• Deutsch
Login

Open Access

  • Home
  • Search
  • Browse
  • Publish
  • FAQ

Refine

Author

  • Betting, Benjamin (1)
  • Dallmeyer, Jörg (1)
  • Döring, Claudia (1)
  • Engel, Heiko (1)
  • Gebelein, Jáno (1)
  • Hunziker, Alex (1)
  • Hutter, Eric (1)
  • Kolluru, Yashwant (1)
  • Lund, Andreas (1)
  • Lupi, Matteo (1)
+ more

Year of publication

  • 2016 (3)
  • 2019 (3)
  • 2020 (3)
  • 2009 (1)
  • 2011 (1)
  • 2013 (1)
  • 2014 (1)
  • 2015 (1)
  • 2022 (1)

Document Type

  • Doctoral Thesis (15)
  • Master's Thesis (1)

Language

  • English (12)
  • German (4)

Has Fulltext

  • yes (16)

Is part of the Bibliography

  • no (16)

Keywords

  • FPGA (2)
  • ALICE (1)
  • Abstraction (1)
  • Affymetrix (1)
  • Agent (1)
  • Analog (1)
  • Analog Circuits (1)
  • Analog Verification (1)
  • Analoges System (1)
  • Analogschaltungen (1)
+ more

Institute

  • Informatik (10)
  • Informatik und Mathematik (5)
  • Mathematik (1)
  • Physik (1)

16 search hits

  • 1 to 10
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Präprozessierungs-Algorithmen für Affymetrix Microarrays (2009)
Döring, Claudia
Zur genomweiten Genexpressionsanalyse werden Microarray-Experimente verwendet. Ziel dieser Arbeit ist es, Methoden zur Präprozessierung von Microarrays der Firma Affymetrix zu evaluieren und die VSN-Methode für Experimente mit weniger als 1000 Zellen zu verbessern. Bei dieser Technologie wird die Expression jedes Gens durch mehrere Probessets gemessen. Jedes Probeset besteht aus einem Perfect-Match (PM) und einem dazugehörigen Mismatch (MM). Der Expressionswert pro Gen wird durch ein vierstufiges Verfahren aus den einzelnen Probe-Werten berechnet: Hintergrundkorrektur, Normalisierung, PM-Adjustierung und Aggregation. Für jeden dieser Schritte existieren mehrere Algorithmen. Dazu dienten die im affy-Paket des Bioconductor implementierten Methoden MAS5, RMA, VSN und die Methode sRMA von Cope et al. [Cope et al., 2006] in Kombination mit der Methode VSN von Huber et al. [Huber et al., 2002]. Den ersten Teil dieser Arbeit bildet die Reanalyse der Datensätze von Küppers et al. [Küppers et al., 2003] und Piccaluga et al. [Piccaluga et al., 2007] mit der VSN-Methode. Dabei konnte gezeigt werden, dass die VSN-Methode gegenüber Klein et al. [Klein et al., 2001] Vorteile zeigt. Bei beiden Datensätzen wurden zusätzliche Gene gefunden, die für die Pathogenese der jeweiligen Tumorarten wichtig sein können. Einige der zusätzlich gefunden Gene wurden durch andere wissenschaftliche Arbeiten bestätigt. Die Gene, die bisher in keinem Zusammenhang mit der untersuchten Tumorart stehen, sind eine Möglichkeit für die weitere Forschung. Vor allem der Zytokine/Zytokine Signalweg wurde bei beiden Reanalysen als überrepräsentiert erkannt. Da für einige Microarray-Experimente die Anzahl der Zellen und damit die Menge an mRNA nur begrenzt zur Verfügung stehen, müssen die Laborarbeit und die statistischen Analysen angepasst werden. Hierzu werden fünf Methoden für die Präprozessierung untersucht, um zu evaluieren, welche Methode geeignet ist, derartige Expressionsdaten zu verrechnen. Auf Basis eines Testdatensatzes der bereits zur Etablierung des Laborprozesses diente werden Expressionswerte durch empirische Verteilung, Gammaverteilung und ein linear gemischtes Modell simuliert. Die Simulation lässt sich in vier Schritte einteilen: Wahl der Verteilung, Simulation der Expressionsmatrix, Simulation der differentiellen Expression, Sortierung der Probes innerhalb des Probesets. Anschließend werden die fünf Präprozessierungsmethoden mit diesen simulierten Expressionsdaten auf ihre Sensitivität und Spezifität untersucht. Während sich bei den empirisch und gammaverteilt simulierten Expressionsdaten kein eindeutiges Ergebnis abzeichnet, hat sVSN bei den Daten aus dem linear gemischten Modell die größte Sensitivität und die größte Spezifität. Der in dieser Arbeit entwickelte sVSN-Algorithmus wurde zum ersten Mal angewendet und bewertet. Abschließend wird ein Teildatensatz von Brune et al. verwendet und hinsichtlich der fünf Präprozessierungsmethoden untersucht. Die Ergebnisse der sVSN-Methode wird im Detail weiter verfolgt. Die zusätzlich gefunden Gene können durch bereits veröffentlichte Arbeiten bestätigt werden. Letztendlich zeigt sich, dass neuere statistische Methoden (wie das im Rahmen dieser Arbeit entwickelte sVSN) bei der Analyse von Affymetrix Microarrays einen Vorteil bringen. Die sVSN und sRMA Methoden zeigen Vorteile, da die Probes nach der Normalisierung gewichtet werden, bevor diese aggregiert werden. Die MAS5-Methode schneidet am schlechtesten ab und sollte bei geringen Zellmengen nicht eingesetzt werden. Für die Analyse mit geringer Menge an mRNA müssen weitere Untersuchungen vorgenommen werden, um eine geeignete statistische Methode für die Analyse der Expressionsdaten zu finden.
Formal verification methodologies for nonlinear analog circuits (2011)
Steinhorst, Sebastian
The objective of this thesis is to develop new methodologies for formal verification of nonlinear analog circuits. Therefore, new approaches to discrete modeling of analog circuits, specification of analog circuit properties and formal verification algorithms are introduced. Formal approaches to verification of analog circuits are not yet introduced into industrial design flows and still subject to research. Formal verification proves specification conformance for all possible input conditions and all possible internal states of a circuit. Automatically proving that a model of the circuit satisfies a declarative machine-readable property specification is referred to as model checking. Equivalence checking proves the equivalence of two circuit implementations. Starting from the state of the art in modeling analog circuits for simulation-based verification, discrete modeling of analog circuits for state space-based formal verification methodologies is motivated in this thesis. In order to improve the discrete modeling of analog circuits, a new trajectory-directed partitioning algorithm was developed in the scope of this thesis. This new approach determines the partitioning of the state space parallel or orthogonal to the trajectories of the state space dynamics. Therewith, a high accuracy of the successor relation is achieved in combination with a lower number of states necessary for a discrete model of equal accuracy compared to the state-of-the-art hyperbox-approach. The mapping of the partitioning to a discrete analog transition structure (DATS) enables the application of formal verification algorithms. By analyzing digital specification concepts and the existing approaches to analog property specification, the requirements for a new specification language for analog properties have been discussed in this thesis. On the one hand, it shall meet the requirements for formal specification of verification approaches applied to DATS models. On the other hand, the language syntax shall be oriented on natural language phrases. By synthesis of these requirements, the analog specification language (ASL) was developed in the scope of this thesis. The verification algorithms for model checking, that were developed in combination with ASL for application to DATS models generated with the new trajectory-directed approach, offer a significant enhancement compared to the state of the art. In order to prepare a transition of signal-based to state space-based verification methodologies, an approach to transfer transient simulation results from non-formal test bench simulation flows into a partial state space representation in form of a DATS has been developed in the scope of this thesis. As has been demonstrated by examples, the same ASL specification that was developed for formal model checking on complete discrete models could be evaluated without modifications on transient simulation waveforms. An approach to counterexample generation for the formal ASL model checking methodology offers to generate transition sequences from a defined starting state to a specification-violating state for inspection in transient simulation environments. Based on this counterexample generation, a new formal verification methodology using complete state space-covering input stimuli was developed. By conducting a transient simulation with these complete state space-covering input stimuli, the circuit adopts every state and transition that were visited during stimulus generation. An alternative formal verification methodology is given by retransferring the transient simulation responses to a DATS model and by applying the ASL verification algorithms in combination with an ASL property specification. Moreover, the complete state space-covering input stimuli can be applied to develop a formal equivalence checking methodology. Therewith, the equivalence of two implementations can be proven for every inner state of both systems by comparing the transient simulation responses to the complete-coverage stimuli of both circuits. In order to visually inspect the results of the newly introduced verification methodologies, an approach to dynamic state space visualization using multi-parallel particle simulation was developed. Due to the particles being randomly distributed over the complete state space and moving corresponding to the state space dynamics, another perspective to the system's behavior is provided that covers the state space and hence offers formal results. The prototypic implementations of the formal verification methodologies developed in the scope of this thesis have been applied to several example circuits. The acquired results for the new approaches to discrete modeling, specification and verification algorithms all demonstrate the capability of the new verification methodologies to be applied to complex circuit blocks and their properties.
Autonomous steering of an electric bicycle based on sensor fusion using model predictive control (2019)
Hunziker, Alex
In this thesis a control and steering module for an autonomous bicycle was developed. Based on sensor fusion and model predictive control, the module is able to trace routes autonomously. The system is developed to run on a Raspberry Pi. An ultrasonic sensor and a 2D Lidar sensor are used for distance measurements. The vehicle’s position is determined by using GPS signals. Additionally, a camera is used to capture pictures for the roadside detection. In order to recognize the road and the position of the vehicle on it, computer vision techniques are used. The captured images are denoised, Canny edge detection is performed and a perspective transformation is applied. Thereafter a sliding window algorithm selects the edges belonging to the roadside and a second order polynomial is fitted to the selected data. Based on this, the road curvature and the lateral position of the vehicle on the road are calculated. The implemented software is thus able to detect straight and curved roads as well as the vehicle’s lateral offset. A route planning module was implemented to navigate the vehicle from the start to the destination coordinates. This is done by creating an abstract graph of the roads and using Dijkstra’s algorithm to determine the shortest path. Four MPC controllers were implemented to control the movements of the vehicle. They are based on state space equations derived from the linear single-track vehicle model. This relatively straightforward model makes it possible to predict the vehicle behavior and is efficient to compute. Each controller was built with different parameters for different vehicle speeds to account for the non-linearity of the system. The controllers simulate the future states of the system at each timeslot and select appropriate control signals for steering, throttle and brakes. In this thesis, all the components of the steering and control module were individually validated. It was established that the each individual component works as expected and certain constraints and accuracy limits were identified. Finally, the closed loop capabilities of the system were assessed using a test vehicle. Despite some limitations imposed by this setup, it was shown that the control module is indeed capable of autonomously navigating a vehicle and avoiding collisions.
FPGA fault tolerance in radiation environments (2016)
Gebelein, Jáno
The constantly increasing memory density and performance of recent Field Programmable Gate Arrays (FPGA) has boosted a usage in many technical applications such as particle accelerators, automotive industry as well as defense and space. Some of these fields of interest are characterized by the presence of ionizing radiation as caused by natural decay or artificial excitation processes. Unfortunately, this type of radiation affects various digital circuits, including transistors forming Static Random Access Memory (SRAM) storage cells that constitute the technology node for high performance FPGAs. Various digital misbehavior in temporal or permanent manner as well as physical destruction of transistors are the consequence. Therefore, the mitigation of such effects becomes an essential design rule when using SRAM FPGAs in ionizing radiation environments. Tolerance against soft errors can be handled across various layers of modern FPGA design, starting with the most basic silicon manufacturing process, towards configuration, firmware, and system design, until finally ending up with application and software engineering. But only a highly optimized, joint concept of system-wide fault tolerance provides sufficient resilience against ionizing radiation effects without losing too much valuable device resources to the safety approach. This concept is introduced, analyzed, improved and validated in the present work. It includes, but is not limited to, static configuration scrubbing, various firmware redundancy approaches, dynamic memory conservation as well as state machine protection. Guidelines are given to improve manual design practices concerning fault tolerance and tools are shown to reduce necessary efforts. Finally, the SysCore development platform has been maintained to support the recommended design methods and act as Device Under Test (DUT) for all particle irradiation experiments that prove the efficiency of the proposed concept of system-wide fault tolerance for SRAM FPGAs in ionizing radiation environments.
Prioritätsbasierte Taskverteilung in selbstorganisierenden Systemen (2022)
Hutter, Eric
Die allgemein steigende Komplexität technischer Systeme macht sich auch in eingebetteten Systemen bemerkbar. Außerdem schrumpfen die Strukturgrößen der eingesetzten Komponenten, was wiederum die Auftrittswahrscheinlichkeit verschiedener Effekte erhöht, die zu Fehlern und Ausfällen dieser Komponenten und damit der Gesamtsysteme führen können. Da in vielen Anwendungsbereichen ferner Sicherheitsanforderungen eingehalten werden müssen, sind zur Gewährleistung der Zuverlässigkeit flexible Redundanzkonzepte nötig. Ein Forschungsgebiet, das sich mit Methoden zur Beherrschung der Systemkomplexität befasst, ist das Organic Computing. In dessen Rahmen werden Konzepte erforscht, um in natürlichen Systemen beobachtbare Eigenschaften und Organisationsprinzipien auf technische Systeme zu übertragen. Hierbei sind insbesondere sogenannte Selbst-X-Eigenschaften wie Selbstorganisation, -konfiguration und -heilung von Bedeutung. Eine konkrete Ausprägung dieses Forschungszweigs ist das künstliche Hormonsystem (artificial hormone system, AHS). Hierbei handelt es sich um eine Middleware für verteilte Systeme, welche es ermöglicht, die Tasks des Systems selbstständig auf seine Prozessorelemente (PEs) zu verteilen und insbesondere Ausfälle einzelner Tasks oder ganzer PEs automatisch zu kompensieren, indem die betroffenen Tasks auf andere PEs migriert werden. Hierbei existiert keine zentrale Instanz, welche die Taskverteilung steuert und somit einen Single-Point-of-Failure darstellen könnte. Entsprechend kann das AHS aufgrund seiner automatischen (Re)konfiguration der Tasks als selbstkonfigurierend und selbstheilend bezeichnet werden, was insbesondere die Zuverlässigkeit des realisierten Systems erhöht. Die Dauer der Selbstkonfiguration und Selbstheilung unterliegt zudem harten Zeitschranken, was den Einsatz des AHS auch in Echtzeitsystemen erlaubt. Das AHS nimmt jedoch an, dass alle Tasks gleichwertig sind, zudem werden alle Tasks beim Systemstart in einer zufälligen Reihenfolge auf die einzelnen PEs verteilt. Häufig sind die in einem System auszuführenden Tasks jedoch für das Gesamtsystem von unterschiedlicher Wichtigkeit oder müssen gar in einer bestimmten Reihenfolge gestartet werden. Um den genannten Eigenschaften Rechnung zu tragen, liefert diese Dissertation gegenüber dem aktuellen Stand der Forschung folgende Beiträge: Zunächst werden die bisher bekannten Zeitschranken des AHS genauer betrachtet und verfeinert. Anschließend wird das AHS durch die Einführung von Zuteilungsprioritäten erweitert: Mithilfe dieser Prioritäten kann eine Reihenfolge definiert werden, in welcher die Tasks beim Start des Systems auf die PEs verteilt beziehungsweise in welcher betroffene Tasks nach einem Ausfall auf andere PEs migriert werden. Die Zeitschranken dieser AHS-Erweiterung werden im Detail analysiert. Durch die Priorisierung von Tasks ist es möglich, implizit Teilmengen von Tasks zu definieren, die ausgeführt werden sollen, falls die Rechenkapazitäten des Systems nach einer bestimmten Anzahl von PE-Ausfällen nicht mehr ausreichen, um alle Tasks auszuführen: Die im Rahmen dieser Dissertation entwickelten Erweiterungen erlauben es in solchen Überlastsituationen, das System automatisch und kontrolliert zu degradieren, sodass die wichtigsten Systemfunktionalitäten lauffähig bleiben. Überlastsituationen werden daher im Detail betrachtet und analysiert. In solchen müssen gegebenenfalls Tasks niedriger Priorität gestoppt werden, um auf den funktionsfähig verbleibenden PEs hinreichend viel Rechenkapazität zu schaffen, um Tasks höherer Priorität ausführen zu können und das System so in einen wohldefinierten Zustand zu überführen. Die Entscheidung, in welcher Reihenfolge hierbei Tasks gestoppt werden, wird von einer Task-Dropping-Strategie getroffen, die entsprechend einen großen Einfluss auf die Dauer einer solchen Selbstheilung nimmt. Es werden zwei verschiedene Task-Dropping-Strategien entwickelt und im Detail analysiert: die naive Task-Dropping-Strategie, welche alle niedrigprioren Tasks auf einmal stoppt, sowie das Eager Task Dropping, das in mehreren Phasen jeweils höchstens eine Task pro PE stoppt. Im Vergleich zeigt sich, dass von letzterem fast immer weniger Tasks gestoppt werden als von der naiven Strategie, was einen deutlich schnelleren Abschluss der Selbstheilung ermöglicht. Lediglich in wenigen Sonderfällen ist die naive Strategie überlegen. Es wird detailliert gezeigt, dass die entwickelte AHS-Erweiterung auch in Überlastsituationen die Einhaltung bestimmter harter Zeitschranken garantieren kann, was den Einsatz des erweiterten AHS in Echtzeitsystemen erlaubt. Alle theoretisch hergeleiteten Zeitschranken werden durch umfassende Evaluationen vollumfänglich bestätigt. Abschließend wird das erweiterte, prioritätsbasierten AHS mit verschiedenen verwandten Konzepten verglichen, um dessen Vorteile gegenüber dem Stand der Forschung herauszuarbeiten sowie zukünftige vertiefende Forschung zu motivieren.
Radiation mitigation for SRAM-Based FPGAs in the CBM experiment (2015)
Manz, Sebastian Andreas
Detectors of modern high-energy physics experiments generate huge data rates during operation. The efficient read-out of this data from the front-end electronics is a sophisticated task, the main challenges, however, may vary from experiment to experiment. The Compressed Baryonic Matter (CBM) experiment that is currently under construction at the Facility for Antiproton and Ion Research (FAIR) in Darmstadt/Germany foresees a novel approach for data acquisition. Unlike previous comparable experiments that organize data read-out based on global, hierarchical trigger decisions, CBM is based on free-running and self-triggered front-end electronics. Data is pushed to the next stage of the read-out chain rather than pulled from the buffers of the previous stage. This new paradigm requires a completely new development of read-out electronics. As one part of this thesis, a firmware for a read-out controller to interface such a free-running and self-triggered front-end ASIC, the GET4 chip, was implemented. The firmware in question was developed to run on a Field Programmable Gate Array (FPGA). An FPGA is an integrated circuit whose behavior can be reconfigured "in the field" which offers a lot of flexibility, bugs can be fixed and also completely new features can be added, even after the hardware has already been installed. Due to these general advantages, the usage of FPGAs is desired for the final experiment. However, there is also a drawback to the usage of FPGAs. The only affordable FPGAs today are based on either SRAM or Flash technology and both cannot easily be operated in a radiation environment. SRAM-based devices suffer severely from Single Event Upsets (SEUs) and Flash-based FPGAs deteriorate too fast from Total Ionizing Dose (TID) effects. Several radiation mitigation techniques exist for SRAM-based FPGAs, but careful evaluation for each use case is required. For CBM it is not clear if the higher resource consumption of added redundancy, that more or less directly translates in to additional cost, outweighs the advantaged of using FPGAs. In addition, it is even not clear if radiation mitigation techniques (e.g. scrubbing) that were already successfully put into operation in space applications also work as efficiently at the much higher particle rates expected at CBM. In this thesis, existing radiation mitigation techniques have been analyzed and eligible techniques have been implemented for the above-mentioned read-out controller. To minimize additional costs, redundancy was only implemented for selected parts of the design. Finally, the radiation mitigated read-out controller was tested by mounting the device directly into a particle beam at Forschungszentrum Jülich. The tests show that the radiation mitigation effect of the implemented techniques remains sound, even at a very high particle flux and with only part of the design protected by costly redundancy. The promising results of the in-beam tests suggest to use FPGAs in the read-out chain of the CBM-ToF detector.
Akteursorientierte multimodale Straßenverkehrssimulation (2013)
Dallmeyer, Jörg
Die vorliegende Dissertation behandelt die Entwicklung eines Verkehrssimulationssystems, welches vollautomatisch aus Landkarten Simulationsgraphen erstellen kann. Der Fokus liegt bei urbanen Simulationsstudien in beliebigen Gemeinden und Städten. Das zweite fundamentale Standbein dieser Arbeit ist daher die Konstruktion von Verkehrsmodellen, die die wichtigsten Verkehrsteilnehmertypen im urbanen Bereich abbilden. Es wurden Modelle für Autos, Fahrräder und Fußgänger entwickelt. Die Betrachtung des Stands der Forschung in diesem Bereich hat ergeben, dass die Verknüpfung von automatischer Grapherstellung und Modellen, die die Wechselwirkungen der verschiedenen Verkehrsteilnehmertypen abbilden, von keinem vorhandenen System geleistet wird. Es gibt grundlegend zwei Gruppen von Verkehrssimulationssystemen. Zum Einen existieren Systeme, die hohe Genauigkeiten an Simulationsergebnissen erzielen und dafür exakte (teil-)manuelle Modellierung der Gegebenheiten im zu simulierenden Bereich benötigen. Es werden in diesem Bereich meist Verkehrsmodelle simuliert, die die Verhaltensweisen der Verkehrsteilnehmer sehr gut abbilden und hierfür einen hohen Berechnungsaufwand benötigen. Auf der anderen Seiten existieren Simulationssysteme, die Straßengraphen automatisch erstellen können, darauf jedoch sehr vereinfachte Verkehrsmodelle simulieren. Es werden meist nur Autobewegungen simuliert. Der Nutzen dieser Herangehensweise ist die Möglichkeit, sehr große Szenarien simulieren zu können. Im Rahmen dieser Arbeit wird ein System mit Eigenschaften beider grundlegenden Ansätze entwickelt, um multimodalen innerstädtischen Verkehr auf Basis automatisch erstellter Straßengraphen simulieren zu können. Die Entwicklung eines neuen Verkehrssimulationssystems erschien notwendig, da sich zum Zeitpunkt der Literaturbetrachtung kein anderes vorhandenes System für die Nutzung zur Erfüllung der genannten Zielstellung eignete. Das im Rahmen dieser Arbeit entwickelte System heißt MAINSIM (MultimodAle INnerstädtische VerkehrsSIMulation). Die Simulationsgraphen werden aus Kartenmaterial von OpenStreetMap extrahiert. Kartenmaterial wird zuerst in verschiedene logische Layer separiert und anschließend zur Bestimmung eines Graphen des Straßennetzes genutzt. Eine Gruppe von Analyseschritten behebt Ungenauigkeiten im Kartenmaterial und ergänzt Informationen, die während der Simulation benötigt werden (z.B. die Verbindungsrichtung zwischen zwei Straßen). Das System verwendet Geoinformationssystemkomponenten zur Verarbeitung der Geodaten. Dies birgt den Vorteil der einfachen Erweiterbarkeit um weitere Datenquellen. Die Verkehrssimulation verwendet mikroskopische Verhaltensmodelle. Jeder einzelne Verkehrsteilnehmer wird somit simuliert. Das Modell für Autos basiert auf dem in der Verkehrsforschung weit genutzten Nagel-Schreckenberg-Modell. Es verfügt jedoch über zahlreiche Modifikationen und Erweiterungen, um das Modell auch abseits von Autobahnen nutzen zu können und weitere Verhaltensweisen zu modellieren. Das Fahrradmodell entsteht durch geeignete Parametrisierung aus dem Automodell. Zur Entwicklung des Fußgängermodells wurde Literatur über das Verhalten von Fußgängern diskutiert, um daraus geeignete Eigenschaften (z.B. Geschwindigkeiten und Straßenüberquerungsverhaltensmuster) abzuleiten. MAINSIM ermöglicht folglich die Betrachtung des Verkehrsgeschehens auch aus der Sicht der Gruppe der Fußgänger oder Fahrradfahrer und kann deren Auswirkungen auf den Straßenverkehr einer ganzen Stadt bestimmen. Das Automodell wurde auf Autobahnszenarien und innerstädtischen Straßengraphen evaluiert. Es konnte die gut verstandenen Zusammenhänge zwischen Verkehrsdichte, -fluss und -geschwindigkeit reproduzieren. Zur Evaluierung von Fahrradmodellen liegen nach dem besten Wissen des Autors keine Studien vor. Daher wurden an dieser Stelle der Einfluss der Fahrradfahrer auf den Straßenverkehr und die von Fahrrädern gefahrenen Geschwindigkeiten untersucht. Das Fußgängermodell konnte die aus der Literaturbetrachtung ermittelten Verhaltensweisen abbilden. Nachdem die wichtigsten Komponenten von MAINSIM untersucht wurden, begannen Fallstudien, die verschiedene Gebiete abdecken. Die wichtigsten Ergebnisse aus diesem Teil der Arbeit sind: - Es ist möglich, mit Hilfe maschineller Lernverfahren Staus innerhalb Frankfurts vorherzusagen. - Nonkonformismus bezüglich der Verkehrsregeln kann je nach Verhalten den Verkehrsfluss empfindlich beeinflussen, kann aber auch ohne Effekt bleiben. - Mit Hilfe von Kommunikationstechniken könnte in der Zukunft die Routenplanung von Autos verbessert werden. Ein Verfahren auf Basis von Pheromonspuren wurde im Rahmen dieser Arbeit untersucht. - MAINSIM eignet sich zur Simulation großer Szenarien. In der letzten Fallstudie dieser Arbeit wurde der Autoverkehr eines Simulationsgebietes um Frankfurt am Main herum mit ca. 1,6 Mio. Trips pro Tag simuliert. Da MAINSIM über ein Kraftstoffverbrauchs- und CO2-Emissionsmodell verfügt, konnten die CO2-Emissionen innerhalb von Frankfurt ermittelt werden. Eine angekoppelte Simulation des Wetters mit Hilfe einer atmosphärischen Simulation zeigte, wie sich die Gase innerhalb Frankfurts verteilen. Für den professionellen Einsatz in der Verkehrsforschung muss das entwickelte Simulationssystem um eine Methode zur Kalibrierung auf Sensordaten im Simulationsgebiet erweitert werden. Die vorhandenen Ampelschaltungen bilden nicht reale Ampeln ab. Eine Erweiterung des Systems um die automatische Integrierung maschinell lesbarer Schaltpläne von Ampeln im Bereich des Simulationsgebietes würde die Ergebnisgüte weiter erhöhen. MAINSIM hat mehrere Anwendungsgebiete. Es können sehr schnell Simulationsgebiete modelliert werden. Daher bietet sich die Nutzung für Vorabstudien an. Wenn große Szenarien simuliert werden müssen, um z.B. die Verteilung der CO2-Emissionen innerhalb einer Stadt zu ermitteln, kann MAINSIM genutzt werden. Es hat sich im Rahmen dieser Arbeit gezeigt, dass Fahrräder und Fußgänger einen Effekt auf die Mengen des Kraftstoffverbrauchs von Autos haben können. Es sollte bei derartigen Szenarien folglich ein Simulationssysytem genutzt werden, welches die relevanten Verkehrsteilnehmertypen abbilden kann. Zur Untersuchung weiterer wissenschaftlicher Fragestellungen kann MAINSIM beliebig erweitert werden.
Ein organisches Taskverarbeitungssystem für zuverlässige Multi-Core SoC-Architekturen (2016)
Betting, Benjamin
Die vorliegende Arbeit stellt ein organisches Taskverarbeitungssystem vor, das die zuverlässige Verwaltung und Verarbeitung von Tasks auf Multi-Core basierten SoC-Architekturen umsetzt. Aufgrund der zunehmenden Integrationsdichte treten bei der planaren Halbleiter-Fertigung vermehrt Nebeneffekte auf, die im Systembetrieb zu Fehler und Ausfällen von Komponenten führen, was die Zuverlässigkeit der SoCs zunehmend beeinträchtigt. Bereits ab einer Fertigungsgröße von weniger als 100 nm ist eine drastische Zunahme von Elektromigration und der Strahlungssensitivität zu beobachten. Gleichzeitig nimmt die Komplexität (Applikations-Anforderungen) weiter zu, wobei der aktuelle Trend auf eine immer stärkere Vernetzung von Geräten abzielt (Ubiquitäre Systeme). Um diese Herausforderungen autonom bewältigen zu können, wird in dieser Arbeit ein biologisch inspiriertes Systemkonzept vorgestellt. Dieses bedient sich der Eigenschaften und Techniken des menschlichen endokrinen Hormonsystems und setzt ein vollständig dezentrales Funktionsprinzip mit Selbst-X Eigenschaften aus dem Organic Computing Bereich um. Die Durchführung dieses organischen Funktionsprinzips erfolgt in zwei getrennten Regelkreisen, die gemeinsam die dezentrale Verwaltung und Verarbeitung von Tasks übernehmen. Der erste Regelkreis wird durch das künstliche Hormonsystem (KHS) abgebildet und führt die Verteilung aller Tasks auf die verfügbaren Kerne durch. Die Verteilung erfolgt durch das Mitwirken aller Kerne und berücksichtigt deren lokale Eignung und aktueller Zustand. Anschließend erfolgt die Synchronisation mit dem zweiten Regelkreis, der durch die hormongeregelte Taskverarbeitung (HTV) abgebildet wird und einen dynamischen Task-Transfer gemäß der aktuellen Verteilung vollzieht. Dabei werden auch die im Netz verfügbaren Zustände von Tasks berücksichtigt und es entsteht ein vollständiger Verarbeitungspfad, ausgehend von der initialen Taskzuordnung, hinweg über den Transfer der Taskkomponenten, gefolgt von der Erzeugung der lokalen Taskinstanz bis zum Start des zugehörigen Taskprozesses auf dem jeweiligen Kern. Die System-Implementierung setzt sich aus modularen Hardware- und Software-Komponenten zusammen. Dadurch kann das System entweder vollständig in Hardware, Software oder in hybrider Form betrieben und genutzt werden. Mittels eines FPGA-basierten Prototyps konnten die formal bewiesenen Zeitschranken durch Messungen in realer Systemumgebung bestätigt werden. Die Messergebnisse zeigen herausragende Zeitschranken bezüglich der Selbst-X Eigenschaften. Des Weiteren zeigt der quantitative Vergleich gegenüber anderen Systemen, dass der hier gewählte dezentrale Regelungsansatz bezüglich Ausfallsicherheit, Flächen- und Rechenaufwand deutlich überlegen ist.
A highly dependable, analog multi-core mixed-signal task distribution system (2014)
Rosen, Julius von
The thesis presents the complete design process of a reliable architecture, which distributes tasks within a mixed-signal multi-core System-on-Chip highly dependable, decentralized and self-reliant. The design process ends with the fabrication of a prototypical chip.
On ageing effects in analogue integrated circuits (2016)
Salfelder, Felix
The behaviour of electronic circuits is influenced by ageing effects. Modelling the behaviour of circuits is a standard approach for the design of faster, smaller, more reliable and more robust systems. In this thesis, we propose a formalization of robustness that is derived from a failure model, which is based purely on the behavioural specification of a system. For a given specification, simulation can reveal if a system does not comply with a specification, and thus provide a failure model. Ageing usually works against the specified properties, and ageing models can be incorporated to quantify the impact on specification violations, failures and robustness. We study ageing effects in the context of analogue circuits. Here, models must factor in infinitely many circuit states. Ageing effects have a cause and an impact that require models. On both these ends, the circuit state is highly relevant, an must be factored in. For example, static empirical models for ageing effects are not valid in many cases, because the assumed operating states do not agree with the circuit simulation results. This thesis identifies essential properties of ageing effects and we argue that they need to be taken into account for modelling the interrelation of cause and impact. These properties include frequency dependence, monotonicity, memory and relaxation mechanisms as well as control by arbitrary shaped stress levels. Starting from decay processes, we define a class of ageing models that fits these requirements well while remaining arithmetically accessible by means of a simple structure. Modeling ageing effects in semiconductor circuits becomes more relevant with higher integration and smaller structure sizes. With respect to miniaturization, digital systems are ahead of analogue systems, and similarly ageing models predominantly focus on digital applications. In the digital domain, the signal levels are either on or off or switching in between. Given an ageing model as a physical effect bound to signal levels, ageing models for components and whole systems can be inferred by means of average operation modes and cycle counts. Functional and faithful ageing effect models for analogue components often require a more fine-grained characterization for physical processes. Here, signal levels can take arbitrary values, to begin with. Such fine-grained, physically inspired ageing models do not scale for larger applications and are hard to simulate in reasonable time. To close the gap between physical processes and system level ageing simulation, we propose a data based modelling strategy, according to which measurement data is turned into ageing models for analogue applications. Ageing data is a set of pairs of stress patterns and the corresponding parameter deviations. Assuming additional properties, such as monotonicity or frequency independence, learning algorithm can find a complete model that is consistent with the data set. These ageing effect models decompose into a controlling stress level, an ageing process, and a parameter that depends on the state of this process. Using this representation, we are able to embed a wide range of ageing effects into behavioural models for circuit components. Based on the developed modelling techniques, we introduce a novel model for the BTI effect, an ageing effect that permits relaxation. In the following, a transistor level ageing model for BTI that targets analogue circuits is proposed. Similarly, we demonstrate how ageing data from analogue transistor level circuit models lift to purely behavioural block models. With this, we are the first to present a data based hierarchical ageing modeling scheme. An ageing simulator for circuits or system level models computes long term transients, solutions of a differential equation. Long term transients are often close to quasi-periodic, in some sense repetitive. If the evaluation of ageing models under quasi-periodic conditions can be done efficiently, long term simulation becomes practical. We describe an adaptive two-time simulation algorithm that basically skips periods during simulation, advancing faster on a second time axis. The bottleneck of two-time simulation is the extrapolation through skipped frames. This involves both the evaluation of the ageing models and the consistency of the boundary conditions. We propose a simulator that computes long term transients exploiting the structure of the proposed ageing models. These models permit extrapolation of the ageing state by means of a locally equivalent stress, a sort of average stress level. This level can be computed efficiently and also gives rise to a dynamic step control mechanism. Ageing simulation has a wide range of applications. This thesis vastly improves the applicability of ageing simulation for analogue circuits in terms of modelling and efficiency. An ageing effect model that is a part of a circuit component model accounts for parametric drift that is directly related to the operation mode. For example asymmetric load on a comparator or power-stage may lead to offset drift, which is not an empiric effect. Monitor circuits can report such effects during operation, when they become significant. Simulating the behaviour of these monitors is important during their development. Ageing effects can be compensated using redundant parts, and annealing can revert broken components to functional. We show that such mechanisms can be simulated in place using our models and algorithms. The aim of automatized circuit synthesis is to create a circuit that implements a specification for a certain use case. Ageing simulation can identify candidates that are more reliable. Efficient ageing simulation allows to factor in various operation modes and helps refining the selection. Using long term ageing simulation, we have analysed the fitness of a set of synthesized operational amplifiers with similar properties concerning various use cases. This procedure enables the selection of the most ageing resilient implementation automatically.
  • 1 to 10

OPUS4 Logo

  • Contact
  • Imprint
  • Sitelinks