Refine
Year of publication
Document Type
- Doctoral Thesis (23)
- Master's Thesis (9)
- Bachelor Thesis (6)
- Book (1)
Has Fulltext
- yes (39)
Is part of the Bibliography
- no (39)
Keywords
- Beschleunigerphysik (4)
- RFQ (3)
- Teilchenbeschleuniger (3)
- Beschleuniger (2)
- FAIR (2)
- Gabor lens (2)
- Gabor-Linse (2)
- Strahldynamik (2)
- 325 MHz (1)
- Accelerator Physics (1)
Institute
- Physik (39)
Ionenstrahlen werden in der Grundlagenforschung, in der Industrie und der Medizin verwendet. Um die Teilchen für die jeweiligen Anforderungen nutzbar zu machen, werden sie mit Ionenbeschleunigern je nach Anwendung auf eine bestimmte Energie beschleunigt. Eine Beschleunigeranlage besteht dabei aus einer Reihe von unterschiedlichen Elementen: Ionenquellen, Linearbeschleuniger, Kreisbeschleuniger, Fokussierelemente, Diagnosesysteme usw. In jeder dieser Kategorien gibt es wiederum verschiedene Realisierungsmöglichkeiten, je nach Anforderung des jeweiligen Abschnitts und der gesamten Anlage. Im Bereich der Linearbeschleuniger ist als Bindeglied zwischen Ionenquelle/Niederenergiebereich und Nachfolgebeschleuniger der Radiofrequenzquadrupol (RFQ) weit verbreitet. Dieser kann den aus der Quelle kommenden Gleichstromstrahl in Teilchenpakete (Bunche) formen und diese gleichzeitig auf die nächste Beschleunigerstufe angepasst vorbeschleunigen. Desweiteren wird der Teilchenstrahl innerhalb des RFQ kontinuierlich fokussiert, wodurch insbesondere bei diesen niedrigen Energien Strahlverluste minimiert werden. Bei hohem Masse-zu-Ladungs-Verhältnis wird für schwere Ionen eine niedrige Resonanzfrequenz von deutlich unter 100 MHz benötigt. Dies führt zu längeren Beschleunigungszellen entlang der Elektroden, womit durch eine bessere Fokussierung auch höhere Strahlströme beschleunigt werden können. Im Allgemeinen bedeutet eine niedrigere Resonanzfrequenz aber auch einen größeren Querschnitt der Resonanzstruktur sowie einen längeren Beschleuniger. Gegenstand dieser Arbeit ist die Untersuchung unterschiedlicher RFQ-Strukturen für niedrige Frequenzen, wie sie beispielsweise im Linearbeschleunigerbereich der Gesellschaft für Schwerionenforschung (GSI) in Darmstadt Anwendung finden. Zunächst wird die Beschleunigeranlage des GSI Helmholtzzentrums für Schwerionenforschung in Darmstadt und dessen zur Zeit im Bau befindliche Erweiterung FAIR (Facility for Antiproton and Ion Research) kurz vorgestellt. Teil dieser Anlage ist der Hochstrominjektor genannte Anfangsbeschleuniger, der wiederum aus einem RFQ und zwei nachfolgenden Driftröhrenbeschleunigern besteht. Dieser Hochstrominjektor dient als Referenz für die vorliegende Arbeit. In Kapitel 3 wird kurz auf Linearbeschleuniger im Allgemeinen und auf das Grundprinzip und die Eigenschaften eines RFQ näher eingegangen. Anschließend werden verschiedene RFQ-Strukturkonzepte vorgestellt und die Strahldynamik in einem RFQ sowie charakteristische Resonatorgrößen beschrieben. Ausgangspunkt ist der aktuelle RFQ des Hochstrominjektors (Kapitel 4). Dieser IH-RFQ mit einer Betriebsfrequenz von 36 MHz ist seit vielen Jahren in Betrieb und soll für eine verbesserte Effizienz und Betriebssicherheit ein Upgrade erfahren. Dazu wurden Simulationen sowohl der bestehenden Struktur als auch mit Modifikationen durchgeführt und diese miteinander verglichen. Zur Entwicklung eines kompakten Resonators werden in Kapitel 5 verschiedene Splitring-RFQ-Modelle als Alternative zur IH-Struktur mittels Simulationen untersucht. Diese wurden für eine niedrigere Frequenz von 27 MHz entworfen, was der Frequenz des ursprünglichen Wideröe-Beschleunigers (Vorgänger des Hochstrominjektors HSI) entspricht und ebenso wie die 36 MHz des IH-RFQ eine Subharmonische der 108 MHz des Folgebeschleunigers ist. Abschließend wurde noch eine neue RFQ-Struktur, der Splitframe-RFQ, entworfen und untersucht. Auch dieser wurde für eine Frequenz von 27 MHz ausgelegt. Die Ergebnisse dieser Entwicklung, die eine Mischung aus einem Splitring- und einem klassischen 4-Rod-RFQ darstellt, befinden sich in Kapitel 6. Alle Feldsimulationen wurden mit dem Programm Microwave Studio von CST durchgeführt. Zusammenfassend werden die verschiedenen Konzepte anhand der charakteristischen Resonatorgrößen verglichen und ein Ausblick auf weiterführende Arbeiten gegeben.
Diese Arbeit beschäftigt sich mit der Wasserkühlung einer normalleitenden CH-Kavität. Insbesondere stellt sich die Frage, ob die im CST Thermal Steady State Solver simulierten Temperaturen mit Messungen während High Power Tests übereinstimmen. Zusätzlich interessiert, inwiefern die Temperatur über die dissipierte Leistung aus dem CST Eigenmode Solver und dem gemessenen Volumenstrom im Kanal abgeschätzt werden kann. In dem Kontext wird auch geklärt, ob die Reihenschaltung der Mantelkanäle den Kühlanforderungen genügt.
Neben Volumenstrom- und Druckmessungen an den in Reihe und parallelgeschalteten Kanälen werden die Leistungs- und Temperaturwerte der Konditionierung in sämtlichen Simulationen aufgegriffen. Indem die Kavität in einzelne Sektionen unterteilt wird und in diesen die dissipierte Leistung mit dem Eigenmode Solver simuliert wird, die ein Kühlkanal abführt, werden die Temperaturerhöhungen direkt berechnet und verglichen.
Zusammengefasst hat sich der Durchfluss in kritischen Bauteilen wie den Stützen durch die Reihenschaltung der Mantelkanäle erhöht und wird damit empfohlen. Es werden die simulierten Temperaturverteilungen gezeigt. Die Näherung über den Eigenmode Solver liefert erneut für die thermisch belasteten Bauteile wie die Stützen präzise Vorhersagen.
Abschließend werden Erfahrungen aus dem Institut in dieser Arbeit zusammengetragen und die Verwendung des Steady State Solver freigegeben.
Cleaning an ion beam from unwanted fractions is crucial for intense ion beams. This thesis will explore separation methods using a collimation channel, electric and magnetic dipoles and a velocity selector for low intensity beams on an experimental basis. In addition, statistical data of degassing events during the commissioning of a pentode extraction system for beam energies from 20 - 120keV will be presented.
In dieser Arbeit wird der Strahltransport in einer Niederenergietransportsektion (LEBT) untersucht. Die Untersuchungen werden für die Betriebsmodi der im Aufbau befindlichen Neutronenquelle FRANZ an der Frankfurter Goethe-Universität durchgeführt. Hierbei wird die Akzeptanz eines Choppersystems nach der ersten Sektion des Transportwegs sowie die Akzeptanz des auf die zweite Sektion folgenden RFQ betrachtet und bestmöglich erfüllt. Die Auswirkungen durch die Raumladungswirkung des Ionenstrahls werden berücksichtigt, ebenso die mögliche thermische Belastung durch Strahlverlust an den Komponenten entlang des Strahlwegs. Weiterhin wird der Einfluss eines nicht optimierten Einschusses in den RFQ und die sich daraus ergebenden Strahleigenschaften am Ende des RFQs untersucht.
Nach dem einführenden Theorieteil werden in den darauffolgenden Kapiteln zuerst die Auslegung und die Vermessung der drei Tripletts an der GSI in Darmstadt beschrieben und dann versucht mit Hilfe von LORASR einen Akzeptanzrahmen der MEBT-Sektion (Medium Energy Beam Transport) für ein Teilchenpaket anzugeben. Anschließend werden die Ergebnisse aus Feldvermessung und CST EM STUDIO Feldsimulationen verglichen. Damit soll die Frage, inwieweit es mit Particle Tracking Simulationen, in denen mit in CST EM STUDIO simulierten und anschließend in BENDER importierten Feldern gearbeitet wird, möglich ist, zutreffende Aussagen zu machen, beantwortet werden. Im letzten Kapitel werden wiederum die Ergebnisse dieser Simulationen präsentiert und ihre Bedeutung, im Vergleich mit den erweiterten Untersuchungen der Transporteigenschaften durch verschiedene aus überlagerten Multipolfeldern generierten Magnetfelder, eingeordnet. Abschließend wird nochmals ein Fazit zur Aussagekraft der Ergebnisse und der Folgen für den Strahltransport gezogen und ein Ausblick auf die noch ausstehenden Schritte und weitere experimentelle Analyseoptionen gegeben.
Im Rahmen dieser Arbeit wird darauf eingegangen, welche Anpassungen erforderlich sind, um Protonendichten vergleichbar zu bereits erzeugten Elektronendichten in Gabor-Linsen zu erhalten. Zur Vorbereitung zukünftiger Experimente werden vergleichende Simulationen zum Einschluss der Ladungsträgerdichten durchgeführt und die Strahldynamik bei der Wechselwirkung eines positiven Ionenstrahls mit einem in einer Gabor-Linse eingeschlossenen Protonenplasma untersucht. Die Ergebnisse der Strahldynamiksimulationen werden mit theoretischen Berechnungen vertieft, in dem die Brennweite einer Gabor-Linse, die mit einer beliebigen Teilchensorte gefüllt ist, berechnet und die Drift-Masse eingeführt wird.
Eine weitere analytische Betrachtung ist die Erweiterung der Teilchendynamik in der Gabor-Linse auf beliebige Anfangsbedingungen, in dem die dazugehörige Differentialgleichung entkoppelt und ganz allgemein gelöst wird. Die daraus berechneten Trajektorien der Teilchen führen zu einem besseren Verständnis, das weitere Anwendungen erschließen könnte.
In dieser Bachelorarbeit werden verschiedene Methoden zur Bestimmung der Betriebsfrequenz von CH-Kavitäten untersucht. Aufgrund der geometrisch komplexen Form der Beschleunigungsstruktur, können die Eigenfrequenzen nicht mithilfe von analytischen Methoden bestimmt werden. Üblicherweise werden die Eigenfrequenzen, ihre Ladungsund Stromdichten, sowie die elektromagnetischen Felder über numerische Methoden der Computational Electromagnetics (CEM) ermittelt. Die CEM ist eine junge Disziplin, deren Performanz und Anwendungsgebiete in den letzten 20 Jahren rapide gewachsen sind. Hauptverantwortlich hierfür ist zum einen das exponentielle Wachstum der Rechenleitung bei gleichbleibenden Kosten, zum anderen die Entwicklung und Verbesserung der Algorithmen. Bis zum Ende des letzten Jahrhunderts wurden elektronische Komponenten hauptsächlich dadurch entwickelt, indem Prototypen angefertigt und analysiert wurden. Diese zeitaufwendige und kostspielige Herangehensweise ist heutzutage nahezu vollständig durch CEM-Simulationen ersetzt worden. Die Hauptmethoden der CEM sind die Finite-Differenzen-Methode (FDM), die Momenten-Methode (MoM) und die Finite-Elemente-Methode (FEM). Für die Bestimmung der Eigenwerte und Eigenvektoren der Beschleunigungsstrukturen eignet sich aufgrund der Stabilität von diesen Dreien am besten die Methode der finiten Elemente. Da die FEM ein rechen- und speicherintensives Verfahren ist, wurde in dieser Arbeit nach einer schnelleren Methode gesucht, um die Betriebsfrequenz von CH-Kavitäten zu bestimmen. Hierfür wurden 84 CH-Kavitäten mithilfe von CST Studio Suite erstellt und simuliert. Es handelt sich hierbei um vier Grundtypen, drei wurden bei einer fixierten Sollfrequenz von 300 MHz konstruiert; die Sollfrequenz des vierten Grundtyps betrug 175 MHz. Die Teilchengeschwindigkeit wurde jeweils in 0,01er-Schrtitten von 0,05 c bis 0,25 c variiert. Aus den Untersuchungen der EM-Felder wurde anschließend ein semi-analytisches Modell entwickelt, das aufgrund der Geometrie der CH-Kavität die Betriebsfrequenz liefern soll.
Bei der Ionenstrahltherapie bestimmt die Energie der Ionen die Eindringtiefe in das Gewebe und damit die Lage des Braggpeaks, in dem der größte Teil der Ionisationsenergie deponiert wird.
Um die gewünschte Dosis möglichst genau im Tumor zu lokalisieren, müssen in den aufeinanderfolgenden Extraktionen die gewünschten unterschiedlichen Energien möglichst genau sein.
In der Beschleunigungsphase werden die Magnetfelder der Magnete im Synchrotron bis zum vorgegebenen Exktraktionswert hochgefahren. Dieser bestimmt zusammen mit der Synchrotronfrequenz die Strahlenergie. Während und insbesondere am Ende dieser Phase, Rampe genannt, sollte das Magnetfeld daher sehr genau dem berechneten Sollwert folgen, um Strahlverluste zu minimieren und die geforderte Strahlqualität zu erreichen.
In der zeitlichen Steuerung der Magnetströme müssen magnetische Effekte, die hauptsächlich im Eisen der Magnete auftreten, wie Wirbelströme und die Hysterese berücksichtigt werden, da sie das Feld verfälschen und damit den Strahl in unerwünschter Weise beeinflussen. Die während der Rampe entstehenden Wirbelströme stören das Magnetfeld, so dass bisher vor der Extraktion des Strahls eine Wartezeit eingeführt wurde, bis die Wirbelströme abgeklungen waren.
Bei beliebig wählbaren Abfolgen der vordefinierten Zyklen kommt es durch die Hysterese des Eisens zu unterschiedlichen Remanenzfeldern, die das Magnetfeld verändern. Um dem vorzubeugen, durchliefen die Magnete eine vordefinierte Hystereseschleife. Ist die geforderte Energie des Strahls erreicht, wird das Magnetfeld konstant gehalten und die Teilchen aus dem Synchrotron extrahiert. Der Rest der Hystereseschleife wurde am Ende des Zyklus durchlaufen.
Die im Rahmen dieser Dissertation entwickelte dynamische Magnetfeldregelung misst das integrale Magnetfeld sehr genau und korrigiert die Feldfehler. Das integrale Magnetfeld folgt damit jederzeit seiner Vorgabe, unabhängig von den dynamischen Störeffekten. Die Wirbelströme und die Hysterese sind zwar immer noch vorhanden, die dadurch verursachten Feldfehler können aber durch eine Rückkopplung auf den Strom des Magneten korrigiert werden.
Es werden verschiedene Verfahren zur Messung der Magnetfelder untersucht. Am besten eignet sich für die dynamische Magnetfeldregelung die Kombination aus einer Hallsonden- und einer Induktionsspulenmessung. Die Messung muss das integrale Magnetfeld des Magneten BL, also das gesamte Feld entlang des Strahlwegs, bestimmen. Die Induktionsspule, oder Pickupspule, liegt deshalb entlang des Strahlrohrs im Magneten und liefert eine Spannung in Abhängigkeit von der Änderung des magnetischen Flusses. Durch die Integration dieser Spannung erhält man das integrale Feld des Magneten. Die Messung wird mit einer Hallsondenmessung zu Beginn des Beschleunigerzyklus auf einen absoluten Messwert geeicht.
Der Hauptteil dieser Arbeit beschäftigt sich mit der Entwicklung des sogenannten HIT Integrators, der die Integration der Pickupspulenspannung übernimmt. Bisher verfügbare Integratoren konnten die notwendigen Anforderungen an Genauigkeit, Echtzeitfähigkeit, automatische Kalibrierung, ständige Messbereitschaft, Temperaturunabhängigkeit und hohe Verfügbarkeit nicht erfüllen. Der neu entwickelte HIT Integrator wurde diesen Anforderungen entsprechend entwickelt. Der Integrator mit dem neuartigen Konzept der gleichzeitigen Messung und Kalibrierung in Echtzeit ist als Patent angemeldet worden. Neben der Entwicklung und Verwirklichung des Gesamtkonzepts war die numerische Integration des stark verrauschten Pickupspulensignals und die sofortige Umsetzung des integralen Werts in ein Steuersignal für die Dipolmagnetstromgeräte eine besondere technische Herausforderung.
Die elektronischen Schaltungen für die dynamische Magnetfeldregelung sind in der Baugruppe des HIT Integrators zusammengefasst. Die Ansteuerung der Hallsonde mit einer temperaturkompensierten Stromquelle, der Signalaufbereitung und Analog-Digital-Wandlung, sowie der Integrator und der Regler bilden eine technische Einheit.
Der HIT Integrator ist speziell für den Einsatz im bestehenden Beschleunigerkontrollsystem und den Magnetnetzgeräten entwickelt worden.
Die Regler der Magnetnetzgeräte wurden so verändert, dass sie einen Zusatzsollwert verarbeiten können, der auf den berechneten Sollwert der Datenversorgung addiert wird.
Die Magnetfeldregelung wurde in den Therapiebeschleuniger integriert, dazu wurde die Datenversorgung und das Kontrollsystem angepasst. Die Magnetfeldregelung stellt ein neues Gerät im Beschleuniger dar, das in die Netzgeräte der Synchrotronmagnete eingebaut worden ist. Die Datenversorgung dieser Geräte beinhaltet u.a. eine neue Methode der Kalibrierung.
Es konnte durch Messungen gezeigt werden, dass die Magnetfeldregelung mit hoher Genauigkeit funktioniert. Es wird eine Genauigkeit von besser als 10^{-4} des maximalen Feldes von 1.5 T erreicht, also weniger als 150uT, der dreifachen Stärke des Erdmagnetfelds. Vor allem die Bestrahlungszeit mit Protonen und die Bestrahlung bei niedrigen Energien profitiert von der Magnetfeldregelung, da hier das Extraktionsniveau der Magnete relativ gering ist und das Durchlaufen der vordefinierten Hystereseschleife prozentual mehr Zeit im Zyklus in Anspruch nimmt. Durch den Wegfall dieser Phase wird daher pro Zyklus mehr Zeit eingespart. Die Messungen zeigen, dass im Beschleunigerzyklus trotz der fehlenden Wartezeiten, die bis zu 24% betragen, eine gleichbleibend gute Strahlqualität erreicht wird. Dies wurde mit Vergleichsmessungen gezeigt, bei denen der Strahl mit und ohne Feldregelung vermessen wurde. Untersucht wurde eine große Stichprobenmenge aus dem Parameterraum, gegeben durch zwei Ionensorten mit jeweils 255 Strahlenergien, 10 verschiedenen Teilchenraten und 4 Strahlbreiten. Außerdem wurde die Energie des Strahls nachgemessen.
Für die Einführung in den Therapiebetrieb musste eine Impactanalyse gemacht werden, die mögliche Auswirkungen des neuen Verfahrens behandelt. Das Risiko für Patienten, Mitarbeiter und Dritte darf durch die Magnetfeldregelung nicht erhöht werden. Daraus entstand auch die Forderung nach einem redundanten System, das Fehler erkennt und die Bestrahlung abbricht.
Die mittlere Leistungsaufnahme des Beschleunigers des Heidelberger Ionenstrahltherapiezentrums liegt bei etwa 1 MW, bei einem Jahresenergieverbrauch von 8 GWh mit Kosten von etwa 1 Million Euro. Dies entspricht einer deutschen Kleinstadt mit 10000 Einwohnern. Die Verkürzung der Zykluszeiten wirkt sich direkt auf die Bestrahlungszeit und auf die Energiekosten aus. Würde man die Anlage durch die Zeiteinsparungen kürzer betreiben, würde man etwa 2 GWh pro Jahr sparen, was die Stromkosten um etwa 250000 Euro reduziert.
Zusätzlich zu den eingesparten Kosten wird auch die Bestrahlungszeit kürzer und damit auch die Zeit, die der Patient bei der Behandlung fixiert wird. Die Behandlung für die Patienten wird angenehmer. Man kann aber auch durch die eingesparte Bestrahlungszeit pro Patient entsprechend mehr Patienten behandeln. Das heißt man kann an Stelle von 700 Patienten im Jahr 910 Patienten mit einem Tumor behandeln. Dieser für die Patienten willkommene Effekt bedeutet auf der anderen Seite für HIT aber auch Mehreinnahmen von 4.2 Millionen Euro im Jahr.
Das Konzept der Magnetfeldregelung kann auch an anderen Beschleunigeranlagen zum Einsatz kommen. Dazu müssen die Magnete mit den Sonden bestückt werden und die Magnetnetzgeräte einen Eingang für einen Zusatzsollwert bekommen. Das Beschleunigerkontrollsystem kann erweitert werden, damit es einen Sollwert mit allen notwendigen Kalibrierungen berechnen kann. Der HIT Integrator wird dann als eigenständiges Gerät in das Kontrollsystem eingebunden.
Precise intensity monitoring at CRYRING@ESR: on designing a Cryogenic Current Comparator for FAIR
(2023)
In the field of today’s beam intensity diagnostic there is a significant gap in the non-interceptive, calibrated measurement of the absolute intensity of continuous (unbunched) dc beams with current amplitudes below 1 μA. At the Facility for Antiproton and Ion Research (FAIR) low-intensity DC beams will occur during slow extraction from the synchrotrons as well as for coasting beams of highly-charged or exotic nuclei in the storage rings. The lack of adequate beam instrumentation limits the experimental program as well as the accuracy of experimental results.
The Cryogenic Current Comparator (CCC) can close the diagnostic gap with a high-precision dc current reading independent of ion-species and of beam parameters. However, the established detector design based on a core with high magnetic permeability and on a radial shield geometry has well-known weaknesses concerning magnetic shielding efficiency and intrinsic current noise. To eliminate these weaknesses, a novel coreless CCC with a co-axial shield was constructed and combined with a high-performance SQUID contributed by the Leibniz-Institute of Photonic Technology (Leibniz-IPHT Jena). The new axial CCC model was compared to a radial CCC with the established design provided by the Friedrich-Schiller-University Jena. According to numerical simulations prepared at TU Darmstadt and test measurements of the detectors in the laboratory, the new design offered a significant improvement of the shielding factor – from 75dB to 207dB at the required dimensions – and eliminated all noise contributions from the core material, promising an improved current resolution. Although the lower inductance of the pickup coil reduced the coupling to the beam significantly, the noise properties of the new CCC type were comparable to the classical version with a high-permeability core. However, the expected decrease of the low-frequency noise and thus an increase of the current resolution could not be observed at this stage of development.
Consequently, the classical CCC based on the radial shielding and high-permeability core had to be installed in CRYRING@ESR to provide best possible intensity measurements for the upcoming experimental campaign. In CRYRING the CCC was operated with beam currents between 1nA and 20μA and with different ion species (H, Ne, O, Pb, U). It was shown that the CCC provides a noise-limited current resolution of better than 3.2 nArms at a bandwidth of 200 kHz as well as a noise level below 40 pA/√Hz above 1 kHz. During the operation, the main noise sources of the accelerator environment had to be identified and suitable mitigation strategies were developed. Temperature and pressure fluctuations were suppressed with a newly-designed cryogenic support system based on a 70 l helium bath cryostat, developed and built in collaboration with the Institut für Luft- und Kältetechnik Dresden, in combination with a helium re-liquefier. The cryogenic operating time was restricted to around 7 days, which must be expanded significantly in the future. Digital filters were developed to remove the perturbations of the helium liquefier and of the neighboring dipole magnets. Given the promising results the CCC system can be considered as a prototype for future CCCs at FAIR.
As part of the research for this thesis, a momentum spectrometer was set up and initial measurements on accelerated ions were performed. For this purpose, the necessary hardware for the operation of the spectrometer and for high-precision measurements was were assembled. A control system for remote operation was developed and the spectrometer was installed at the used beamline.
There, measurements of low-energy ion beams in superposition with electrons confined in a Gabor lens can be carried out.
Investigations were made on both the Gabor lens-generated ions and the beam ions, leading to first results regarding the charge changes of beam ions during propagation through an electron atmosphere.