Refine
Year of publication
Document Type
- Doctoral Thesis (22)
Language
- German (13)
- English (8)
- Multiple languages (1)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
- Bilobalid (1)
- Bilobalide (1)
- GC-MS (1)
- Ginkgo biloba (1)
- Ginkgobaum (1)
- Ginkgoblatt-Extrakt (1)
- HIV Humanized Mice (1)
- Ischämie (1)
- Ketonkörper (1)
- MCAO (1)
Institute
- Biochemie, Chemie und Pharmazie (11)
- Pharmazie (9)
- Biochemie und Chemie (2)
Pharmakologische Charakterisierung zentraler cholinerger Dysfunktionen in transgenen Mausmodellen
(2013)
Die cholinerge Dysfunktion steht in Zusammenhang mit der Ätiologie der Alzheimer-Krankheit (AD). Das Absterben cholinerger Neurone führt zu einer verminderten cholinergen Neurotransmission im Gehirn. Die Abnahme der Acetylcholinesterase-(AChE)-Aktivität und eine leichte Zunahme der Butyrylcholinesterase-(BChE)-Aktivität zählen zu den charakteristischen Merkmalen der AD. Acetylcholinesterase-Inhibitoren (AChEI) sollen Acetylcholin (ACh)-Konzentrationen im Gehirn steigern, um cholinerge Defizite auszugleichen. Allerdings zeigen AChEI in der Klinik nur einen mäßigen Erfolg. Zur Optimierung der Therapie mit Esterasehemmern, wurden im Rahmen dieser Arbeit drei transgene Mausmodelle mit cholinergen Veränderungen untersucht.
Zunächst wurde die AChE-heterozygote (AChE +/-) Maus analysiert. Die Maus weist bei einer 60-prozentigen AChE-Restaktivität (60,6 U/mg in AChE +/- versus 100,0 U/mg in WT-Mäusen) nur sehr leicht erhöhte ACh-Konzentrationen im Gehirn (9,0±5,1 fmol/5 µl in AChE+/- versus 5,0±3,6 fmol/5 µl in der WT-Maus) auf, die mithilfe der in vivo Mikrodialyse bestimmt wurden. PET-Studien haben gezeigt, dass die zerebrale AChE-Restaktivität in AD-Patienten, die mit Donepezil behandelt wurden, immer noch 70 bis 90% beträgt. Vom AChE +/- Modell kann abgeleitet werden, dass eine bis zu 50-prozentige AChE-Hemmung durch AChEI nicht genügt, um ACh-Konzentrationen im Gehirn von Patienten deutlich zu erhöhen. Leider ist eine Dosiserhöhung der AChEI durch das Auftreten von unerwünschten Wirkungen (Diarrhö, Übelkeit, Erbrechen) begrenzt.
Hippocampale ACh-Konzentrationen in der AChE +/- Maus steigen nach intrazerebraler und intraperitonealer Gabe von selektiven AChEI signifikant stärker an als in WT Mäusen. AChEI können ACh-Konzentrationen also auch noch bei einer verminderten AChE-Aktivität steigern. Die Cholinacetyltransferase-Aktivität ist in AChE +/- Mäusen unverändert, während der hochaffine Cholintransport signifikant um 58% erhöht ist. Veränderungen der kognitiven Leistungsfähigkeit der AChE +/- Maus sind in Verhaltenstests nicht zu erkennen. Es folgte die Untersuchung der PRiMA (Prolin-reicher Membrananker) defizienten Maus und der AChE del5 6-Maus. PRiMA ist ein transmembranäres Protein, das zur Prozessierung der AChE und ihrer Verankerung in der Membran verantwortlich ist. PRiMA kommt hauptsächlich im Gehirn vor, daher kann die PRiMA-KO-Maus dort keine AChE-Verankerung ausbilden. Die AChEdel5 6-Maus kann weder im Gehirn noch in der Peripherie AChE-Verankerungen formen, da eine Domäne fehlt, die essentiell für die Wechselwirkung mit Anker-Proteinen ist. Beide Mausmodelle weisen geringe AChE-Restaktivitäten (< 10 %) und drastisch erhöhte ACh-Konzentrationen im Gehirn auf. Die ACh-Konzentrationen im Striatum der PRiMA-KO-Maus sind circa 350 fach erhöht (4±3 fmol/5 µl in WT-Mäusen versus 1450±700 fmol/5 µl in PRiMA-KO-Mäusen). Allerdings zeigt die PRiMA-KO-Maus keinen Phänotyp, während die AChE del5 6 Maus krank aussieht (Tremor, geringes Körpergewicht, stumpfes Fell). Beide Modelle bestätigen, dass ACh-Spiegel im Gehirn nur dann stark ansteigen, wenn die AChE immens gehemmt ist. Ferner kann aus der PRIMA-KO-Maus gefolgert werden, dass die Interaktion zwischen AChE und PRiMA ein geeignetes Target für die Therapie der cholinergen Dysfunktion darstellen könnte.
Nach intrazerebraler Applikation eines selektiven AChE-Inhibitors (BW284c51 1 µM), steigen die ACh-Spiegel im Gehirn beider transgener Mäuse signifikant an. Eine Veränderung der ACh-Konzentrationen nach BChEI Gabe ist weder bei der AChE +/-, der PRiMA-KO, noch bei der AChE del5 6 Maus zu sehen. Die BChE trägt bei einer AChE-Restaktivität (10 bis 40 %) nicht zum hydrolytischen Abbau von ACh bei. Daraus lässt sich ableiten, dass bei stark verminderten AChE-Aktivitäten, der Einsatz von BChEI vermutlich keinen weiteren Nutzen erbringt. Um die Adaptionsmechanismen der PRiMA-KO-Maus aufzuklären, wurde die M2-Rezeptor Funktion (negativer Feedback-Mechanismus) getestet. Da die striatalen ACh-Konzentrationen in der PRiMA-KO-Maus nach Behandlung (lokal und i.p.) mit M2-Agonisten und -Antagonisten kaum verändert sind, lässt dies einen nicht-funktionalen M2 vermuten.
Aus den Ergebnissen können wichtige Erkenntnisse über die Therapie der Alzheimer-Krankheit gewonnen werden. Die Bestimmung der ACh-Konzentrationen, in Gegenwart unterschiedlicher AChE-Aktivitäten der verschiedenen Mausmodelle, zeigt den Zusammenhang zwischen ACh und AChE im Säugerhirn und erklärt die limitierte klinische Wirksamkeit der AChE-Inhibitoren. Die Hemmung der Interaktion zwischen PRiMA und der AChE stellt eine denkbare Interventionsmöglichkeit dar, um ACh-Konzentrationen im Gehirn zu steigern, ohne dabei periphere Nebenwirkungen auszulösen. Ziel der weiteren Forschung sollte sein, PRiMA bzw. die Interaktion zwischen PRiMA und AChE als Target für die Therapie der Alzheimer-Krankheit weiter zu erforschen.
Seit einigen Jahren ist bekannt, dass Sphingolipide nicht nur eine strukturgebende Funktion in der Plasmamembran aufweisen, sondern ebenfalls als Botenstoffe intra- und extrazellulär aktiv sind. Sphingosin-1-Phosphat (S1P) bildet dabei einen Schlüssel-Metaboliten, da es verschiedene Zellfunktionen wie Wachstum und Zelltod beeinflusst. Es wird durch zwei Isoformen der Sphingosinkinasen, SK1 und SK2, gebildet. Die SK1 wurde bereits gut untersucht und es konnte gezeigt werden, dass sie eine wichtige Rolle beim Zellwachstum einnimmt und einen entscheidender Regulator bei inflammatorischen Erkrankungen und Krebs darstellt. Über die SK2 ist soweit wenig bekannt und die Ergebnisse sind zum Teil kontrovers. Sowohl pro-proliferative als auch anti-proliferative Funktionen der SK2 wurden beschrieben. Andererseits handelt meine Arbeit von Nierenfibrose, da beschrieben wurde, dass Sphingolipide einen wichtigen Einfluss auf die Entwicklung chronischer Nierenerkrankungen nehmen. Nierenfibrose stellt das Endstadium chronischer Nierenerkrankungen dar und führt zu einer Akkumulation der Extrazellulärmatrix, Organvernarbung und zum Verlust der Nierenfunktion. Die SK1 spielt dabei eine protektive Rolle bei der Entstehung von Nierenfibrose. Deshalb sollte in dieser Arbeit die Rolle der Sk2 bei der Entstehung von Nierenfibrose untersucht werden.
Im ersten Teil meiner Arbeit wurde das Mausmodell der unilateralen Ureterobstruktion (UUO) verwendet, welches zur Entwicklung einer tubulointerstitiellen Nephritits und nachfolgender Fibrose führt. Es konnte dabei gezeigt werden, dass sowohl die Protein-Expression als auch die Aktivität der SK2 im fibrotischen Nierengewebe gesteigert wurden. Allgemein wiesen die SK2-/--Mäuse eine verminderte Fibrose in Folge des UUO auf im Vergleich zu den Wildtyp-Mäusen. Dies wurde bestätigt durch eine reduzierte Kollagenakkumulation, sowie eine verminderte Protein-Expression von Fibronektin-1, Kollagen-1, α-smooth muscle actin, connective tissue growth factor (CTGF) und Plasminogen-Aktivator-Inhibitor1 (PAI-1). Diese Effekte gingen einher mit einer gesteigerten Protein-Expression des inhibitorischen Smad7 und erhöhten Sphingosin-Spiegeln in SK2-/--UUO-Nieren. Auf mechanistischer Ebene vermindern die erhöhten Sphingosin-Spiegel die durch transforming growth factor-β (TGFβ) induzierte Kollagenakkumulation, die PAI-1- und CTGF-Expression, aber induzieren die Smad7-Expression in primären Nierenfibroblasten. In einem komplementären Versuch mit hSK2 tg-Mäusen wurde eine verstärkte Entstehung von Nierenfibrose mit erhöhter Kollagenakkumulation, sowie erhöhte Protein-Expressionen von Fibronektin-1, Kollagen-1, α-smooth muscle actin, CTGF und PAI-1 festgestellt. Die Smad7-Expression dagegen war vermindert.
Im zweiten Teil meiner Arbeit stand der glomeruläre Teil der Niere im Fokus und es wurde untersucht, ob die Überexpression der SK2 zu einer phänotypischen Veränderung der glomerulären Mesangiumzellen führt. Mesangiumzellen wurden dazu aus den hSK2 tg-Mäuse isoliert und charakterisiert. Es konnte gezeigt werden, dass hSK2 und mSK2 in den transgenen Zellen hauptsächlich in der zytosolischen Fraktion lokalisiert sind, während S1P ausschließlich im Kern akkumulierte. Weiterhin konnte eine verminderte Proliferation unter normalen Wachstumsbedingungen der hSK2 tg-Zellen im Vergleich zu den Kontrollzellen beobachtet werden. Die Zellen reagierten auch sensitiver auf Stress-induzierte Apoptose. Auf molekularer Ebene konnte dies durch eine reduzierte ERK- und Akt/PKB-Aktivierung erklärt werden. Nach Staurosporin-Behandlung wurde Apoptose durch den intrinsischen, mitochondrialen Apoptosesignalweg induziert. Dabei konnte eine reduzierte anti-apoptotische Bcl-xL-Expression und vermehrte Prozessierung von Caspase-9 und Caspase-3 und PARP beobachtet werden.
Zusammenfassend konnte in dieser Arbeit gezeigt werden, dass eine verminderte tubulointerstitielle Fibrose-Entstehung durch die Deletion der SK2, sowie anti-proliferative und Apoptose-induzierende Effekte durch die SK2 in Mesangiumzellen nachgewiesen werden konnten. Somit könnten SK2-Inhibitoren die Entstehung tubulointerstitieller Fibrose und mit Proliferation assoziierte Erkrankungen wie mesangioproliferative Glomerulonephritis positiv beeinflussen.
An overexpression of the E3 ubiquitin ligase TRIM25 is implicated in several human cancers and frequently correlates with a poor prognosis and occurrence of therapy resistance in patients. Previous studies of our group have identified the mRNA encoding the pro-apoptotic caspase-2 as a direct target of the ubiquitous RNA binding protein human antigen R (HuR). The constitutive HuR binding observed in colon carcinoma cells negatively interferes with the translation of caspase-2 mainly through binding to the 5' untranslated region (UTR) of caspase-2 and thereby confers an increased survival of tumor cells. The main objective of this thesis was to unravel novel regulatory proteins critically involved in the control of caspase-2 translation and their impact on therapeutic drug resistance of human colon carcinoma cells. By employing RNA affinity chromatography in combination with mass-spectrometry, among several putative caspase-2 mRNA binding proteins, we have identified the tripartite motif-containing protein 25 (TRIM25) as novel caspase-2 translation regulatory protein in colon carcinoma cells. The constitutive TRIM25 binding to caspase-2 mRNA in two different human colorectal carcinoma cell lines was validated by ribonucleoprotein (RNP)-immunoprecipitation (RIP)-RT-PCR assay and by means of biotin-labeled RNA-pull-down assay. Since caspase-2 is a caspase which is particularly involved in the DNA-damage-induced apoptosis, I tested the functional relevance of negative caspase-2 regulation by TRIM25 for chemotherapeutic drug-induced cell death of different adenocarcinoma cells by RNA interference (RNAi)- mediated loss-of-function and gain-of-function approaches. In the first part of the thesis, I could demonstrate that transient silencing of TRIM25 caused a significant increase in caspase-2 protein levels without affecting the amount of corresponding mRNAs. Mechanistically, the TRIM25 silencing-triggered increase in caspase-2 was totally impaired by cycloheximide, indicating that the stimulatory effects on caspase-2 levels depend on protein synthesis. This finding was corroborated by RNP/polysomal fractionation, which revealed that the transient knockdown of TRIM25 caused a significant redistribution of caspase-2 transcripts from the fraction of RNP particles to that from translationally active polyribosomes.
The second part of my thesis aimed at the elucidation of the functional consequences of the negative caspase-2 regulation by TRIM25 for enhanced tumor cell survival. Thereby, I found that the siRNA-mediated knockdown of TRIM25 caused a significant increase in the chemotherapeutic drug-induced cleavage of caspase-3 and to elevations in cytoplasmic cytochrome c levels implicating that TRIM25 depletion did mainly affect the intrinsic apoptotic pathway. Concordantly, the ectopic expression of TRIM25 caused a reduction in caspase-2 protein levels, concomitant with an attenuated sensitivity of tumor cells to doxorubicin.
To test the functional impact of caspase-2 in the TRIM25 depletion-dependent sensitization to drug-induced apoptosis, I employed a siRNA-mediated knockdown of caspase-2. Interestingly, the strong induction of caspase-3 and -7 cleavage after doxorubicin treatment was fully impaired after the additional knockdown of caspase-2, indicating the sensitizing effects by TRIM25 knockdown depend on caspase-2.
Data from this thesis identified the TRIM25 as a novel RNA-binding protein of caspase-2 mRNA, which negatively interferes with the translation of caspase-2 and which functionally contributes to chemotherapeutic drug resistance of colon carcinoma cells. Interfering with the negative TRIM25-caspase-2 axis may represent a promising therapeutic avenue for sensitizing colorectal cancers to conventional anti-tumor therapies.
Natural science is only just beginning to understand the complex processes surrounding transcription. Epitranscriptional regulation is in large parts conveyed by transcription factors (TFs) and two recently discovered small RNA (smRNA) species: microRNAs (miRNAs) and transfer RNA fragments (tRFs). As opposed to the fairly well-characterised function of TFs in shaping the phenotype of the cell, the effects and mechanism of action of smRNA species is less well understood. In particular, the multi-levelled combinatorial interaction (many-to-many) of smRNAs presents new challenges to molecular biology. This dissertation contributes to the study of smRNA dynamics in mammalian cells in several ways, which are presented in three main chapters.
I) The exhaustive analysis of the many-to-many network of smRNA regulation is reliant on bioinformatic support. Here, I describe the development of an integrative database capable of fast and efficient computation of complex multi-levelled transcriptional interactions, named miRNeo. This infrastructure is then applied to two use cases. II) To elucidate smRNA dynamics of cholinergic systems and their relevance to psychiatric disease, an integrative transcriptomics analysis is performed on patient brain sample data, single-cell sequencing data, and two closely related in vitro human cholinergic cellular models reflecting male and female phenotypes. III) The dynamics between small and large RNA transcripts in the blood of stroke victims are analysed via a combination of sequencing, analysis of sorted blood cell populations, and bioinformatic methods based on the miRNeo infrastructure. Particularly, importance and practicality of smRNA:TF:gene feedforward loops are assessed.
In both analytic scenarios, I identify the most pertinent regulators of disease-relevant processes and biological pathways implicated in either pathogenesis or responses to the disease. While the examples described in chapters three and four of this dissertation are disease-specific applications of miRNeo, the database and methods described have been developed to be applicable to the whole genome and all known smRNAs.
HIV vaccine preclinical testing is difficult because HIV’s only relevant hosts are humans and no correlates of protection are known. To this end, we are working on the humanization of different mouse strains with human peripheral blood mononuclear cells (PBMCs) as well as human hematopoietic stem cells (HSC) to generate a useful small animal model.
We generated immune deficient mice (NOD Scid IL2gc -/- /NOD Rag1-/- IL2gc -/-) expressing human MHC class II (HLA-DQ8) on a mouse class II deficient background (Ab-/-). Here, the human HLA-DQ8 should interact with the matching T cell receptors of transferred matching human PBMCs and therefore could support the functionality of the transferred human CD4+ cells in the mice.
Mice that were adoptively transferred with human HLA-DQ8 PBMCs only showed engraftment of CD3+ T cells. Surprisingly, the presence of HLA class II did not significantly change the repopulation rates in the mice. Also, the presence of HLA class II did not advance B cell engraftment, such that humoral immune responses were undetectable. However, the overall survival of DQ8-expressing mice was significantly prolonged, compared to mice expressing mouse MHC class II molecules, and correlated with an increased time span until onset of GvHD.
To avoid GVHD and to increase and maintain the level of human cell reconstitution over a long period of time, the same mouse strains were reconstituted with human HSC. Compared to PBMC-repopulated mice, HSC-reconstituted mice develop almost all subpopulations of the human immune system detectable at week 12 after HSC transfer. These mice developed adaptive immune responses after Tetanus Toxoide (TT) immunizations. In addition, we are testing the susceptibility of these humanized mice to different HIV strains with a detailed look at immune responses.
FPP und GGPP sind Intermediate des Mevalonat-Weges und fungieren als post-translationale Modifikation kleiner GTPasen. Die Prenylierung kleiner GTPasen erfolgt katalysiert von spezifischen Prenyltransferasen und ist notwendig um die kleinen GTPasen in Membranen zu verankern, wo ihre Aktivierung stattfindet. Zu den intrazellulären Funktionen der GTPasen gehören unter anderem der Aufbau des Cytoskeletts, das neuronale Zellwachstum, die Leitung und Ausläuferbildung von Axonen, das Dendritenwachstum, die Synapsenformation, die synaptische Plastizität und die Apoptose. Diese Funktionen spielen in der Gehirnalterung sowie in neurodegenerativen Erkrankungen wie der Alzheimer Demenz (AD) und auch bei der Glioblastoma multiforme (GBM) eine wichtige Rolle.
Im Zuge einer in vivo Studie an C57BL/6 Mäusen konnten in der vorliegenden Arbeit altersbedingte Veränderungen der Lokalisation verschiedener Rho- und Rab-GTPasen in Membran- und Cytosol-Präparationen sowie der GGTase-I in Gehirnen gealterter Tiere gezeigt werden. Die zelluläre Lokalisation der Rho GTPasen Rac1, RhoA und Cdc42 verschiebt sich im Alter zu reduzierten Membran-gebundenen und erhöhten cytosolischen Gehalten. Dies ist mit einer Reduktion der Protein- und mRNA- Gehalte des Enzyms GGTase-Iβ assoziiert, der Untereinheit der GGTase-I, die die Bindung des Isoprenoids GGPP an die Rho-GTPasen reguliert. Diese wiederum korrelieren direkt mit der altersbedingten Reduktion der relativen GGTase-Aktivität. Die in vitro Inhibition der GGTase-I mittels GGTI-2133 an SH-SY5Y Zellen erwies sich als Modell, welches die gleichen Effekte wie die gealterten Gehirne in vivo zeigt.
7, 8-Dihydroxyflavon (7, 8-DHF) ist ein natürlich vorkommendes Flavon, welches als hoch affiner selektiver TrkB-Rezeptor-Agonist fungiert und hierdurch wie das Neurotrophin BDNF das Überleben von Neuronen, deren Differenzierung, synaptische Plastizität und Neurogenese vermittelt. In vivo verursacht die orale Gabe von 7, 8-Dihydroxyflavon in Gehirnen alter Tiere eine Abnahme des Isoprenoids GGPP, die Zunahme der prenylierten Membran-gebundenen GTPase Rac1 und eine Reduktion des Gehaltes an Membran-gebundenem Rab3A auf das Niveau der Gehalte in den Gehirnen der jungen Kontroll-Tiere. Das Neurotrophin BDNF interagiert mit dem TrkB-Rezeptor und ist in der Lage direkt an den Rac1-spezifischen GEF Tiam1 zu binden, wodurch dieser aktiviert wird und Veränderungen der zellulären Morphologie der betroffenen Neurone induziert. Während das Alter und die orale Gabe von 7, 8-Dihydroxyflavon in vivo keine Effekte auf die Proteingehalte von BDNF und TrkB in der Tierstudie aufzeigten, konnte eine alterbedingte Reduktion von Tiam1 im Hirngewebe detektiert werden, die wiederum durch 7, 8-Dihydroxyflavon aufgehoben werden konnte.
Die Isoprenoide FPP und GGPP, sowie die Regulation kleiner GTPasen spielen auch eine wichtige Rolle im Zusammenhang mit Veränderungen der APP-Prozessierung in der molekularen Pathogenese der AD. Bei der APP-Prozessierung sind die beiden Sekretasen β- und γ-Sekretase für die Bildung des β-Amyloid-Peptids verantwortlich. In vitro Studien mit dem β-Sekretase-Inhibitor IV und dem γ-Sekretase-Inhibitor DAPT an untransfizierten und APP-transfizierten HEK293 Zellen (HEK293-APP695wt und HEK293-APPsw Zellen) konnten zeigen, dass sowohl die β- als auch die γ-Sekretase an der Regulation der Isoprenoide FPP und GGPP beteiligt sind. FPP und GGPP liegen in APP-transfizierten HEK293 Zellen erhöht vor. Die Inhibition der β-Sekretase führt zur Reduktion von FPP und GGPP. Durch die Inhibition der γ-Sekretase wird ausschließlich FPP reduziert. Weiterhin liegen in APP-transfizierten HEK293 Zellen die Membran-gebundenen prenylierten Rho-GTPasen Rac1, Cdc42 und RhoA erhöht vor. Das Membran-gebundene prenylierte H-Ras kommt jedoch in APP-transfizierten Zellen im Vergleich zu untransfizierten HEK293 Zellen in deutlich niedrigeren Mengen vor. Die Inhibition der β-Sekretase bedingt die Reduktion von Membran-gebundenem prenylierten Rac1 und auch von Membran-gebundenem H-Ras in HEK293-APPsw Zellen.
Veränderungen von Signaltransduktionswegen, die durch kleine GTPasen vermittelt werden, haben sich auch bei der GBM als zentraler Teil der molekularen Pathogenese herausgestellt. Hierbei ist die Prenylierung durch FPP und GGPP die Voraussetzung für die Membran-Insertion und onkogenen Funktion der Ras- und Rho-Proteine über die Stimulierung des Ras-Raf-MEK-ERK Signalweges. In dieser Arbeit konnte gezeigt werden, dass der HMG-CoA-Reduktase Inhibitor Lovastatin die Bildung der beiden Isoprenoide FPP und GGPP in U87 und U343 Glioblastoma Zellen verringert und hierdurch die Isoprenylierung von H-Ras und Rac1 reduziert. Das natürlich vorkommende Monoterpen Perrilylalkohol hingegen inhibiert die Prenyltransferasen FTase und GGTase und verändert dadurch die post-translationale Prenylierung der GTPasen Rac1 und H-Ras in U87 und U343 Zellen ohne die Isoprenoide FPP und GGPP signifikant zu beeinflussen. Jedoch bewirkt Perillylalkohol in U343 Zellen eine Erhöhung des GGPPs. Beide Substanzen bewirkten die Reduktion der ERK-Phosphorylierung und der Migration, Invasion und Proliferation der untersuchten U87 und U343 Glioblastoma Zellen.
Der ischämische Schlaganfall zählt zu den häufigsten Todesursachen in den Industrienationen und hinterlässt die meisten überlebenden Patienten in einer Pflegebedürftigkeit. Trotz der hohen Inzidenz und der gravierenden Folgen eines Schlaganfalls gibt es bislang keine ausreichende medikamentöse Therapie zum Schutz der Nervenzellen. Die akute Versorgung beschränkt sich auf die Lyse des Thrombus, welcher die betroffene Hirnarterie verschließt, und auf symptomatische Maßnahmen.
In der vorliegenden Dissertation wurden daher das neuroprotektiv wirkende Bilobalid, eine Substanz aus dem Ginkgo biloba Baum, und das anaplerotisch wirksame Triheptanoin auf ihre schützende Wirkung während eines ischämischen Schlaganfalls im Mausmodell untersucht. Zusätzlich wurden in der Bilobalid-Studie Tiere aus zwei verschiedenen Altersgruppen (6-8 Wochen gegen 18-24 Monate) verglichen. Der transiente Schlaganfall wurde in der Maus durch einstündigen Verschluss der mittleren Cerebralarterie (MCAO, middle cerebral artery occlusion) induziert.
Bilobalid wurde prophylaktisch eine Stunde vor Induktion des Schlaganfalls intraperitoneal (10 mg/kg) oder lokal in das betroffene Hirnareal (10 µM) verabreicht. Alle durchgeführten Experimente wiesen auf eine deutliche Neuroprotektion durch die Gabe von Bilobalid hin. Ein Tag nach MCAO war die Infarktfläche durch die Gabe von Bilobalid signifikant vermindert. In den durchgeführten motorischen Verhaltenstests schnitten die Bilobalid-behandelten Tiere wesentlich besser ab als unbehandelte Tiere. Der beobachtete Schutzeffekt von Bilobalid wurde auf mitochondriale Prozesse zurückgeführt: Die nach Ischämie beobachteten Defizite in Komplex I der mitochondrialen Atmungskette wurden durch die Gabe von Bilobalid deutlich vermindert. Bilobalid verringerte außerdem den enormen Anstieg von extrazellulärem Glutamat und das Ausmaß der mitochondrialen Schwellung während MCAO.
In der Altersstudie wurde deutlich, dass sowohl die motorische Aktivität der Tiere als auch einige zelluläre Prozesse wie die mitochondriale Atmung beeinträchtigt sind. Nichtsdestotrotz zeigte Bilobalid auch in gealterten Tieren einen deutlichen protektiven Effekt nach Ischämie.
Das anaplerotisch wirksame Triheptanoin wurde den Mäusen in einer 14-tätigen Fütterungsstudie verabreicht (33 % der Gesamt-Kalorien). Deutliche Schutzeffekte der Triheptanoin-Diät wurden nach Ischämie sowohl in TTC-gefärbten Hirnschnitten als auch in motorischen Verhaltenstests beobachtet. Durch den anaplerotischen Effekt sollte einerseits der Citratcyclus mit Acetyl-CoA und Succinyl-CoA gespeist werden, andererseits könnte Succinat in Komplex II der Atmungskette als direkter Energielieferant dienen. Dieser theoretische Ansatz wurde experimentell bestätigt: Die Fütterung mit Triheptanoin bewirkte eine signifikante Aktivitätssteigerung der mitochondrialen Komplexe II und IV nach MCAO. Die durch Ischämie gesenkten ATP-Spiegel und das Membranpotential wurden durch die anaplerotische Diät ebenfalls deutlich erhöht. Triheptanoin bewirkte zudem eine signifikante Reduktion des extrazellulären Glutamat-Anstiegs wŠhrend der MCAO.
Die Auswirkungen eines Schlaganfalls wurden demnach sowohl durch die prophylaktische Gabe von Bilobalid eine Stunde vor Ischämie als auch durch die 14-tägige Triheptanoin-Diät maßgeblich vermindert. Beide Substanzen zeigten im Mausmodell bemerkenswerte neuroprotektive Effekte und könnten daher auch beim Auftreten eines humanen Schlaganfalls entscheidende Vorteile bringen. Der präventive therapeutische Einsatz von Bilobalid oder Triheptanoin sollte daher in klinischen Studien weiter verfolgt werden.
Einleitung: Glioblastome, die aggressivsten malignen Gehirntumore, gehören zu den menschlichen Karzinomen mit der schlechtesten Prognose. Ihre Therapie stellt eine große Herausforderung dar. Eine komplette chirurgische Entfernung des Tumors ist auf Grund des infiltrativen Wachstums in gesundes Hirngewebe meist nicht möglich, und trotz der Standardtherapie, die Operation, Chemo- und Radiotherapie umfasst, sind die Behandlungserfolge nicht zufriedenstellend. Erschwerend kommt hinzu, dass das Gehirn vom übrigen Organismus durch die hochselektive Blut-Hirn-Schranke abgegrenzt ist, welche für viele potentiell wirksame therapeutische Substanzen eine Permeabilitätsbarriere darstellt. Somit stehen viele Zytostatika für die systemische Glioblastomtherapie nicht zur Verfügung und eine relative Therapieresistenz ist zu verzeichnen.
Nicht nur die Neuentwicklung von Arzneistoffen für die Pharmakotherapie von Erkrankungen des zentralen Nervensystems, wie den Gehirntumoren, sondern auch die Etablierung neuer Arzneiformen zur kontrollierten, gewebsspezifischen Arzneistoffapplikation gewinnt immer mehr an Bedeutung.
Ein Ansatz, der in der Vergangenheit vielversprechende Erfolge erzielte, ist die Einbettung von Arzneistoffen in kolloidale Trägersysteme wie polymere Nanopartikel oder Liposome. Diese Carrier sind in der Lage verschiedene Arzneistoffe über die Blut-Hirn-Schranke zu transportieren, damit diese im zentralen Nervensystem ihre Wirkung ausüben können. Der Grund für diesen Erfolg ist offensichtlich begründet in der nanopartikulären Größe und der besonderen Oberflächenstruktur dieser Träger. Zusätzlich geht mit der vermehrten Anreicherung der Wirkstoffe im Zentralnervensystem eine Verminderung der unerwünschten Arzneimittelwirkungen in peripheren Organen einher, was die Therapie positiv beeinflusst.
In der vorliegenden Arbeit wird die antitumorale Effizienz nanopartikulärer Formulierungen, die den Wirkstoff Doxorubicin enthalten, eingehend untersucht. Hierbei liegt der Schwerpunkt auf der histologischen und immunhistochemischen Analyse der Gehirntumore, die eine genaue
Differenzierung zwischen den Zubereitungen und eine aussagekräftige Effizienzbeurteilung erlaubt. Weiterhin wird der Fokus dieser Arbeit auf die Quantifizierung der Doxorubicinmenge gerichtet, die nach Applikation der nanopartikulären Formulierungen im Gehirn vorliegt.
Enthält u.a. die Publikationen:
Publikation 1:
Transport of drugs across the blood-brain barrier by nanoparticles – A review
Journal of Controlled Release – Special Issue: Drug delivery research in Europe
Status: accepted, geplantes Erscheinungsdatum: 01.2012
Publikation 2:
Increased numbers of injections of doxorubicin bound to nanoparticles lead to enhanced efficacy against rat glioblastoma 101/8
Wohlfart et al. 2009, Journal of Nanoneuroscience, Volume 1, Number 2, December 2009, pp. 144-151 (8)
Publikation 3:
Treatment of glioblastoma with poly (isohexyl cyanoacrylate) nanoparticles
Wohlfart et al. 2011, International Journal of Pharmaceutics 415 (2011) 244-251
Publikation 4:
Drug delivery to the brain using surfactant-coated poly (lactide-co-glycolide)
nanoparticles: Influence of the formulation parameters
Gelperina et al. 2010, European Journal of Pharmaceutics and Biopharmaceutics 74 (2010) 157–163
Publikation 5:
Efficient chemotherapy of rat glioblastoma using doxorubicin-loaded PLGA nanoparticles with different stabilizers
Wohlfart et al. 2011, PloS One May 2011, Volume 6, Issue 5, e 19121
Publikation 6:
Kinetics of transport of doxorubicin bound to nanoaprticles across the blood-brain barrier
Wohlfart et al. 2011, Journal of Controlled Release (2011),
doi:10.1016/j.jconrel.2011.05.010, in press
Alzheimer’s disease (AD) is the major cause of dementia. It is characterized by the accumulation of abnormal proteins (amyloid-β plaque and neurofibrillary tangles) leading to loss of synapses, dendrites, neurons, memory and cognition. Sporadic late-onset AD is the major type of AD characterized by unclear etiology and a lack of disease-modifying therapy. To understand this disease, an alternative AD hypothesis has been proposed: AD may resemble diabetes in the brain or “diabetes type 3”. This hypothesis is supported by the fact that (1) brain glucose hypometabolism precedes AD clinical symptoms and (2) diabetes increases the risk of AD. To test this hypothesis, wild-type rats receiving intracerebroventricular administration of streptozotocin (icv-STZ) were used as a model. Streptozotocin (STZ) is a glucosamine-nitrosourea compound commonly used to induce experimental diabetes by peripheral administration. A similar pathological mechanism to peripheral STZ is then proposed to explain icv-STZ toxicity: insulin receptor signaling impairment results in glucose hypometabolism leading to cognitive deficits.
Objective: Icv-STZ model seems promising as a toxin-induced, non-transgenic AD model with the possibility to connect AD and diabetes mellitus (DM), one of the risk factors for AD. However, the mechanisms of how icv-STZ induced AD-like symptoms are unclear. Therefore, using microdialysis as the main technique, we tested 2 AD hypotheses in this model: (1) the glucose hypometabolism as an alternative AD hypothesis and (2) the cholinergic deficit as an important characteristic of AD pathology. Hippocampus was chosen because cholinergic function in this region is severely affected in AD. In comparison, the striatum was chosen because it contains cholinergic interneurons and is less affected in AD.
Methods: In this study, we used male Wistar rats of 190-220 g body weight (5 weeks of age). The rats were injected intracerebrally with STZ at a dose of 3 mg/kg (2x1.5 mg/kg; „high dose“) and 0.6 mg/kg („low dose“) with saline as control. After 21 days, samples were collected to investigate cholinergic and metabolic changes using histology, biochemistry, and neurochemistry. Brain injury was confirmed using GFAP staining and Fluoro jade staining in the hippocampus. Mitochondrial toxicity was investigated by measurement of mitochondrial
respiratory function in both hippocampus and striatum. Cholinergic markers such as acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT) activity, and choline transporter (CHT-1) activity, commonly known as high-affinity choline uptake (HACU), were measured in both hippocampus and striatum using a spectrophotometer and a scintillator.
Microdialysis is the main technique in our study. It was done in awake animals under behavioral or pharmacological stimulation. We used a self-built probe with a semi-permeable membrane (pore size of 30 kDa) that was implanted in either hippocampus or striatum. The probes were then perfused with artificial cerebrospinal fluid (aCSF) supplemented with 0.1 μM neostigmine for extracellular acetylcholine level measurement. During the perfusion, small hydrophilic compounds from brain extracellular space diffuse into the dialysates. Dialysates of 15 minutes intervals were collected for 90 minutes and used for analysis. After collection of dialysates for the first 90 minutes (basal data), rats were moved to an open field box (35x32x20 cm) for behavioral stimulation. After collection of the second 90 minute dialysates, the rats were transferred back to the microdialysis cage and dialysates were collected for another 90 minutes. On day 2, after collection of dialysates under basal conditions, 1 μM scopolamine was added to the perfusion solution for stimulation of acetylcholine release. The dialysates were also collected for 90 min followed by another 90 min of dialysis without scopolamine. The microdialysate samples were then analyzed as follows. ACh level was measured by HPLC-ECD. Glucose metabolites (glucose, lactate, pyruvate) were measured by a CMA-600 microanalyzer. An alternative energy metabolite (beta-hydroxybutyrate/BHB) was measured by GC-MS. Choline and glycerol as membrane breakdown markers were also measured by HPLC-ECD and CMA-600 microanalyzer, respectively. Markers of oxidative stress (isoprostanes) were measured using a commercially available ELISA kit.
...
Endocannabinoids (eCB) are signaling lipids and became known for their importance in the central nervous system as well as in immune defense. Beneficial effects of eCB are shown in processes of excitotoxic lesion, secondary damage and neuronal plasticity throughout the last years. Two canabinoid receptors, type 1 (CB1) and type 2 (CB2) as the respective endogenous ligands belong to the endocannabinoid system (eCBS). In 1990, the CB1 could be cloned and was localised mainly on neurons. Shortly thereafter in 1993, the CB2 was characterised and found primarily on cells belonging to the immune system. N-arachidonoylethanolamide (AEA), often called anandamide, and 2-arachidonoylglycerol (2-AG) are the best characterised eCB. N-palmitylethanolamide (PEA) and N-oleoylethanolamide (OEA) have no or only low affinity to CB1 but enhance the affinity of AEA significantly. This group is therefore often summarized as N-ethanolamides (NEA). ECB are derivates of arachidonic acid and are stored in membranes where they become hydrolysed on demand by specific enzymes. Traumatic brain injury altered the levels of eCB in the blood in vivo and when applied in vitro after neuronal damage, eCB could reduce the damaging burden. Further studies demonstrated that eCB are potent to down-regulate pro-inflammatory cytokines and most important to decrease neuronal excitation.
In the present study, the intrinsic regulation of the endocannabinoid system after neuronal damage over time was investigated in rat Organotypic Hippocampal Slice Cultures (OHSC). Temporal and spatial dynamics of eCB levels were analysed after transection of the perforant pathway (PPT) in originating neurons (enthorhinal cortex, EC), areas of deafferentiation/anterograde axonal degeneration (dentate gyrus, DG) and of the synaptically linked cornu ammonis region 1 (CA1) as well as after excitotoxic lesion in the respective regions.
A strong increase of all eCB was observed only in the denervation zone of the DG 24 hours post PPT. In excitotoxic lesioned OHSC all eCB were elevated, in the investigated regions up to 72 hours post lesion (hpl). The responsible enzyme for biosynthesis of the NEA, NAPE-PLD protein, was increased during the early timepoints of measurement (1-6 hpl). The responsible catabolizing enzyme, FAAH, and the CB1 receptor were up-regulated at a later timepoint, 48 hpl, explaining the eCB levels. In the present model, the inhibition of the enzyme responsible for 2-AG hydrolysis (MAGL) was neuroprotective as previously shown and a re-distribution within neurons and astrocytes during neuronal damage could be observed. In primary cell cultures microglia expressed the regulating enzymes of 2-AG and the enzyme responsible for NEA down-regulation, FAAH. Astrocytes expressed mainly the catalyzing enzymes, indicating the role for eCB break-down. All these findings together demonstrate the great capacity of the eCBS to control inflammatory processes and consequently neuronal cell death.
All effects of the known eCB could not be clarified by CB1/CB2 deficient mice. Several G-protein coupled receptors (GPR) are recently in discussion whether they might and should belong to the endocannabinoid system. The GPR55, the not yet cloned abnormal cannabidiol receptor and further GPRs are candidates as potential endocannabinoid receptors. Recently GPR55 has been discussed as a putative cannabinoid receptor type 3 (CB3). Quantitative PCR revealed that Gpr55 is present in primary microglia and the brain, but the exact regional and cellular distribution and the physiological/pathological effects downstream of GPR55 activation in the CNS still remain open. Therefore, the excitotoxic rat OHSC model, previously used to investigate the neuroprotective potency of eCB, was now used to investigate the neuroprotective potency of GPR55. Activation of GPR55 protected dentate gyrus granule cells in vitro after excitotoxic lesion, induced by NMDA. In parallel, GPR55 activation was able to reduce the number of microglia in the dentate gyrus. These neuroprotective effects vanished however in microglia depleted OHSCs as well as in OHSC transfected with Gpr55 siRNA, indicating a strong involvement of microglia in GPR55 mediated neuroprotection.
In summary, the present study found a strong time-dependent and anterograde mechanism of action of eCB after long-range projection damage and provided further evidence for the neuroprotective properties of eCB. The potential cannabinoid receptor 3 (GPR55) mediates neuronal protection on behalf of microglia.