Refine
Document Type
- Doctoral Thesis (4)
Language
- English (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- H/ACA-RNP (1)
- Pseudouridine (1)
- Pseudouridylation (1)
- Ribonucleoproteins (1)
- smFRET (1)
Institute
H/ACA-RNPs are involved in RNA guided pseudouridylation of rRNAs and snRNAs. In this thesis I reconstituted active and labeled archaeal as well as eukaryotic H/ACA-RNPs and studied the structural dynamics of complex assembly and pseudouridine formation. Single molecule FRET spectroscopy was used as method of analysis to study structure, assembly and dynamics of these important complexes.
This dissertation contains two chapters. Each chapter covers a unique topic within RNA sci-ence and is divided in two sub sections, part A and B. Each chapter contains an introduction.
Chapter 1 gives an insight into challenges encountered during sample design and preparation for single molecule Förster energy transfer (smFRET) spectroscopy and offers a solution via a newly establishedestablished workflow to obtain accurate smFRET constructs. Following this workflow, a FRET network could be generated, which allowed a detailed structural dynamics study on H/ACA RNP during catalysis with smFRET spectroscopy. This led to detailed mech-anistic insights into H/ACA RNPs dynamics during catalysis.
Chapter 2 deals with RNA synthetic biology whereby a novel eclectic design strategy for RNA of interest (ROI) release platform is presented, which allows to release a diverse ROI se-quences with single nucleotide precision triggered by an external stimulus. This design strat-egy was used to establish a ROI release system and its powerful performance in in vitro and in vivo applications was shown.
This dissertation contains two chapters. Each chapter covers a unique topic within RNA science and is divided in two sub sections, part A and B. Each chapter contains an introduction.
Chapter 1 gives an insight into challenges encountered during sample design and preparation for single molecule Förster energy transfer (smFRET) spectroscopy and offers a solution via a newly establishedestablished workflow to obtain accurate smFRET constructs. Following this workflow, a FRET network could be generated, which allowed a detailed structural dynamics study on H/ACA RNP during catalysis with smFRET spectroscopy. This led to detailed mechanistic insights into H/ACA RNPs dynamics during catalysis.
Chapter 2 deals with RNA synthetic biology whereby a novel eclectic design strategy for RNA of interest (ROI) release platform is presented, which allows to release a diverse ROI sequences with single nucleotide precision triggered by an external stimulus. This design strategy was used to establish a ROI release system and its powerful performance in in vitro and in vivo applications was shown.
The post-transcriptional modification of the canonical nucleoside uridine into its rotational isomer pseudouridine occurs in non-coding as well as coding RNA and is the most abundant post-transcriptional modification in all kingdoms of life. While the occurrence of pseudouridine has been linked to the enhancement of stability and the codon-anticodon interaction in tRNAs, enhancement of the translation efficiency in rRNAs, regulatory functions in spliceosomal snRNA and nonsense codon suppression in mRNA, its exact role in many RNAs is still ambiguous. The uridine to pseudouridine isomerization can either be catalyzed by one of various standalone pseudouridylases or it can be performed in an RNA-guided manner by H/ACA ribonucleoproteins. In eukaryotes, the guide RNA always adapts a conserved bipartite, double-hairpin conformation. Each hairpin contains an internal RNA-loop motif, which can recruit a specific substrate RNA via base pairing. The catalytically active RNP is formed by the interactions of the guide RNA with four proteins. While Cbf5 forms the catalytically active center, Nop10 and Nhp2 perform auxiliary functions and Gar1 is involved in substrate turnover. Up until now, most structural knowledge about H/ACA RNPs has been derived from archaeal complexes, while the exact structure-function-relationships between RNA and proteins in eukaryotic RNPs is still ambiguous. While archaeal H/ACA RNPs share many similarities with eukaryotic RNPs and act as good model system, there are also many differences between them like eukaryotic specific protein domains as well as the overall bipartite complex structure, dictated by the snoRNA. Investigating pseudouridylation by eukaryotic H/ACA RNPs opens up a broad area of research and helps to gain a better understanding of this enzyme class – especially since malfunction of H/ACA RNPs has been linked to the genetic disease Dyskeratosis congenita as well as several types of cancer.
The main goal of this thesis was to gain new insights into the RNA/protein interactions in the eukaryotic snR81 H/ACA snoRNP from Saccharomyces cerevisiae on a structural as well as dynamical level. In the first part of this thesis, the main goal was to in vitro prepare a functionally active snR81 H/ACA RNP. The guiding snoRNA was prepared by in vitro transcription and purification, while the Saccharomyces cerevisiae proteins were recombinantly expressed from Escherichia coli. Apart from the full length, bipartite snR81 snoRNP, several sub-complexes of the RNP were reconstituted. Therefore, snoRNA constructs were designed and prepared, which only contained a single hairpin motif of the complex. Furthermore, snoRNA constructs in which the apical hairpin stem was replaced by a stable tetraloop were prepared, to investigate the influence of the apical stem on protein binding and activity. Also, for the eukaryotic proteins, a shortened version of Gar1 (Gar1Δ) was utilized, which lacks the eukaryotic specific RGG domains, that have been characterized as accessory RNA binding motifs. Reconstituted snoRNPs were utilized in catalytic activity assays, monitoring the turnover rate of uridine to pseudouridine. For this purpose, radioactively labeled substrate RNAs were prepared by phosphorylation and splinted ligation of oligonucleotides and were objected to reconstituted H/ACA RNPs under single as well as multiple turnover conditions. In the second part of this thesis, the RNA/protein interactions were dissected via single molecule FRET spectroscopy. Therefore, the snoRNA was labeled with an acceptor fluorophore via NHS ester/amine-reaction. Furthermore, the snoRNA contained a biotin-handle, allowing immobilization of the complex during the experimental time-window of the spectroscopic analysis. Eukaryotic specific protein Nhp2 was labeled with a donor fluorophore via “click” chemistry, which included the chemical synthesis and incorporation by genetic code expansion of non-canonical amino acids. The interactions of Nhp2 with the different snoRNA constructs (standalone-hairpins “H5” and “H3”, as well as hairpins lacking the apical binding motif “H5Δ” and “H3Δ”) were monitored on a single molecule level.
In summary, it was possible to gain new insights into the complex structure and the dynamical behavior of the still sparsely characterized eukaryotic H/ACA RNPs. Especially, new knowledge could be obtained about the hairpin specific behavior on the bipartite RNA complex structure, including the rather ambiguous role of the protein Nhp2 and the contribution of the eukaryotic specific features of Gar1 in their interaction with the guide/substrate RNA.