abwesenheit des Polysulfidliganden untersucht. Bei der Substratbindung scheint sich die lokale Geometrie der Polysulfidbindungsstelle und der Dimerschnittstelle zu verändern. Die konformationellen Änderungen und die langsame Dynamik, hervorgerufen durch die Ligandbindung können die weitere Polysulfid-Schwefel-Aktivität auslösen. Ein zweites Polysulfid-Schwefeltransferaseprotein (Str, 40 kDa) mit einer fünffach höheren nativen Konzentration im Vergleich zu Sud wurde im Bakterienperiplasma von Wolinella succinogenes entdeckt. Es wird angenommen, dass beide Protein einen Polysulfid-Schwefel-Komplex bilden, wobei Str wässriges Polysulfid sammelt und an Sud abgibt, welches den Schwefeltransfer zum katalytischen Molybdän-Ion auf das aktive Zentrum der dem Periplasma zugewandten Seite der Polysulfidreduktase durchführt. Änderungen chemischer Verschiebungen in [15N,1H]-TROSY-HSQC-Spektren zeigen, dass ein Polysulfid-Schwefeltransfer zwischen Str und Sud stattfindet. Eine mögliche Protein-Protein-Wechselwirkungsfläche konnte bestimmt werden. In der Abwesenheit des Polysulfidsubstrates wurden keine Wechselwirkungen zwischen Sud und Str beobachtet, was die Vermutung bestätigt, dass beide Proteine nur dann miteinander wechselwirken und den Polysulfid-Schwefeltransfer ermöglichen, wenn als treibende Kraft Polysulfid präsent ist.
Bei der Expression einer Phospholipase A2 aus Soja in Aspergillus oryzae (Probe PL-1007), Trichoderma viride (Probe PL-1008) und Pichia pastoris (Probe PL-1035) wurde neben der erwarteten Phospholipaseaktivität auch eine deutliche Lysophospholipaseaktivität beobachtet. Eine Trennung dieser Aktivitäten war nur mittels einer Free-Flow-Elektrophorese kurzzeitig möglich, bevor sich in jeder Fraktion wieder das ursprüngliche Aktivitätsverhältnis zwischen Phospholipase und Lysophospholipase einstellte. Zur näheren Untersuchung und Charakterisierung dieser Enzymsysteme wurden für einen gaschromatischen Aktivitätstest hochspezifisch substituierte Substrate eingesetzt, die eine parallele Bestimmung der Phospholipase- und Lysophospholipaseaktivitäten ermöglichten. So konnte gezeigt werden, dass nicht in allen Organismen eine Phospholipase A2 exprimiert wird, sondern es in Pichia pastoris (Probe PL-1035) zur Expression einer Phospholipase A1 kommt. Im Falle der Probe PL-1007 konnte die beobachtete Lysophospholipaseaktivität durch Versuche mit veränderten Substratverhältnissen zwischen Lysophospholipase- und Phospholipasesubstrat einem separaten aktiven Zentrum zugeschrieben werden. Durch elektrophoretische Trennungsversuche konnte gezeigt werden, dass es sich nicht nur um separate aktive Zentren, sondern um verschiedene Enzyme handelt. Die Tatsache, dass sich das Aktivitätsverhältnis nach der Trennung selbständig wieder einstellt, lässt das Vorliegen von Faltungsisomeren vermuten. Bezüglich ihrer katalytischen Eigenschaften weisen alle drei Enzymsysteme eine große Ähnlichkeit auf. Sowohl die Phospholipase- wie auch die Lysophospholipaseaktivitäten sind erst ab einer Reaktionstemperatur von über 70°C nicht mehr nachweisbar. Das Aktivitätsmaximum wurde in allen drei Fallen zwischen 45°C und 55°C beobachtet. Auch die pH-Bereiche in denen eine maximale enzymatische Aktivität zu beobachten ist, liegen mit pH 3,6 (PL-1007) bis pH 4,3 (PL-1035) für die Phospholipaseaktivitäten und pH 4,3 (PL-1007 / PL-1008) und pH 4,6 (PL-1035) in ähnlichen Bereichen. Die Aktivität der untersuchten Enzymsysteme zeigt jedoch im beobachteten pH-Bereich von pH 3 bis pH 5 nur eine geringe pH-Abhängigkeit. Deutlichere Unterschiede konnten jedoch für die Substratspezifitäten nachgewiesen werden. Die Phospholipasen A2 zeigen tendenziell höhere Umsätze bei Substraten mit C 12:0 bis C 16:0 Fettsäureresten, während die Phospholipase A1 aus Probe PL-1035 maximale Umsätze bei C 18:0 Fettsäureresten aufweist. Bei allen Enzymproben jedoch bleiben die Umsatzraten der ein- bis mehrfach ungesättigten Fettsäurereste hinter denen der gesättigten zurück. Lediglich bei der Probe PL-1007 sind die Aktivitätsunterschiede zwischen gesättigten und ungesättigten Substraten nicht signifikant. Neben der Untersuchung der katalytischen Eigenschaften konnte im Rahmen dieser Arbeit die in der Literatur mehrfach aufgestellte These der Hemmung der Phospholipaseaktivität in Gegenwart von Uteroglobin bestätigt werden. Ein Hemmungsmechanismus aufgrund direkter Wechselwirkung der Enzyme konnte ausgeschlossen werden. Vielmehr konnte zweifelsfrei bewiesen werden, dass der Hemmungsmechanismus bei den hier eingesetzten Enzymsystemen auf einer Bindung des für die Phospholipasereaktion essentiellen Ca2+ durch das Uteroglobin zurückzuführen ist.
Ziel dieser Arbeit war es, mit den Methoden der NMR-Spektroskopie die elektrostatischen Eigenschaften der Xylanase aus Bacillus agaradhaerens in Abhängigkeit vom pH-Wert zu charakterisieren. Für die vorliegende Arbeit wurde das Strukturgen der Xylanase in verschiedene Expressionsvektoren des pET-Systems kloniert, wobei das Enzym auf 207 Aminosäuren verkürzt wurde. Diese Länge entspricht der publizierten Kristallstrukur von Sabini et al. (1999). Die Expression in pET3a und die Aufreinigung des Genproduktes mit Ionenaustauschchromatographie wurde optimiert, sodass homogenes Protein mit guten Ausbeuten erhalten werden konnte. Die Xylanase wurde mit den Isotopen 15N und 13C markiert und heteronukleare, mehrdimensionale NMR-Spektren wurden für die Zuordnung der Resonanzen des Proteins aufgenommen. Die chemischen Verschiebungswerte des Proteinrückgrats und die der aliphatischen Seitenketten wurden vollständig zugeordnet. Als eine weitere Voraussetzung für eine pH-Titration wurden sequenzspezifisch die Resonanzen der Histidin- bzw. Carboxylatgruppen bestimmt. Die Lösungsstruktur der Xylanase wurde anhand mehrerer automatisierter Prozeduren errechnet, um die Zuordnung der Resonanzen zu validieren. Alle Strukturelemente, die bereits aus der Kristallstruktur bekannt sind, wurden korrekt wiedergegeben. Da die Lösungsstruktur mit einem backbone RMSD-Wert von 2.44 ± 0.29 Å hoch 2 als vorläufig zu betrachten war, wurde im Folgenden ausschließlich die Kristallstruktur zur Bewertung der Distanzbeziehungen verwendet. In Abwesenheit des Substrats wurden die pH-abhängigen Resonanzen der Histidin- und Carboxylatgruppen sowie der Amide des Proteinrückgrats gemessen. Die Auswertung ergab 220 Titrationsprofile der 15N- and 13C-Resonanzen in einem pH-Bereich von 3.2 bis 8.7. Durch nichtlineare Regression der gemessenen Werte an eine modifizierte Henderson-Hasselbalch Gleichung wurden die pK S-Werte der Seitenketten von Aspartat und Glutamat, sowie für das C-terminale Carboxylat und für die Histidingruppen bestimmt. Die Titrationskurven der katalytischen Dyade zeigten eine ausgeprägte gegenseitige Wechselwirkung. Die korrespondierenden pK S-Werte stimmen gut mit dem vorhergesagten enzymatischen Mechanismus überein (Sabini et al., 1999) und belegen, dass das Nukleophil Glu94 bei einem neutralem pH-Wert deprotoniert ist, während die Bronsted Säure/Base GIu184 zu ca. 30% protoniert ist. Um die Untersuchungen zur katalytischen Aktivität zu vervollständigen, wurden alle pH-abhängigen [15N]-Resonanzen der Amide des Proteinrückgrats wie auch die der lndolstickstoffe in der Substratbindungsspalte analysiert. Die Wendepunkte konnten dem Titrationsverhalten der benachbarten sauren Aminosäure-Seitenketten zugeordnet werden. Aber es erscheint sehr wahrscheinlich, dass ein wesentlich komplexerer Ablauf stattfindet. Die asymmetrische Wechselwirkung von Trptophan-Seitenketten bezüglich der katalytischen Dyade wie auch das wechselnde Monotonieverhalten der Titrationskurven deuten auf eine simultane Reorganisation der Seitenkettenkonformere bei pH ungefähr gleich 6 und/oder auf eine Änderung des Wasserstoffbrückennetzwerkes innerhalb der Bindungsspalte.
Funktionelle und strukturelle Untersuchungen an der Diisopropylfluorophosphatase aus L.vulgaris
(2003)
Das Ziel dieser Arbeit war, mittels gezielter Mutagenese den postulierten Reaktionsmechanismus der durch die DFPase katalysierten Reaktion zu untermauern und gegebenenfalls weitere an der Hydrolysereaktion beteiligte Reste zu identifizieren. Zu diesem Zweck wurde zunächst die Rolle der Ca-1 Liganden untersucht. Hierbei ergab sich, dass sowohl die Nettoladung an der Ca-1-Bindungsstelle als auch die Positionen der Ladungen für den Erhalt der katalytischen Aktivität des Enzyms von Bedeutung sind. Die Einführung einer dritten negativen Ladung in der Bindungsstelle führte zum nahezu kompletten Aktivitätsverlust, was, wie die kristallographischen Untersuchungen der N175D-Mutante ergaben, hauptsächlich auf die veränderte Elektrostatik in der Bindungsstelle zurückzuführen ist. Durch eine Reihe von Mutationen des für die katalytische Aktivität als essentiell beschriebenen His287-Restes konnte gezeigt werden, dass auch andere, hydrophobe Reste an dieser Position die Katalyse ermöglichen. Die Fähigkeit dieser Reste, Wasserstoffbrücken mit Trp244 auszubilden, könnte für die Katalyse zwar förderlich sein, ist aber nicht unbedingt notwendig. Außerdem scheint die vom His287 vermutlich durchgeführte Aktivierung des hydrolytischen Wassermoleküls ebenfalls nicht essentiell für die enzymatische DFP-Spaltung zu sein. Anhand der in dieser Arbeit durchgeführten Untersuchungen konnte der von Scharff et al. (2001a) vorgeschlagene Reaktionsmechanismus zumindest teilweise bestätigt werden. Gleichzeitig konnte jedoch gezeigt werden, dass die katalytische Reaktion auch ohne einige der in der Wildtyp-DFPase gegebenen Voraussetzungen - wie das Bestehen einer Wasserstoffbrücke zwischen His287 und Trp244, sowie eine durch das His287 durchgeführte Wasseraktivierung - ablaufen kann. Es konnte außerdem mittels gezielter Mutagenese gezeigt werden, dass die hydrophoben Anteile in der gesamten Substratbindungstasche und speziell an der Position 173 für die Substratbindung und -umsetzung eine wichtige Rolle spielen. Wie bereits bekannt, ist das Ca-2 Ion für die Stabilität der DFPase von großer Bedeutung. Mit Hilfe einer Mutation an der Ca-2-Bindungsstelle konnte gezeigt werden, dass der Verlust einer negativen Ladung die Koordination des Ca-2 Ions offensichtlich abschwächt. Die Position des Calciumions konnte in der D232S-Mutante nicht eindeutig definiert werden, obwohl die Struktur und die Aktivität des Enzyms intakt geblieben sind. Außerdem wurden, bedingt durch die Einführung dieser Mutation, geringe strukturelle Veränderungen im aktiven Zentrum des Enzyms hervorgerufen, was auf Wechselwirkungen zwischen den beiden Calciumbindungsstellen hindeutet. Dies könnte auf das ausgedehnte Wasserstoffbrückennetzwek im Inneren des die DFPase durchspannenden Tunnels zurückzuführen sein. Die Untersuchung verschiedener anderer, im zentralen Tunnel der DFPase gelegener Reste deutet ebenfalls auf die Existenz eines solchen Wasserstoffbrückennetzwerks hin, welches für die Aufrechterhaltung der katalytischen Funktion sowie der Strukturstabilität der DFPase von erheblicher Bedeutung zu sein scheint. Die für die Reste His287, Glu37, Ser271 postulierte Beteiligung an der katalytischen Reaktion konnte durch die Bestimmung der kinetischen Parameter dieser Mutanten untermauert werden. Die H287N-Mutante besitzt sehr niedrige KM- und Vmax-Werte, was die Bedeutung dieses Restes für die Katalyse unterstreicht. Kinetische Messungen wurden im Rahmen dieser Arbeit zum ersten Mal mit dem rekombinanten Enzym und außerdem auch den DFPase-Substraten Sarin, Soman und Tabun durchgeführt. Die Ergebnisse dieser Messungen haben gezeigt, dass die DFPase auch zur Dekontamination dieser letztgenannten Organophosphate effizient eingesetzt werden kann. Schließlich konnte mittels Gleichgewichtsdialyse das niederaffin gebundene Calciumion der DFPase gegen Co2+ und Tm3+ ausgetauscht werden. Da die Verwendung dieser Metalle für NMR-spektroskopische Messungen von "residual dipolar couplings" gedacht war, wurden 15N-angereicherte Proben des derivatisierten Proteins hergestellt, welche die für die NMR-Experimente notwendige Stabilität besassen.