Refine
Document Type
- Doctoral Thesis (13)
Has Fulltext
- yes (13)
Is part of the Bibliography
- no (13)
Keywords
- Ageing (1)
- Alignment <Biochemie> (1)
- Arzneimitteldesign (1)
- Autophagy (1)
- Bioinformatik (1)
- Computational chemistry (1)
- Datenanalyse (1)
- Digitale Pathologie (1)
- Global Alignment (1)
- Graphentheorie (1)
Institute
- Informatik und Mathematik (8)
- Informatik (4)
- Biowissenschaften (1)
- Mathematik (1)
Biological ageing is a degenerative and irreversible process, ultimately leading to death of the organism. The process is complex and under the control of genetic, environmental and stochastic traits. Although many theories have been established during the last decades, none of these are able to fully describe the complex mechanisms, which lead to ageing. Generally, biological processes and environmental factors lead to molecular damage and an accumulation of impaired cellular components. In contrast, counteracting surveillance systems are effective, including repair, remodelling and degradation of damaged or impaired components, respectively. Nevertheless, at some point these systems are no longer effective, either because the increasing amount of molecular damages can not longer be removed efficiently or because the repairing and removing mechanisms themselves become affected by impairing effects. The organism finally declines and dies. To investigate and to understand these counteracting mechanisms and the complex interplay of decline and maintenance, holistic and systems biological investigations are required. Hence, the processes which lead to ageing in the fungal model organism Podospora anserina, had been analysed using different advanced bioinformatics methods. In contrast to many other ageing models, P. anserina exhibits a short lifespan, a less biochemical complexity and it provides a good accessibility for genetic manipulations.
To achieve a general overview on the different biochemical processes, which are affected during ageing in P. anserina, an initial comprehensive investigation was applied, which aimed to reveal genes significantly regulated and expressed in an age-dependent manner. This investigation was based on an age-dependent transcriptome analysis. Sophisticated and comprehensive analyses revealed different age-related pathways and indicated that especially autophagy may play a crucial role during ageing. For example, it was found that the expression of autophagy-associated genes increases in the course of ageing.
Subsequently, to investigate and to characterise the autophagy pathway, its associated single components and their interactions, Path2PPI, a new bioinformatics approach, was developed. Path2PPI enables the prediction of protein-protein interaction networks of particular pathways by means of a homology comparison approach and was applied to construct the protein-protein interaction network of autophagy in P. anserina.
The predicted network was extended by experimental data, comprising the transcriptome data as well as newly generated protein-protein interaction data achieved from a yeast two-hybrid analysis. Using different mathematical and statistical methods the topological properties of the constructed network had been compared with those of randomly generated networks to approve its biological significance. In addition, based on this topological and functional analysis, the most important proteins were determined and functional modules were identified, which correspond to the different sub-pathways of autophagy. Due to the integrated transcriptome data the autophagy network could be linked to the ageing process. For example, different proteins had been identified, which genes are continuously up- or down-regulated during ageing and it was shown for the first time that autophagy-associated genes are significantly often co-expressed during ageing.
The presented biological network provides a systems biological view on autophagy and enables further studies, which aim to analyse the relationship of autophagy and ageing. Furthermore, it allows the investigation of potential methods for intervention into the ageing process and to extend the healthy lifespan of P. anserina as well as of other eukaryotic organisms, in particular humans.
Antimicrobial resistance became a serious threat to the worldwide public health in this century. A better understanding of the mechanisms, by which bacteria infect host cells and how the host counteracts against the invading pathogens, is an important subject of current research. Intracellular bacteria of the Salmonella genus have been frequently used as a model system for bacterial infections. Salmonella are ingested by contaminated food or water and cause gastroenteritis and typhoid fever in animals and humans. Once inside the gastrointestinal tract, Salmonella can invade intestinal epithelial cells. The host cell can fight against intracellular pathogens by a process called xenophagy. For complex systems, such as processes involved in the bacterial infection of cells, computational systems biology provides approaches to describe mathematically how these intertwined mechanisms in the cell function. Computational systems biology allows the analysis of biological systems at different levels of abstraction. Functional dependencies as well as dynamic behavior can be studied. In this thesis, we used the Petri net formalism to gain a better insight into bacterial infections and host defense mechanisms and to predict cellular behavior that can be tested experimentally. We also focused on the development of new computational methods.
In this work, the first realization of a mathematical model of the xenophagic capturing of Salmonella enterica serovar Typhimurium in epithelial cells was developed. The mathematical model expressed in the Petri net formalism was constructed in an iterative way of modeling and analyses. For the model verification, we analyzed the Petri net, including a computational performance of knockout experiments named in silico knockouts, which was established in this work. The in silico knockouts of the proposed Petri net are consistent with the published experimental perturbation studies and, thus, ensures the biological credibility of the Petri net. In silico knockouts that have not been experimentally investigated yet provide hypotheses for future investigations of the pathway.
To study the dynamic behavior of an epithelial cell infected with Salmonella enterica serovar Typhimurium, a stochastic Petri net was constructed. In experimental research, a decision like "Which incubation time is needed to infect half of the epithelial cells with Salmonella?" is based on experience or practicability. A mathematical model can help to answer these questions and improve experimental design. The stochastic Petri net models the cell at different stages of the Salmonella infection. We parameterized the model by a set of experimental data derived from different literature sources. The kinetic parameters of the stochastic Petri net determine the time evolution of the bacterial infection of a cell. The model captures the stochastic variation and heterogeneity of the intracellular Salmonella population of a single cell over time. The stochastic Petri net is a valuable tool to examine the dynamics of Salmonella infections in epithelial cells and generate valuable information for experimental design.
In the last part of this thesis, a novel theoretical method was introduced to perform knockout experiments in silico. The new concept of in silico knockouts is based on the computation of signal flows at steady state and allows the determination of knockout behavior that is comparable to experimental perturbation behavior. In this context, we established the concept of Manatee invariants and demonstrated the suitability of their application for in silico knockouts by reflecting biological dependencies from the signal initiation to the response. As a proof of principle, we applied the proposed concept of in silico knockouts to the Petri net of the xenophagic recognition of Salmonella. To enable the application of in silico knockouts for the scientific community, we implemented the novel method in the software isiKnock. isiKnock allows the automatized performance and visualization of in silico knockouts in signaling pathways expressed in the Petri net formalism. In conclusion, the knockout analysis provides a valuable method to verify computational models of signaling pathways, to detect inconsistencies in the current knowledge of a pathway, and to predict unknown pathway behavior.
In summary, the main contributions of this thesis are the Petri net of the xenophagic capturing of Salmonella enterica serovar Typhimurium in epithelial cells to study the knockout behavior and the stochastic Petri net of an epithelial cell infected with Salmonella enterica serovar Typhimurium to analyze the infection dynamics. Moreover, we established a new method for in silico knockouts, including the concept of Manatee invariants and the software isiKnock. The results of these studies are useful to a better understanding of bacterial infections and provide valuable model analysis techniques for the field of computational systems biology.
Die letzten Jahrzehnte brachten einen enormen Zuwachs des Wissens und Verständnisses über die molekularen Prozesse des Lebens.Möglich wurde dieser Zuwachs durch die Entwicklung diverser Methoden, mit denen beispielsweise gezielt die Konzentration einzelner Stoffe gemessen werden kann oder gar alle anwesenden Metaboliten eines biologischen Systems erfasst werden können. Die großflächige Anwendung dieser Methoden führte zur Ansammlung vieler unterschiedlicher -om-Daten, wie zum Beispiel Metabolom-, Proteom- oder Transkriptoms-Datensätzen. Die Systembiologie greift auf solche Daten zurück, um mathematische Modelle biologischer Systeme zu erstellen, und ermöglicht so ein Studium biologischer Systeme auch außerhalb des Labors.
Für größere biologische Systeme stehen jedoch meistens nicht alle Informationen über Stoffkonzentrationen oder Reaktionsgeschwindigkeiten zur Verfügung, um eine quantitative Modellierung, also die Beschreibung von Änderungsraten kontinuierlicher Variablen, durchführen zu können. In einem solchen Fall wird auf Methoden der qualitativen Modellierung zurückgegriffen. Eine dieser Methoden sind die Petrinetze (PN), welche in den 1960er Jahren von Carl Adam Petri entwickelt wurden, um nebenläufige Prozesse im technischen Umfeld zu beschreiben. Seit Anfang der 1990er Jahre finden PN auch Anwendung in der Systembiologie, um zum Beispiel metabolische Systeme oder Signaltransduktionswege zu modellieren. Einer der Vorteile dieser Methode ist zudem, dass Modelle als qualitative Beschreibung des Systems begonnen werden können und im Laufe der Zeit um quantitative Beschreibungen ergänzt werden können.
Zur Modellierung und Analyse von PN existieren bereits viele Anwendungen. Da das Konzept der PN jedoch ursprünglich nicht für die Systembiologie entwickelt wurde und meist im technischen Bereich verwendet wird, existierten kaum Anwendungen, die für den Einsatz in der Systembiologie entwickelt wurden. Daher ist auch die Durchführung der für die Systembiologie entwickelten Analysemethoden für PN nicht mit diesen Anwendungen möglich. Die Motivation des ersten Teiles dieser Arbeit war daher, eine Anwendung zu schaffen, die speziell für die PN-Modellierung und Analyse in der Systembiologie gedacht ist, also in ihren Analysemethoden und ihrer Terminologie sich an den Bedürfnissen der Systembiologie orientiert. Zudem sollte die Anwendung den Anwender bei der Auswertung der Resultate der Analysemethoden visuell unterstützen, indem diese direkt visuell im Kontext des PN gesetzt werden. Da bei komplexeren PN die Resultate der Analysemethoden in ihrer Zahl drastisch anwachsen, wird eine solche Auswertung dieser notwendig. Aus dieser Motivation heraus entstand die Anwendung MonaLisa, dessen Implementierung und Funktionen im ersten Teil der vorliegenden Arbeit beschrieben werden. Neben den klassischen Analysemethoden für PN, wie den Transitions- und Platz-Invarianten, mit denen grundlegende funktionale Module innerhalb eines PN gefunden werden können, wurden weitere, meist durch die Systembiologie entwickelte, Analysemethoden implementiert. Dazu zählen zum Beispiel die Minimal Cut Sets, die Maximal Common Transitions Sets oder Knock-out-Analysen. Mit MonaLisa ist aber auch die Simulation des dynamischen Verhaltens des modellierten biologischen Systems möglich. Hierzu stehen sowohl deterministische als auch stochastische Verfahren, beispielsweise der Algorithmus von Gillespie zur Simulation chemischer Systeme, zur Verfügung. Für alle zur Verfügung gestellten Analysemethoden wird ebenfalls eine visuelle Repräsentation ihrer Resultate bereitgestellt. Im Falle der Invarianten werden deren Elemente beispielsweise in der Visualisierung des PN eingefärbt. Die Resultate der Simulationen oder der topologischen Analyse können durch verschiedene Graphen ausgewertet werden. Um eine Schnittstelle zu anderen Anwendungen zu schaffen, wurde für MonaLisa eine Unterstützung einiger gängiger Dateiformate der Systembiologie geschaffen, so z.B. für SBML und KGML.
Der zweite Teil der Arbeit beschäftigt sich mit der topologischen Analyse eines Datensatzes von 2641 Gesamtgenom Modellen aus der path2models-Datenbank. Diese Modelle wurden automatisiert aus dem vorhandenen Wissen der KEGG- und der MetaCyc-Datenbank erstellt. Die Analyse der topologischen Eigenschaften eines Graphen ermöglicht es, grundlegende Aussagen über die globalen Eigenschaften des modellierten Systems und dessen Entstehungsprozesses zu treffen. Daher ist eine solche Analyse oft der erste Schritt für das Verständnis eines komplexen biologischen Systems. Für die Analyse der Knotengrade aller Reaktionen und Metaboliten dieser Modelle wurden sie in einem ersten Schritt in PN transformiert. Die topologischen Eigenschaften von metabolischen Systemen werden in der Literatur schon sehr gut beschrieben, wobei die Untersuchungen meist auf einem Netzwerk der Metaboliten oder der Reaktionen basieren. Durch die Verwendung von PN wird es möglich, die topologischen Eigenschaften von Metaboliten und Reaktionen in einem gemeinsamen Netzwerk zu untersuchen. Die Motivation hinter diesen Untersuchungen war, zu überprüfen, ob die schon beschriebenen Eigenschaften auch für eine Darstellung als PN zutreffen und welche neuen Eigenschaften gefunden werden können. Untersucht wurden der Knotengrad und der Clusterkoeffizient der Modelle. Es wird gezeigt, dass einige wenige Metaboliten mit sehr hohem Knotengrad für eine ganze Reihe von Effekten verantwortlich sind, wie beispielsweise dass die Verteilung des Knotengrades und des Clusterkoeffizienten, im Bezug auf Metaboliten, skalenfrei sind und dass sie für die Vernetzung der Nachbarschaft von Reaktionen verantwortlich sind. Weiter wird gezeigt, dass die Größe eines Modelles Einfluss auf dessen topologische Eigenschaften hat. So steigt die Vernetzung der Nachbarschaft eines Metaboliten, je mehr Metaboliten in einem biologischen System vorhanden sind, gleiches gilt für den durchschnittlichen Knotengrad der Metaboliten.
Mathematical modeling of Arabidopsis thaliana with focus on network decomposition and reduction
(2014)
Systems biology has become an important research field during the last decade. It focusses on the understanding of the systems which emit the measured data. An important part of this research field is the network analysis, investigating biological networks. An essential point of the inspection of these network models is their validation, i.e., the successful comparison of predicted properties to measured data. Here especially Petri nets have shown their usefulness as modeling technique, coming with sound analysis methods and an intuitive representation of biological network data.
A very important tool for network validation is the analysis of the Transition-invariants (TI), which represent possible steady-state pathways, and the investigation of the liveness property. The computational complexity of the determination of both, TI and liveness property, often hamper their investigation.
To investigate this issue, a metabolic network model is created. It describes the core metabolism of Arabidopsis thaliana, and it is solely based on data from the literature. The model is too complex to determine the TI and the liveness property.
Several strategies are followed to enable an analysis and validation of the network. A network decomposition is utilized in two different ways: manually, motivated by idea to preserve the integrity of biological pathways, and automatically, motivated by the idea to minimize the number of crossing edges. As a decomposition may not be preserving important properties like the coveredness, a network reduction approach is suggested, which is mathematically proven to conserve these important properties. To deal with the large amount of data coming from the TI analysis, new organizational structures are proposed. The liveness property is investigated by reducing the complexity of the calculation method and adapting it to biological networks.
The results obtained by these approaches suggest a valid network model. In conclusion, the proposed approaches and strategies can be used in combination to allow the validation and analysis of highly complex biological networks.
This work investigated the applicability of global pairwise sequence alignment to the detection of functional analogues in virtual screening. This variant of sequence comparison was developed for the identification of homologue proteins based on amino acid or nucleotide sequences. Because of the significant differences between biopolymers and small molecules several aspects of this approach for sequence comparison had to be adapted. All proposed concepts were implemented as the ‘Pharmacophore Alignment Search Tool’ (PhAST) and evaluated in retrospective experiments on the COBRA dataset in version 6.1. The aim to identify functional analogues raised the necessity for identification and classification of functional properties in molecular structures. This was realized by fragment-based atom-typing, where one out of nine functional properties was assigned to each non-hydrogen atom in a structure. These properties were pre-assigned to atoms in the fragments. Whenever a fragment matched a substructure in a molecule, the assigned properties were transferred from fragment atoms to structure atoms. Each functional property was represented by exactly one symbol. Unlike amino acid or nucleotide sequences, small drug-like molecules contain branches and cycles. This was a major obstacle in the application of sequence alignment to virtual screening, since this technique can only be applied to linear sequences of symbols. The best linearization technique was shown to be Minimum Volume Embedding. To the best of knowledge, this work represents the first application of dimensionality reduction to graph linearization. Sequence alignment relies on a scoring system that rates symbol equivalences (matches) and differences (mismatches) based on functional properties that correspond to rated symbols. Existing scoring schemes are applicable only to amino acids and nucleotides. In this work, scoring schemes for functional properties in drug-like molecules were developed based on property frequencies and isofunctionality judged from chemical experience, pairwise sequence alignments, pairwise kernel-based assignments and stochastic optimization. The scoring system based on property frequencies and isofunctionality proved to be the most powerful (measured in enrichment capability). All developed scoring systems performed superior compared to simple scoring approaches that rate matches and mismatches uniformly. The frameworks proposed for score calculations can be used to guide modifications to the atom-typing in promising directions. The scoring system was further modified to allow for emphasis on particular symbols in a sequence. It was proven that the application of weights to symbols that correspond to key interaction points important to receptor-ligand-interaction significantly improves screening capabilities of PhAST. It was demonstrated that the systematic application of weights to all sequence positions in retrospective experiments can be used for pharmacophore elucidation. A scoring system based on structural instead of functional similarity was investigated and found to be suitable for similarity searches in shape-constrained datasets. Three methods for similarity assessment based on alignments were evaluated: Sequence identity, alignment score and significance. PhAST achieved significantly higher enrichment with alignment scores compared to sequence identity. p-values as significance estimates were calculated in a combination of Marcov Chain Monte Carlo Simulation and Importance Sampling. p-values were adapted to library size in a Bonferroni correction, yielding E-values. A significance threshold of an E-value of 1*10-5 was proposed for the application in prospective screenings. PhAST was compared to state-of-the-art methods for virtual screening. The unweighted version was shown to exhibit comparable enrichment capabilities. Compound rankings obtained with PhAST were proven to be complementary to those of other methods. The application to three-dimensional instead of two-dimensional molecular representations resulted in altered compound rankings without increased enrichment. PhAST was employed in two prospective applications. A screening for non-nucleoside analogue inhibitors of bacterial thymidin kinase yielded a hit with a distinct structural framework but only weak activity. The search for drugs not member of the NSAID (non-steroidal anti-inflammatory drug) class as modulators of gamma-secretase resulted in a potent modulator with clear structural distiction from the reference compound. The calculation of significance estimates, emphasizing on key interactions, the pharmacophore elucidation capabilities and the unique compound rannkings set PhAST apart from other screening techniques.
Neuropsychiatric disorders are complex, highly heritable but incompletely understood disorders. The clinical and genetic heterogeneity of these disorders poses a significant challenge to the identification of disorder related biomarkers. Besides significant progress in unveiling the genetic basis of these disorders, the underlying causes and biological mechanisms remain obscure. With the advancement in the array, sequencing, and big data technologies, a huge amount of data is generated from individuals across different platforms and in various data structures. But there is a paucity of bioinformatics tools that can integrate this plethora of data. Therefore, there is a need to develop an integrative bioinformatics data analysis tool that combines biological and clinical data from different data types to better understand the underlying genetics.
This thesis presents a bioinformatics pipeline implementing data from different platforms to provide a thorough understanding of the genetic etiology of a neuropsychiatric quantitative as well as a qualitative trait of interest. Throughout the thesis, we present two aspects: one is the development and architecture of the bioinformatics pipeline named MApping the Genetics of neuropsychiatric traits to the molecular NETworks of the human brain (MAGNET). The other part demonstrates the implementation and usefulness of MAGNET analysing large Autism Spectrum Disorder (ASD) cohorts.
MAGNET is a freely available command-line tool available on GitHub (https://github.com/SheenYo/MAGNET). It is implemented within one framework using data integration approaches based on state-of-the-art algorithms and software to ultimately identify the genes and pathways genetically associated with a trait of interest. MAGNET provides an edge over the existing tools since it performs a comprehensive analysis taking care of the data handling and parsing steps necessary to communicate between the different APIs (Application Program Interface). Thus, this avoids the in-between data handling steps required by researchers to provide output from one analysis to the next. Moreover, depending on the size of the dataset users can deduce important information regarding their trait of interest within a time frame of a few days. Besides gaining insights into genetic associations, one of the central features is the mapping of the associated genes onto developing human brain implementing transcriptome data of 16 different brain regions starting from the 5th post-conceptional week to over 40 years of age.
In the second part as proof of concept, we implemented MAGNET on two ASD cohorts. ASD is a group of psychiatric disorders. Clinically, ASD is characterized by the following psychopathology: A) limitations in social interaction and communication, and B) restricted, repetitive behavior. The etiology of this disorder is extremely complex due to its heterogeneous clinical traits and genetics. Therefore, to date, no reliable biomarkers are identified. Here, the aim is to characterize the genetic architecture of ASD taking into account the two aforementioned ASD diagnostic domains. As well as to investigate if these domains are genetically linked or independent of each other. Moreover, we addressed the question if these traits share genetic risk with the categorical diagnosis of ASD and how much of the phenotypic variance of these traits can be explained by the underlying genetics.
We included affected individuals from two ASD cohorts, i.e. the Autism Genome Project (AGP) and a German cohort consisting of 2,735 and 705 families respectively. MAGNET was applied to each of the ASD subdomains as a quantitative dependent variable. MAGNET is divided into five main sections i.e. (1) quality check of the genotype data, (2) imputation of missing genotype data, (3) association analysis of genotype and trait data, (4) gene-based analysis, and (5) enrichment analysis using gene expression data from the human brain.
MAGNET was applied to each of the individual traits in each cohort to perform quality control of the genetic data and imputed the missing data in an automated fashion. MAGNET identified 292 known and new ASD risk genes. These genes were subsequently assigned to biological signaling pathways and gene ontologies via MAGNET. The underlying biological mechanisms converged with respect to neuronal transmission and development processes. By reconciling these genes with the transcriptome of the developing human brain, MAGNET was able to identify that the significant genes associated with the subdomains are expressed at specific time points in brain areas such as the hippocampus, amygdala, and cortical regions. Further, we found that ASD subdomains related to domain A but not
to domain B have a shared genetic etiology.
Die digitale Pathologie ist ein neues, aber stetig wachsendes, Feld in der Medizin. Die kontinuierliche Entwicklung von verbesserten digitalen Scannern erlaubt heute das Abscannen von kompletten Gewebeschnitten und Whole Slide Images gewinnen an Bedeutung. Ziel dieser Arbeit ist die Methodenentwicklung zur Analyse von Whole Slide Images des klassischen Hodgkin Lymphoms. Das Hodgkin-Lymphom, oder Morbus Hodgkin, ist eine Tumorerkrankung des Lymphsystems, bei der die monoklonalen Tumorzellen in der Regel von B-Lymphozyten im Vorläuferstadium abstammen.
Etwas mehr als 9.000 Hodgkin-Lymphom-Fälle werden jährlich in den USA diagnostiziert. Zwar ist die 5-Jahre-Überlebensrate für Hodgkin-Lymphome mit 85,3 % vergleichsweise hoch, dennoch werden etwa 1.100 Todesfälle pro Jahr in den USA registriert. Auf mikroskopischer Ebene sind die Hodgkin-Reed-Sternberg Zellen (HRS-Zellen) typisch für das klassische Hodgkin Lymphom. HRS-Zellen haben einen oder mehrere Zellkerne, die stark vergrößert sind und eine grobe Chromatinstruktur aufweisen. Immunhistologisch gibt es für HRS-Zellen charakterisierende Marker, so sind HRS-Zellen positiv für den Aktivierungsmarker CD30.
Neben der konventionellen Mikroskopie, ermöglichen Scanner das Digitalisieren von ganzen Objektträgern (Whole Slide Image). Whole Slide Images werden bisher wenig in der Routinediagnostik eingesetzt. Ein großer Vorteil von digitalisierten Gewebeschnitten bietet sich bei der computergestützten Analyse. Automatisierte Bildanalyseverfahren wie Zellerkennung können Pathologen bei der Diagnose unterstützen, indem sie umfassende Statistiken zur Anzahl und Verteilung von immungefärbten Zellen bereitstellen.
Die untersuchten immunohistologischen Bilder wurden vom Dr. Senckenbergisches Institut für Pathologie des Universitätsklinikums Frankfurt bereit gestellt. Die betrachteten Gewebeschnitte sind gegen CD30 immungefärbt, einem Membranrezeptor, welcher in HRS-Zellen und aktivierten Lymphozyten exprimiert wird. Die Gewebeschnitte wurden mit einem Aperio ScanScope slide scanner digitalisiert und liegen mit einer hohen Auflösung von 0,25 μm pro Pixel vor. Bei den vorliegenden Gewebeschnittgrößen ergeben sich Bilder mit bis zu 90.000 x 90.000 Pixeln.
Der untersuchte Bilddatensatz umfasst 35 Bilder von Lymphknotengewebeschnitten der drei Krankheitsbilder: Gemischtzelliges klassisches Hodgkinlymphom, noduläres klassisches Hodgkinlymphom und Lymphadenitis. Die Bildverarbeitungspipeline wurden teils neu implementiert, teils von etablierten Bilderkennungssoftware und -bibliotheken wie CellProfiler und Java Advanced Imaging verwendet. CD30-positive Zellobjekte werden in den Gewebeschnitten automatisiert erkannt und neben der globalen Position im Whole Slide Image weitere Morphologiedeskriptoren berechnet, wie Fläche, Feret-Durchmesser, Exzentrität und Solidität. Die Zellerkennung zeigt mit 84 % eine hohe Präzision und mit 95 % eine sehr gute Sensitivität.
Es konnte gezeigt werden, dass in Lymphadenitisfällen im Schnitt deutlich weniger CD30- positive Zellen präsent sind als in klassisches Hodgkinlymphom. Während hier im Schnitt nur rund 3.000 Zellen gefunden wurden, lag der Durchschnitt für das Mischtyp klassisches Hodgkinlymphom bei rund 19.000 CD30 positiven Zellen. Während die CD30-positiven Zellen in Lymphadenitisfällen relativ gleichmäßig verteilt sind, bilden diese in klassischen Hodgkinlymphom-Fällen Zellcluster höherer Dichte.
Die berechneten Morphologiedeskriptoren bieten die Möglichkeit die Gewebeschnitte und den Krankheitsverlauf näher zu beschreiben. Zudem sind bisher Größe und Erscheinungsbild der HRS-Zellen hauptsächlich anhand manuell ausgewählter Zellen bestimmt worden. Ein Maß für die Ausdehnung der Zellen ist der maximale Feret-Durchmesser. Bei CD30-Zellen im klassischen Hodgkinlymphom liegt dieser im Durchschnitt bei 20 μm und ist somit deutlich größer als die durchschnittlich gemessenen 15 μm in Lymphadenitis.
Es wurde ein graphentheoretischer Ansatz gewählt, um die CD30 positiven Zellen und ihre räumliche Nachbarschaft zu modellieren. In CD30-Zellgraphen von klassischen Hodgkinlymphom-Gewebeschnitten ist der durchschnittliche Knotengrad gegenüber den von Lymphadenitis-Bildern stark erhöht. Der Vergleich mit Zufallsgraphen zeigt, dass die beobachteten Knotengradverteilungen nicht für eine zufällige Verteilung der Zellen im Gewebeschnitt sprechen. Eigenschaften und Verteilung von Communities in CD30-Zellgraphen können hinzugenommen werden, um klassisches Hodgkinlymphom Gewebeschnitte näher zu charakterisieren.
Diese Arbeit zeigt, dass die Auswertung von Whole Slide Image unterstützend zur Verbesserung der Diagnose möglich ist. Die mehr als 400.000 automatisch erkannten CD30-positiven Zellobjekte wurden morphologisch beschrieben, und zusammen mit ihrer Position im Gewebeschnitt ist die Betrachtung wichtiger Eigenschaften des klassischen Hodgkinlymphoms realisierbar. Zellgraphen können durch weitere Zelltypen erweitert werden und auf andere Krankheitsbilder angewendet werden.
Reactive oxygen species are a class of naturally occurring, highly reactive molecules that change the structure and function of macromolecules. This can often lead to irreversible intracellular damage. Conversely, they can also cause reversible changes through post-translational modification of proteins which are utilized in the cell for signaling. Most of these modifications occur on specific cysteines. Which structural and physicochemical features contribute to the sensitivity of cysteines to redox modification is currently unclear. Here, I investigated the in uence of protein structural and sequence features on the modifiability of proteins and specific cysteines therein using statistical and machine learning methods. I found several strong structural predictors for redox modification, such as a higher accessibility to the cytosol and a high number of positively charged amino acids in the close vicinity. I detected a high frequency of other post-translational modifications, such as phosphorylation and ubiquitination, near modified cysteines. Distribution of secondary structure elements appears to play a major role in the modifiability of proteins. Utilizing these features, I created models to predict the presence of redox modifiable cysteines in proteins, including human mitochondrial complex I, NKG2E natural killer cell receptors and proximal tubule cell proteins, and compared some of these predictions to earlier experimental results.
Biologische Signalwege bilden komplexe Netzwerke aus, um die Zellantwort sensibel regulieren zu können. Systembiologische Ansätze werden eingesetzt, um biologische Systeme anhand von Computer-gestützten Modellen zu untersuchen. Ein mathematisches Modell erlaubt, neben der logischen Erfassung der Regulation des biologischen Systems, die systemweite Simulation des dynamischen Verhaltens und Analyse der Robustheit und Anfälligkeit.
Der TNFR1-vermittelte Signalweg reguliert essenzielle Zellvorgänge wie Entzündungsantworten,
Proliferation und Zelltod. TNFR1 wird von dem Zytokin TNF-α stimuliert und fördert daraufhin die Bildung verschiedener makromolekularer Komplexe, welche unterschiedliche Zellantworten einleiten, von der Aktivierung des Transkriptionsfaktors NF-κB, welcher die Expression von proliferationsfördernden Genen reguliert, bis zu zwei Formen des Zelltods, der Apoptose und der Nekroptose. Die Regulation der verschiedenen Zellantworten wird auch als molekularer Schalter bezeichnet. Die exakten molekularen Vorgänge, welche die Zellantwort modulieren, sind noch nicht vollständig entschlüsselt. Eine Fehlregulation des Signalwegs kann chronische Entzündungen hervorrufen oder die Entstehung von Tumoren fördern.
In dieser Thesis haben wir die neuesten Erkenntnisse der Forschung des TNFR1-Signalwegs anhand von umfangreichen Interaktionsdaten aus der Literatur erstmals in einem Petrinetz-Modell erfasst und analysiert. Das manuell kuratierte Modell umfasst die sequenziellen Prozesse der NF-κB-Aktivierung, Apoptose und Nekroptose und berücksichtigt den Einfluss posttranslationaler Modifikationen.
Weiterhin wurden Analysemethoden für Signalwegs-Modelle entwickelt, welche die spezifischen Anforderungen dieser biologischen Systeme berücksichtigen und eine biologisch motivierte Netzwerkanalyse ermöglichen. Die Manatee-Invarianten identifizieren Signalflüsse im Gleichgewichtszustand in Modellen, die Zyklen aufweisen, und werden als Linearkombination von Transitions-Invarianten gebildet. Diese Signalflüsse erfassen idealerweise einen Prozess von der Rezeptorstimulation zur Zellantwort in einem Modell eines Signalwegs. Die Bestimmung aller möglichen Signalflüsse in Modellen von Signalwegen ist eine notwendige Voraussetzung für weitere biologisch motivierte Analysen, wie die in silico-Knockout Analyse. Wir haben ebenfalls ein neues Konzept zur Untersuchung von in silico-Knockouts vorgestellt. Die Effekte der in silico-Knockouts auf einzelne Komplexe und Prozesse des Signalwegs werden in der in silico-Knockout-Matrix repräsentiert. Wir haben die Software-Anwendung isiKnock entwickelt, welche beide Konzepte kombiniert und eine systematische Knockout-Analyse von Petrinetz-Modellen unterstützt.
Das Petrinetz-Modell des TNFR1-Signalwegs wurde auf seine elementaren Eigenschaften geprüft und die etablierten Analysen wie Platz-Invarianten und Transitions-Invarianten durchgeführt. Hierbei konnten die Transitions-Invarianten nicht in allen Fällen komplette biologische Signalflüsse beschreiben. Wir haben ebenfalls die neu vorgestellten Methoden auf das Petrinetz-Modell angewandt. Anhand der Manatee-Invarianten konnten wir die zusammenhängenden Signalflüsse identifizieren und nach ihrem biologischen Ausgang klassifizieren sowie die Auswirkungen der Rückkopplungen untersuchen. Wir konnten zeigen, dass die survival-Antwort durch die Aktivierung von NF-κB am häufigsten auftritt, danach die Apoptose, gefolgt von der Nekroptose. Die alternativen Signalflüsse in Form der Manatee-Invarianten spiegeln die Robustheit des biologischen Systems wider. Wir führten eine ausgiebige in silico-Knockout-Analyse basierend auf den Manatee-Invarianten durch, um die Proteine des Signalwegs nach ihrem Einfluss einzustufen und zu gruppieren. Die Proteine des Komplex I wiesen hierbei den größten Einfluss auf, angeführt von der Rezeptorstimulation und RIP1. Wir betrachteten und diskutierten die Regulation des molekularen Schalters anhand der Knockout-Analyse von selektierten Proteinen und deren Auswirkung auf wichtige Komplexe im Modell. Wir identifizierten die Ubiquitinierung in Komplex I sowie die NF-κB-abhängige Genexpression als die wichtigen Kontrollpunkte des TNFR1-Signalwegs. In Komplex II ist die Regulation der Aktivierung der Caspase-Aktivität entscheidend.
Die umfangreiche Netzwerkanalyse basierend auf Manatee-Invarianten und systematischer in silico-Knockout-Analyse verifizierte das Petrinetz-Modell und erlaubte die Untersuchung der Robustheit und Anfälligkeit des Systems. Die neu entwickelten Methoden ermöglichen eine fundierte, biologisch relevante Untersuchung von in silico-Modellen von Signalwegen. Der systembiologische Ansatz unterstützt die Aufklärung der Regulation und Funktion des verflochtenen Netzwerks des TNFR1-Signalwegs.
Local protein synthesis has re-defined our ideas on the basic cellular mechanisms that underlie synaptic plasticity and memory formation. The population of messenger RNAs that are localised to dendrites, however, remains sparsely identified. Furthermore, neuronal morphological complexity and spatial compartmentalisation require efficient mechanisms for messenger RNA localisation and control over translational efficiency or transcript stability. 3’ untranslated regions, downstream from stop codons, are recognised for providing binding platforms for many regulatory units, thus encoding the processing of the above processes. The hippocampus, a part of the brain involved in the formation, organisation and storage of memories, provides a natural platform to investigate patterns of RNA localisation. The hippocampus comprises tissue layers, which naturally separate the principle neuronal cell bodies from their processes (axons and dendrites). Identifying the full-complement of localised transcripts and associated 3’UTR isoforms is of great importance to understand both basic neuronal functions and principles of synaptic plasticity. These findings can be used to study the properties of neuronal networks as well as to understand how these networks malfunction in neuronal diseases.
Here, deep sequencing is used to identify the mRNAs resident in the synaptic neuropil in the hippocampus. Analysis of a neuropil data set yields a list of 8,379 transcripts of which 2,550 are localised in dendrites and/or axons. Using a fluorescent barcode strategy to label individual mRNAs shows that the relative abundance of different mRNAs in the neuropil varies over 5 orders of magnitude. High-resolution in situ hybridisation validated the presence of mRNAs in both cultured neurons and hippocampal slices. Among the many mRNAs identified, a large fraction of known synaptic proteins including signaling molecules, scaffolds and receptors is discovered. These results reveal a previously unappreciated enormous potential for the local protein synthesis machinery to supply, maintain and modify the dendritic and synaptic proteome.
Using advances in library preparation for next generation sequencing experiments, the diversity of 3’UTR isoforms present in localised transcripts from the rat hippocampus is examined. The obtained results indicate that there is an increase in 3’UTR heterogeneity and 3’UTR length in neuronal tissue. The evolutionary importance of the 3’UTR diversity and correlation with changes in species,tissue and cell complexity is investigated. The conducted analysis reveals the population of 3’UTR isoforms required for transcript localisation in overall neuronal transcriptome as well as the regulatory elements and binding sites specific for neuronal compartments. The configuration of poly(A) signals is correlated with gene function and can be further exploit to determine similar mechanisms for alternative polyadenylation.
Usage of custom specified methods for next-generation sequencing as well as novel approaches for RNA quantification and visualisation necessitate the development and implementation of new downstream analytic methods. Library methods for data-mining transcripts annotation, expression and ontology relations is provided. Usage of a specialised search engine targeting key features of previous experiments is proposed. A processing pipeline for NanoString technology, defining experimental quality and exploiting methods for data normalisation is developed. High-resolution in situ images are analysed by custom application, showing a correlation between RNA quantity and spatial distribution. The vast variety of bioinformatic methods included in this work indicates the importance of downstream analysis to reach biological conclusions. Maintaining the integrability and modularity of our implementations is of great priority, as the dynamic nature of many experimental techniques requires constant improvement in computational analysis.