Refine
Year of publication
Document Type
- Doctoral Thesis (23)
Has Fulltext
- yes (23)
Is part of the Bibliography
- no (23)
Keywords
- Boltzmann-Gleichung (2)
- Delaunay-Triangulierung (2)
- Hadron (2)
- Kernmaterie (2)
- QCD (2)
- Quantenchromodynamik (2)
- Quark <Physik> (2)
- Relativistische Hydrodynamik (2)
- Schwerionenstoß (2)
- ALICE experiment (1)
Institute
Gegenstand dieser Arbeit sind Eigenschaften angeregter hadronischer Materie sowie physikalische Systeme, in denen diese Materie auftritt bzw. produziert wird. Die Beschreibung der stark wechselwirkenden Materie erfolgt in einem hadronischen, chiral-symmetrischen SU(3)L x SU(3)R Modell, welches die Saturierungseigenschaften von Kernmaterie und die Eigenschaften von Atomkernen reproduziert. Die Untersuchung heißer und dichter unendlicher hadronischor Materie zeigt, dass das vom Modell vorhergesagte Phasendiagramm stark von den Kopplungen der Baryonenresonanzen abhängt. Für kalte hadronische Materie ergibt die Einbeziehung des Baryonendekupletts und die Freiheit in deren Vektorkopplungen eine sehr große Bandbreite an verschiedenen Zustandsgleichungen. Für heiße hadronische Materie mit verschwindendem baryochemischen Potential zeigt sich ebenfalls eine starke Abhängigkeit der Eigenschaften hadronischer Materie von der Ankopplung der baryonischen Resonanzen. Es werden drei verschiedene Parametrisierungen betrachtet. Das resultierende Phasenübergangsverhalten variiert von einem "Crossover" über einen schwachen, zu einem doppelten Phasenübergang erster Ordnung. Es zeigt sich jedoch, dass die beobachteten Eigenschaften von Neutronensternen die Unbestimmtheit bzgl. der Vektorkopplung dieser Freiheitsgrade und damit der Zustandsgleichung deutlich verringern. Das Raum-Zeit Verhalten relativistischer Schwerionenkollisionen bei SPS- und RHIC-Energien wird mittels einer hydrodynamischen Simulation unter Benutzung der chiralen Zustandsgleichungen untersucht. Dabei spiegelt sich das unterschiedliche Phasenübergangsverhalten deutlich im Ausfrierverhalten der hadronischen Materie wider. Die im chiralen Modell berechneten Teilchenzahlverhältnisse werden mit den aus Schwerionenkollisionen von AGS- bis RHIC-Energien erhaltenen experimentellen Daten verglichen. Dabei zeigt sich, dass die verschiedenen Parametersätze des chiralen Modells und die Rechnungen für ein nichtwechselwirkendes, ideales Hadronengas eine ähnlich gute Beschreibung der gemessenen Weite liefern. Die deduzierten Ausfrierwerte für die Temperatur sind sensitiv auf das Phasenübergangsverhalten und liegen unterhalb der jeweiligen kritischen Temperatur. Die vorhergesagten Ausfriermassen sind in allen Parametrisierungen sehr ähnlich mit Abweichungen bis zu 15% von den entsprechenden Vakuumwerten. Die Untersuchung der Eigenschaften von Vektormesonen in dichter Materie erfolgt in der Mittleren-Feld- und in der HartreeNäherung. Hierbei zeigt sich eine signifikante Reduzierung der Teilchenmassen durch Vakuumpolarisationseffekte.
Nonequilibrium phase transitions in chiral fluid dynamics including dissipation and fluctuation
(2011)
Chiral fluid dynamics combines the fluid dynamic expansion of a hot and dense plasma created in a heavy-ion collision with the explicit propagation of fluctuations at the chiral phase transition of quantum chromodynamics. From systems in equilibrium long-range fluctuations are expected at a conjectured critical point. Heavy-ion collisions are, however, finite in size and time and very dynamic. It is thus likely that nonequilibrium effects diminish the signal of a critical point. They can, however, stimulate phenomena at a first order phase transitions, like nucleation and spinodal decomposition. Both of phase transition scenarios are investigated in this work. Based on the linear sigma model with constituent quarks a consistent quantum field theoretical approach using the two-particle irreducible effective action is developed to derive both, the local equilibrium properties of the expanding quark fluid and the damping and noise terms in the Langevin equation of the order parameter of the phase transition, the sigma field. Within this formalism it is possible to obtain a conserved energy-momentum tensor of the coupled system. It describes the energy dissipation from the sigma field to the heat bath during relaxation. Within this model we investigate nonequilibrium phenomena in a scenario with a critical point and a first order phase transition. We observe long relaxation times at the phase transition, phase coexistence at the first order phase transition and critical slowing down at the critical point. We find a substantial supercooling in a first order phase transition in our model and due to the energy-momentum exchange also reheating is present. While at the critical point the correlation length increases slightly we find an enhanced intensity of nonequilibrium fluctuations at the first order phase transition, which leads to an increased production of sigma mesons.
Wir haben uns in dieser Arbeit der möglichen Produktion Schwarzer Löcher in hochenergetischen Teilchenkollisonen unter Annahme einer Raumzeit mit großen Extra-Dimensionen gewidmet. Die Produktionsraten, die bei einer neuen fundamentalen Skala im Bereich Mf ~ 1 TeV zu erwarten sind, liegen für den LHC in der Größenordnung von ~ 10 hoch 8 Schwarzen Löchern pro Jahr. Diese hohe Anzahl begründet das Interesse an den Eigenschaften der produzierten Schwarzen Löchern und wirft die Frage auf, wie diese Objekte beobachtet werden können. Bei der Untersuchung der Eigenschaften dieser Schwarzen Löcher haben wir festgestellt, dass das Entstehen Schwarzer Löcher ab einer c.o.m.-Energie im Bereich der neuen Planck-Masse zu einer raschen Unterdrückung hochenergetischer Jets, wie sie in pp-Kollisionen entstehen, führt. Dies ist ein klares Signal und leicht zu beobachten. Unter Ansetzen des Mikrokanonischen Ensembles haben wir die Zerfallsrate der Schwarzen Löcher und ihre Lebensdauer berechnet. Es zeigt sich, dass diese Lebensdauer hoch genug ist, um ein zeitlich deutlich verzögertes Signal zu erhalten. Nimmt man an, dass die statistische Mechanik bis zur Größenordung Mf gülig bleibt, so gelangen die Schwarzen Löcher im Zuge ihrer Verdunstung in einen quasi-stabilen Zustand und ein Rest verbleibt. Die Lebenszeit ist von der Anzahl der Dimensionen abhängig und lässt so Rückschlüsse auf diesen Parameter zu. Im Falle (Mf ~ TeV, d > 5) liegt sie für Energien von ~ 10 TeV in der Größenordung 100 fm/c. Eine geometrische Quantisierung der Strahlung legt außerdem nahe, dass die Schwarzen Löcher nicht restlos verdampfen können, sondern ein stabiler Überrest verbleibt. Diese Ergebnisse sind in [202, 203, 205] veröffentlicht worden.
In this thesis the first fully integrated Boltzmann+hydrodynamics approach to relativistic heavy ion reactions has been developed. After a short introduction that motivates the study of heavy ion reactions as the tool to get insights about the QCD phase diagram, the most important theoretical approaches to describe the system are reviewed. To model the dynamical evolution of the collective system assuming local thermal equilibrium ideal hydrodynamics seems to be a good tool. Nowadays, the development of either viscous hydrodynamic codes or hybrid approaches is favoured. For the microscopic description of the hadronic as well as the partonic stage of the evolution transport approaches have beeen successfully applied, since they generate the full phse-space dynamics of all the particles. The hadron-string transport approach that this work is based on is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) approach. It constitutes an effective solution of the relativistic Boltzmann equation and is restricted to binary collisions of the propagated hadrons. Therefore, the Boltzmann equation and the basic assumptions of this model are introduced. Furthermore, predictions for the charged particle multiplicities at LHC energies are made. The next step is the development of a new framework to calculate the baryon number density in a transport approach. Time evolutions of the net baryon number and the quark density have been calculated at AGS, SPS and RHIC energies and the new approach leads to reasonable results over the whole energy range. Studies of phase diagram trajectories using hydrodynamics are performed as a first move into the direction of the development of the hybrid approach. The hybrid approach that has been developed as the main part of this thesis is based on the UrQMD transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The initial energy and baryon number density distributions are not smooth and not symmetric in any direction and the initial velocity profiles are non-trivial since they are generated by the non-equilibrium transport approach. The fulll (3+1) dimensional ideal relativistic one fluid dynamics evolution is solved using the SHASTA algorithm. For the present work, three different equations of state have been used, namely a hadron gas equation of state without a QGP phase transition, a chiral EoS and a bag model EoS including a strong first order phase transition. For the freeze-out transition from hydrodynamics to the cascade calculation two different set-ups are employed. Either an in the computational frame isochronous freeze-out or an gradual freeze-out that mimics an iso-eigentime criterion. The particle vectors are generated by Monte Carlo methods according to the Cooper-Frye formula and UrQMD takes care of the final decoupling procedure of the particles. The parameter dependences of the model are investigated and the time evolution of different quantities is explored. The final pion and proton multiplicities are lower in the hybrid model calculation due to the isentropic hydrodynamic expansion while the yields for strange particles are enhanced due to the local equilibrium in the hydrodynamic evolution. The elliptic flow values at SPS energies are shown to be in line with an ideal hydrodynamic evolution if a proper initial state is used and the final freeze-out proceeds gradually. The hybrid model calculation is able to reproduce the experimentally measured integrated as well as transverse momentum dependent $v_2$ values for charged particles. The multiplicity and mean transverse mass excitation function is calculated for pions, protons and kaons in the energy range from $E_{\rm lab}=2-160A~$GeV. It is observed that the different freeze-out procedures have almost as much influence on the mean transverse mass excitation function as the equation of state. The experimentally observed step-like behaviour of the mean transverse mass excitation function is only reproduced, if a first order phase transition with a large latent heat is applied or the EoS is effectively softened due to non-equilibrium effects in the hadronic transport calculation. The HBT correlation of the negatively charged pion source created in central Pb+Pb collisions at SPS energies are investigated with the hybrid model. It has been found that the latent heat influences the emission of particles visibly and hence the HBT radii of the pion source. The final hadronic interactions after the hydrodynamic freeze-out are very important for the HBT correlation since a large amount of collisions and decays still takes place during this period.
The aim of this work is to develop an effective equation of state for QCD, having the correct asymptotic degrees of freedom, to be used as input for dynamical studies of heavy ion collisions. We present an approach for modeling an EoS that respects the symmetries underlying QCD, and includes the correct asymptotic degrees of freedom, i.e. quarks and gluons at high temperature and hadrons in the low-temperature limit. We achieve this by including quarks degrees of freedom and the thermal contribution of the Polyakov loop in a hadronic chiral sigma-omega model. The hadronic part of the model is a nonlinear realization of an sigma-omega model. As the fundamental symmetries of QCD should also be present in its hadronic states such an approach is widely used to describe hadron properties below and around Tc. The quarks are introduced as thermal quasi particles, coupling to the Polyakov loop, while the dynamics of the Polyakov loop are controlled by a potential term which is fitted to reproduce pure gauge lattice data. In this model the sigma field serves a the order parameter for chiral restoration and the Polyakov loop as order parameter for deconfinement. The hadrons are suppressed at high densities by excluded volume corrections. As a next step, we introduce our new HQ model equation of state in a microscopic+macroscopic hybrid approach to heavy ion collisions. This hybrid approach is based on the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) transport approach with an intermediate hydrodynamical evolution for the hot and dense stage of the collision. The present implementation allows to compare pure microscopic transport calculations with hydrodynamic calculations using exactly the same initial conditions and freeze-out procedure. The effects of the change in the underlying dynamics - ideal fluid dynamics vs. non-equilibrium transport theory - are explored. The final pion and proton multiplicities are lower in the hybrid model calculation due to the isentropic hydrodynamic expansion while the yields for strange particles are enhanced due to the local equilibrium in the hydrodynamic evolution. The elliptic and directed flow are shown to be not sensitive to changes in the EoS while the smaller mean free path in the hydrodynamic evolution reflects directly in higher flow results which are consistent with the experimental data. This finding indicates qualitatively that physical mechanisms like viscosity and other non equilibrium effects play an essentially more important role than the EoS when bulk observables like flow are investigated. In the last chapter, results for the thermal production of MEMOs in nucleus-nucleus collisions from a combined micro+macro approach are presented. Multiplicities, rapidity and transverse momentum spectra are predicted for Pb+Pb interaction at different beam energies. The presented excitation functions for various MEMO multiplicities show a clear maximum at the upper FAIR energy regime making this facility the ideal place to study the production of these exotic forms of multistrange objects.
This dissertation is devoted to the study of thermodynamics for quantum gauge theories.The poor convergence of quantum field theory at finite temperature has been the main obstacle in the practical applications of thermal QCD for decades. In this dissertation I apply hard-thermal-loop perturbation theory, which is a gauge-invariant reorganization of the conventional perturbative expansion for quantum gauge theories to the thermodynamics of QED and Yang-Mills theory to three-loop order. For the Abelian case, I present a calculation of the free energy of a hot gas of electrons and photons by expanding in a power series in mD/T, mf /T and e2, where mD and mf are the photon and electron thermal masses, respectively, and e is the coupling constant.I demonstrate that the hard-thermal-loop perturbation reorganization improves the convergence of the successive approximations to the QED free energy at large coupling, e ~ 2. For the non-Abelian case, I present a calculation of the free energy of a hot gas of gluons by expanding in a power series in mD/T and g2, where mD is the gluon thermal mass and g is the coupling constant. I show that at three-loop order hard-thermal-loop perturbation theory is compatible with lattice results for the pressure, energy density, and entropy down to temperatures T ~ 2 - 3 Tc. The results suggest that HTLpt provides a systematic framework that can be used to calculate static and dynamic quantities for temperatures relevant at LHC.
The goal of this project is to develop a framework for a cell that takes in consideration its internal structure, using an agent-based approach. In this framework, a cell was simulated as many sub-particles interacting to each other. This sub-particles can, in principle, represent any internal structure from the cell (organelles, etc). In the model discussed here, two types of sub-particles were used: membrane sub-particles and cytosolic elements. A kinetic and dynamic Delaunay triangulation was used in order to define the neighborhood relations between the sub-particles. However, it was soon noted that the relations defined by the Delaunay triangulation were not suitable to define the interactions between membrane sub-particles. The cell membrane is a lipid bilayer, and does not present any long range interactions between their sub-particles. This means that the membrane particles should not be able to interact in a long range. Instead, their interactions should be confined to the two-dimensional surface supposedly formed by the membrane. A method to select, from the original three-dimensional triangulations, connections restricted to the two-dimensional surface formed by the cell membrane was then developed. The algorithm uses as starting point the three-dimensional Delaunay triangulation involving both internal and membrane sub-particles. From this triangulation, only the subset of connections between membrane sub-particles was considered. Since the cell is full of internal particles, the collection of the membrane particles' connections will resemble the surface to be obtained, even though it will still have many connections that do not belong to the restricted triangulation on the surface. This "thick surface" was called a quasi-surface. The following step was to refine the quasi-surface, cutting out some of the connections so that the ones left made a proper surface triangulation with the membrane points. For that, the quasi-surface was separated in clusters. Clusters are defined as areas on the quasi-surface that are not yet properly triangulated on a two-dimensional surface. Each of the clusters was then re-triangulated independently, using re-triangulation methods also developed during this work. The interactions between cytosolic elements was given by a Lennard-Jones potential, as well as the interactions between cytosolic elements and membrane particles. Between only membrane particles, the interactions were given by an elastic interaction. For each particle, the equation of motion was written. The algorithm chosen to solve the equations of motion was the Verlet algorithm. Since the cytosol can be approximated as a gel, it is reasonable to suppose that the sub-cellular particles are moving in an overdamped environment. Therefore, an overdamped approximation was used for all interactions. Additionally, an adaptive algorithm was used in order to define the size of the time step used in each interaction. After the method to re-triangulate the membrane points was implemented, the time needed to re-triangulate a single cluster was studied, followed by an analysis on how the time needed to re-triangulate each point in a cluster varied with the cluster size. The frequency of appearance for each cluster size was also compared, as this information is necessary to guarantee that the total time needed by to re-triangulate a cell is convergent. At last, the total time spent re-triangulating a surface was plotted, as well as a scaling for the total re-triangulation time with the variation. Even though there is still a lot to be done, the work presented here is an important step on the way to the main goal of this project: to create an agent-based framework that not only allows the simulation of any sub-cellular structure of interest but also provides meaningful interaction relations to particles belonging to the cell membrane.
The theory of strong interactions — Quantum Chromodynamics (QCD) — is well-defined mathematically. However, direct applications of this theory to experiment are rather limited due to significant technical obstacles. Even some general features of QCD remain unclear to date.
Hence, phenomenological input is important and needed for practical applications, e.g. for theoretical analysis of the heavy-ion collision experiments. In this thesis the role of hadronic interactions is studied in the hadron resonance gas (HRG) model — a popular model for the confined phase of QCD. The description of hadronic interactions is based on the famous van der Waals (VDW) equation and its quantum statistical generalization. While this is not the conventional choice for nuclear/hadronic physicspplications, the simplicity of the VDW approach makes it extremely useful.
In particular, this framework allows to include the two most basic ingredients of hadron-hadron interaction: the short-range repulsion, modeled by excluded-volume (EV) corrections, and the intermediate range attraction. The first part of the thesis considers just the repulsive EV interactions between hadrons. A hitherto unknown, but surprisingly strong sensitivity of the long known thermal fits to heavy-ion hadron yield data to the choice of hadron eigenvolumes is uncovered. It challenges the robustness of the chemical freeze-out temperature and baryochemical potential determination from the thermal fits. However, at the same time, the extracted value of the entropy per baryon is found to be a robust observable which depends weakly on this systematic uncertainty of the HRG model.
A Monte Carlo procedure to treat EV interactions in HRG is also introduced in this thesis. It allows to study simultaneous effects of EV and of exact charge conservation in HRG for the first time. Generalizations of the classical VDW equation are required for its applications in hadronic physics. he grand canonical ensemble (GCE) formulation of the classical VDW equation is presented. Remarkably, this important aspect of the VDW equation was not discovered before. The GCE formulation yields the analytic structure of the critical fluctuations, both in the vicinity of and far off the critical point. These critical fluctuations are presently actively being used as probes for the QCD critical point. Another extension is the hitherto undiscovered generalization of the VDW equation to include quantum Bose-Einstein and Fermi-Dirac statistics. It is performed for both single-component and multi-component fluids. The Fermi-Dirac VDW equation is applied for the first time. It is used to describe nucleons and basic properties of nuclear matter. The quantum statistical generalization of the VDW equation developed in this work is quite general, and can be applied for any fluid. Thus, its applications are not restricted to QCD physics, but may also find themselves in chemistry and/or industry. The quantum statistical VDW equation is used to describe baryonic interactions in full HRG. The VDW parameters $a$ and $b$ are fixed to the nuclear ground state and the predictions of the model are confronted with lattice QCD calculations. The inclusion of baryonic interactions leads to a qualitatively different behavior of the fluctuations of conserved charges in the crossover region. In many cases it resembles the lattice data. These results suggest that hadrons do not melt quickly with increasing temperature, as one could conclude on the basis of the common simple ideal HRG model. Calculations at finite chemical potentials show that the nuclear liquid-gas transition manifests itself by non-trivial fluctuations of the net baryon number in heavy ion collisions. In the final part of the thesis the pure glue initial scenario for high-energy hadron and heavy-ion collisions is explored. This scenario is shown not to spoil the existing agreement of the hadronic and electromagnetic observables description in Pb+Pb collisions at energies available at the CERN Large Hadron Collider. Hydrodynamic calculations suggest that collisions of small-sized nuclei at lower collision energies available at the BNL Relativistic Heavy Ion Collider are promising in the search for the traces of the chemically non-equilibrium gluon-dominated phase transition.
This thesis deals with the phenomenology of QCD matter, its aspects in heavy ion collisions and in neutron stars. The first half of the work focuses on the hadronic phase of QCD matter. One focus is on how the hadronic phase shows itself in heavy ion collisions and how its dynamics can be simulated. The role of hadronic interactions is considered in the context of the lattice QCD data. The second part of this thesis presents a unified approach to QCD matter, the CMF model. The CMF model incorporates many aspects of QCD phenomenology which allows for a consistent description of the hadron-quark transition, making it applicable to the entire QCD phase diagram, i.e., to the cold nuclear matter and to the hot QCD matter. It is shown that a description of both the hot matter created in heavy ion collisions and the cold dense matter in neutron star interiors is possible within one single approach, the CMF model.