Refine
Document Type
- Doctoral Thesis (9)
- Master's Thesis (6)
- Bachelor Thesis (1)
Has Fulltext
- yes (16)
Is part of the Bibliography
- no (16)
Keywords
- p-Kerne (2)
- Aktivierungsmethode (1)
- Coulombdissoziation (1)
- Coulombspaltung (1)
- Gammaspektroskopie (1)
- Molybdän (1)
- Nukleare Astrophysik (1)
- Nukleosynthese (1)
- Optisches Potenzial (1)
- Physics (1)
Institute
- Physik (15)
This work derives the value of the neutron capture cross section of 60Fe at the energy of kT = 25 meV. Iron plays an important role in stellar nucleosynthesis, because it is a seed material for the s-process, a neutron capture process in which the elements between iron and bismuth are synthesized.
To determine the thermal neutron cross section of 60Fe, an iron sample produced in the framework of the ERAWAST1 program at the Paul Scherrer Institute in Switzerland was irradiated at the research reactor TRIGA2 at Johannes Gutenberg University in Mainz, Germany. Before the irradiation, the number of 60Fe particles in the sample was calculated using the decay scheme of 60Fe. There were (8.207 ± 0:066 stat 0:298 syst) * 10 14 60Fe particles in the sample.
The irradiation of the sample took place in May 2012. The counting of the reaction product, 61Fe, was undertaken using a HPGe detector located in a laboratory at Johannes Gutenberg University in Mainz. Knowing the number of 60Fe particles in the sample, the number of produced 61Fe particles and the neutron flux from the reactor, the thermal neutron capture cross section of ρth60Fe = (0.203 ± 0:021 stat 0:024 syst) b could be determined.
The determination of the thermal neutron capture cross section at the energy of kT = 25 meV constitutes to the first at this energy. There was already a measurement of the neutron capture cross section of 60Fe at the energy of kT = 25 keV in Karlsruhe in Germany. The result of the measurement was 25 keV = (9.9 ± 2:8 syst 1:4 stat) mb and was published in the year 2009 [14].
Adding datapoints for the cross section at different energies improves extarpolation and helps verification of theoretical models for elemental synthesis. For this reason, a measurement of the 60Fe neutron capture cross section at the energy of kT = 90 keV is planned at Goethe University Frankfurt, Germany.
Having the neutron capture cross section of 60Fe at the energy of kT = 25 keV measured in the year 2009 in Karlsruhe [14], at the energy of kT = 25 meV measured in May 2012 at Johannes Gutenberg University in Mainz and at the planned energy of kT = 90 keV at Goethe University Frankfurt, there will be three points for the extrapolation of the values for the neutron capture cross section of 60Fe. This will lead to a significant reduction in uncertainty with respect to existing theoretical discrepancies.
Im Rahmen dieser Arbeit wurden astrophysikalisch relevante, kernphysikalische Raten, die zum Verständnis der beobachteten Häufigkeit des langlebigen Isotopes 60Fe wichtig sind, am GSI Helmholtzzentrum für Schwerionenforschung GmbH und am Forschungsreaktor TRIGA in Mainz gemessen.
Zunächst wurde der Coulombaufbruch von 59Fe und 60Fe am GSI Helmholtzzentrum für Schwerionenforschung GmbH untersucht. Zur Produktion der radioaktiven Strahlen wurde ein 64Ni-Primärstrahl auf ein Spallationstarget geleitet. Im Fragmentseparator wurden die Isotope nach deren magnetischen Steifigkeit separiert und nur die gewünschte Spezies im LAND/R3B-Aufbau untersucht. Die Bestimmung von Impuls und Ladung der eingehenden Ionen erlaubte eine individuelle Identifikation. Der Coulombaufbruchwirkungsquerschnitt wurde mit einer Bleiprobe bestimmt. Die verschiedenen Untergrundkomponenten ergaben sich aus einer begleitenden Leermessung, sowie einer Messung mit einer Kohlenstoffprobe. Der Wirkungsquerschnitt der Reaktion Pb(60Fe,n+59Fe)Pb bei (530±5) MeV/u wurde zu σ(60Fe,n+59Fe) COULEX = (298±11stat±31syst) mb (0.1) bestimmt und für die Reaktion Pb(59Fe,n+58Fe)Pb ergab sich σ(59Fe,n+58Fe) COULEX = (410±11stat±41syst) mb. (0.2)
Außerdem konnten für beide einkommenden Strahlsorten die Wahrscheinlichkeiten für die Produktion von zwei Neutronen bestimmt werden.
Anschließend wurde der Neutroneneinfangsquerschnitt von 60Fe bei kT = 25,3 meV am Forschungsreaktor TRIGA in Mainz bestimmt. Hierfür wurde eine 60Fe Probe zunächst anhand des Anstieges der Aktivität der 60Co-Tochterkerne charakterisiert und anschließend im Reaktor bestrahlt. Die frisch erzeugte Aktivität des 61Fe wurde mit einem HPGe-Detektor nachgewiesen. Mit Hilfe der Cadmiumdifferenzmethode konnte daraus erstmals der thermische Neutroneneinfangsquerschnitt von 60Fe zu σ60Fe(n,γ) th = 0,22±0,02stat±0,02syst b. (0.3) bestimmt werden. Für das Resonanzintegral ergab sich die obere Schranke von I 60Fe(n,γ) res = 0,61 b. (0.4)
Mithilfe einer (n,γ)-Aktivierung von Germanium am Forschungsreaktor TRIGA in Mainz wurde zum einen in Hinblick auf zukünftige Experiment an der NIF eine Sensitivitätsstudie durchgeführt. Zum anderen wurden die thermischen Neutroneneinfangquerschnitte von 74Ge und 76Ge jeweils für den Einfang in den Isomer- und Grundzustand gemessen, um die Abweichungen der Daten von [Hol93] und [Mug06] zu klären. Zusätzlich wurden die Halbwertszeiten der betrachteten radioaktiven Ge-Isotope bestimmt.
Das Hauptziel der vorliegenden Arbeit war es, die energieabhängigen Wirkungsquerschnitte von (γ,n)-Reaktionen für 169Tm, 170Yb, 176Yb und 130Te mittels der Photoaktivierungsmethode zu bestimmen.
Dazu wurden zunächst die Effizienzen der verwendeten Detektoren mithilfe von Simulationen korrigiert, da die verwendeten Targets eine ausgedehnte Geometrie aufweisen im Gegensatz zu den punktförmigen Eichquellen. Es hat sich herausgestellt, dass mit den Simulationen die Effizienzen der MCA-Detektoren energieabhängig korrigiert werden konnten, da die Simulationen die Form der gemessenen Effizienzen gut reproduzieren konnten. Bei den Effizienzen der LEPS-Detektoren hingegen konnte keine energieabhäangige Korrektur vorgenommen werden, da die LEPS-Detektoren aufgrund des geringen Abstandes zu den Detektoren hohe Summeneffekte zeigten. Im Rahmen dieser Arbeit konnten diese Summeneffekte jedoch nicht korrigiert bzw. berücksichtigt werden.
Im Rahmen dieser Arbeit sollte ein bereits im Jahr 1989 gebauter Neutronenkollimator für den zukünftigen Einsatz an der Frankfurter Neutronenquelle am Stern Gerlach Zentrum (FRANZ) getestet und simuliert werden.
Hierfür wurde der Neutronenkollimator zunächst probeweise aufgebaut und die einzelnen Bauteile ausgemessen. Zunächst wurde die Zusammensetzung der Kollimatorbauteile überprüft und deren Dichte bestimmt. Zu diesem Zweck wurde mit einigen ausgesuchten Bauteilen des Kollimators eine Gammatransmissionsmessung mit Na-22 und Ba-133 als Gammaquelle durchgeführt. Die Messwerte dieser Messung wurden ausgewertet und mit entsprechend angefertigten Simulationen mit GEANT 3 verglichen.
Für die Simulationen wurden die Bauteile, mit denen die Messung durchgeführt wurde, detailgetreu und mit der zu bestätigenden Zusammensetzung sowie einer geschätzten Dichte programmiert. Über die Anpassung der Simulationsergebnisse an die experimentellen Werte, konnte so die Materialzusammensetzung bestätigt und für die jeweiligen Bauteile jeweils eine Dichte ermittelt werden. Für das Lithiumcarbonatrohr wurde eine Dichte von 1,422 g/cm³ ermittelt, für die drei Bauteile aus Borcarbid jeweils 1,169 g/cm³, 1,073 g/cm³, 0,832 g/cm³. Aufgrund von vielen produktionsbedingten, unterschiedlich stark ausgeprägten Lufteinschlüsse in den Borcarbidbauteilen des Kollimators, konnte keine identische Dichte für alle Bauteile gefunden werden.
Nach Untersuchung des Kollimators wurde der Neutronendurchgang mit dem Simulationspaket GEANT 3 simuliert. Die vollständige Geometrie des Kollimators wurde in GEANT 3 programmiert und dabei Bohrlöcher und Besonderheiten einzelner Bauteile berücksichtigt. Um die Simulationszeit zu verkürzen, wurde der Teilchendurchgang durch den gesamten Kollimator nicht in einem Durchgang simuliert, sondern stückweise in vier Stufen entlang des Kollimators. Um die Komplexität der Simulation zu beschränken wurde für alle Kollimatorbauteile aus Borcarbid ein Dichtewert eingesetzt, jedoch jede Simulationsreihe mit den drei verschiedenen Werten, die bei der Gammatransmissionsmessung ermittelt wurden, durchgeführt.
Beim anschließenden Vergleich der Simulationsergebnisse, konnte zwischen den einzelnen Dichtewerten kein signifikanter Unterschied erkannt werden. Die Unsicherheiten in der Dichtebestimmung sind daher vernachlässigbar.
Jede Simulationsreihe wurde mit zwei verschiedenen Neutronenverteilungen durchgeführt: eine Neutronenverteilung bei 1,92 MeV Protonenenergie und eine bei 2 MeV Protonenenergie.
Anhand der Simulationsergebnisse konnte ermittelt werden, dass die auf den Detektor eintreffende Neutronenintensität bis zu einem Abstand von etwa 20 cm vom Strahlachsenzentrum um Faktor 4·10-5 geschwächt wird. Ab 20 cm Strahlachsenabstand beträgt die Transmission der Neutronen etwa 10-3.
Die Bleiabschirmung, die an den Kollimator montiert wird und den Detektor vor den infolge von Neutroneneinfängen emittierten Gammaquanten vor dem Detektor abschirmen soll, reduziert die Zahl der Gammaquanten ebenfalls um Faktor 10-4.
Für den zukünftigen Einsatz des Neutronenkollimators an FRANZ müssen zunächst die fehlenden Kollimatorbauteile ersetzt oder nachgebaut werden. Dazu gehören zwei zylinderförmige innere Einsätze aus Borcarbid sowie eine Verlängerung des Innenrohrs aus Lithiumcarbonat. Neue Geometrien oder Materialzusammensetzungen können durch leichte Modifikation der bereits in GEANT 3 programmierten Kollimator-geometrie getestet und untersucht werden.
Für die Positionierung des Kollimators und Aufstellung vor dem 4 π BaF2-Detektor muss zusätzlich eine Platte angefertigt werden, an welche die Bleiabschirmung montiert und auf welcher der Kollimator stabil aufgebaut werden kann. Nach Fertigstellung der fehlenden Bauteile und der Platte, kann der Kollimator aufgebaut und in der Praxis getestet werden.
Most of the elements in the universe are produced via charged-particle fusion reactions during the primordial nucleosynthesis and different stellar burning stages, as well as via neutron-capture reactions. Around 35 heavy, proton-rich isotopes are bypassed by those reaction paths, the p nuclei. A series of photo-disintegration reactions occurring in supernovae, called the γ process, was suggested as a mechanisms to produce the p nuclei. Numerical simulations of the γ process have been unable to reproduce the observed abundances of the light p isotopes. Recent models showed that a series of proton capture reactions could provide the observed abundances. Hence, the cross sections of the crucial capture reactions have to be measured in order to test those assumptions.
Radiative proton captures in addition to the γ-process could reproduce the observed abundance pattern. This thesis presents preparations of a proton capture measurement on the radioactive 91Nb in standard kinematics with a calorimetric 4π setup. The 91Nb(p,γ)92Mo reaction might be the key to explain the production of one of the most abundant p-nuclei, 92Mo. So far, no experimental data for this reaction is available.
We produced a sample of 91Nb, with a half-life of 680 yr, at the Physikalisch Technische Bundesanstalt in Braunschweig, Germany, by irradiating 92Mo with protons in the energy range of 12 – 20MeV. 91Nb was produced via the reaction 92Mo(p,2p)91Nb and via 92Mo(p,pn)91Mo, where 91Mo decays to 91Nb with a half-life of 15.5min. To predict the amount of produced 91Nb the cross section of 92Mo(p, 2p) was measured. It was found to be higher than the value given by theoretical calculations with TALYS. Finally, 91Nb was chemically separated from the molybdenum carried at Paul-Scherrer- Institut, Villigen, Switzerland.
In-beam total absorption cross-section measurement of the reaction 91Nb(p,γ)92Mo with 2 MeV protons at FRANZ is planed with the produced 91Nb. A 4π BaF2 detector consisting of 41 crystals will be used. During this experiment we will measure the sum energy and the multiplicity of each event. The freshly produced 91Nb constitutes only a minor component of the sample material. The sum energy and multiplicity are crucial to distinguish the desired 91Nb(p,γ) from all the other more dominant reactions. The expected multiplicity and the efficiency of the setup were carefully simulated with DICEBOX and GEANT4. It was possible to show that background reactions can be effectively suppressed. The most important background contributions could be identified and result from 92Mo(p,γ), 19F(p,γ), and 19F(p,α).
Most of the elements heavier than iron are produced through neutron capture reactions in the s- and r -process. The overall path of the s-process is well understood and can be accurately reproduced in network simulations. However, there are still some neutron capture reactions of unstable nuclei involved in the s-process, which were not yet measured due to the difficulty in producing suitable targets. In those cases, theoretical models have to be used to estimate the missing cross section.
One example is the branching point nucleus 86Rb, whose neutron capture cross section cannot be directly measured due to its short half life of 18.86 days. It is, however, also possible to measure its inverse, the 87Rb(g,n) reaction in order to obtain the 86Rb(n,g) cross section through the principle of detailed balance.
Natural rubidium was irradiated with a quasi-monoenergetic photon beam in the energy range between 10.7 MeV and 16 MeV in order to investigate the photo-dissociation cross section of 87Rb. The results are presented in this thesis. Not only the total cross section of 87Rb(g,n), but also the partial production cross section of the ground and isomeric state of 84Rb through the 85Rb(g,n) reaction was measured.
Not all isotopes can be reached via neutron capture reaction, and are therefore bypassed by the s- and r -process. These 35 proton-rich isotopes are called p-nuclei and are produced in the γ-process by a chain of photo-disintegration reactions in Type II supernovae. Network calculations of Type II supernova show that the γ-process can explain the production of most p-nuclei, but some – especially 92/94Mo and 96/98Ru – are heavily underproduced. While this could be the result of deficiencies in the corresponding stellar models or insufficient knowledge of the involved reaction rates, it is also possible that the missing p-nuclei are synthesized in other production scenarios.
An alternative scenario for 92Mo is the production via a chain of proton capture reactions in Type Ia supernovae. One important reaction in this chain is the 90Zr(p,g) reaction. The reaction cross section was already measured several times, but the results were inconclusive. In the present work, the 90 Zr(p,g) reaction was measured using the in-beam gamma-ray spectroscopy technique and the discrepancies between the data sets could be largely explained.
Within the nucleosynthetic processes of the slow neutron-capture reaction network (called the s process) the so called branching points, unstable isotopes where different nuclear reactions are competing, are important to understand . For modeling and calculating the nucleosynthesis and compare the resulting abundances to the observed ones, it is indispensable to know the branching ratios as well as the corresponding cross sections.
A great challenge in measuring those rates in experiments may be the radioactivity of the isotopes involved, which can make it nearly impossible to manufacture the needed targets. In addition, in stellar environments the excited states of isotopes can be in equilibrium with the ground state, affecting the half-lives and the branching ratios significantly. The isotope 152Eu is such a branching point, with neutron captures and β-decays competing. Those challenges were approached in the s405 experiment performed at the GSI Helmholtzzentrum für Schwerionenforschung GmbH: the challenge the challenge of the radioactivity can be approached by experiments carried out in inverse kinematics with radioactive beams, solving the problem of unstable targets. Also a reversed reaction was used to access the excited states of the studied isotope. The performed 152Sm(p,n)152Eu is a pioneering attempt to use those methods on heavy ions. The (p,n) reaction was used as a substitute for electron capture, the focus lies on reactions with low-momentum transfers, resulting in the emission of low-energy neutrons. The new developed low-energy detector array LENA was put to test for the fist time in the s405 experiment.