Refine
Document Type
- Doctoral Thesis (4)
Language
- German (4)
Has Fulltext
- yes (4)
Is part of the Bibliography
- no (4)
Keywords
- Chinoxalinderivate (1)
- HIV-1 (1)
- Heterozyklen (1)
- Phenazinderivate (1)
- Pyrazole (1)
- Tat-TAR-Komplex (1)
- Tat-TAR-complex (1)
- heterocycles (1)
- pyrazoles (1)
Institute
Adaptormoleküle zur Rekrutierung von Transkriptionsfaktoren oder miRNAs an nicht native Bindestellen
(2020)
Die Kontrolle der Genexpression ist eines der großen Ziele der chemischen Biologie. Gemäß dem klassischen Dogma der Molekularbiologe verläuft der Fluss der genetischen Information über die Transkription von DNA zur messenger RNA (mRNA) und durch die Translation von mRNA zu Proteinen. Auch wenn der ursprünglichen Formulierung dieses Dogmas verschiedene Aspekte hinzugefügt wurden, bleibt die Kernaussage unverändert. Eine Störung der Genexpression ist in vielen Fällen die Ursache für schwerwiegende Erkrankungen. Klassische Therapeutika, die im Allgemeinen aus kleinen Molekülen bestehen, können pathogene Proteine spezifisch binden und inhibieren. Allerdings greifen diese Wirkstoffe am Ende der Produktionskette ein und nicht alle Proteine können adressiert werden. Im Gegensatz dazu könnte ein Eingriff auf der Ebene der Transkription oder Translation die Expression der pathogenen Proteine auf ein normales Maß senken oder ganz verhindern. Als entscheidende Regulatoren der Genexpression stellen Transkriptionsfaktoren (TFs) einen interessanten Angriffspunkt zur Kontrolle der Transkription dar. TFs können über den Kontakt zu weiteren Proteinen die RNA Polymerase II rekrutieren und so die Transkription starten. Für die Translation ist die Halbwertszeit der mRNA ein entscheidender Faktor. Die Lebensdauer wird durch eine Vielzahl an Proteinen und micro RNAs (miRNAs) reguliert. MiRNAs sind kurze Oligonukleotide, die in Argonautproteine eingebaut werden können. Die daraus resultierenden RNA-induced silencing complexes (RISCs) sind in der Lage, den Abbau der mRNA einzuleiten. Sowohl TFs als auch RISCs besitzen dabei Nukleinsäure-bindende Untereinheiten, die mit spezifische Sequenzen assoziieren. In gewisser Weise ist die molekulare Erkennung der Nukleinsäuren vergleichbar mit einer Postsendung, die aufgrund der Adresse korrekt zugestellt wird. Um in diesem Bild des täglichen Lebens zu bleiben: Bei einem Wechsel des Wohnorts ist es üblich, einen Nachsendeauftrag zu stellen. Dabei wird die alte Anschrift auf den Postsendungen mit einem neuen Adressetikett überklebt und die Zustellung erfolgt an den neuen Wohnort. Das zentrale Thema dieser Dissertation ist, dieses „Umetikettieren“ auch auf TFs und RISCs zu übertragen. Hierbei ist es notwendig, die Nukleinsäure-bindenden Untereinheiten der Komplexe, also die „alte Adresse“, vollständig zu blockieren und gleichzeitig eine hohe Affinität zu einer neuen Sequenz zu erzeugen. Hierzu könnten bifunktionale Adaptormoleküle verwendet werden.
Die Adaptoren für die Rekrutierung von TFs müssen in der Lage sein, sowohl die doppelsträngige DNA (dsDNA) als auch einen TF zu binden (Abbildung I). Dabei sollte eine Selbstbindung des Adaptors vermieden werden. In dieser Arbeit wurde der TF Sp1 als Ziel gewählt, da er an GC-reiche dsDNAs bindet. Dies ermöglicht die Wahl einer AT- oder GA reichen DNA-Sequenz als Ziel der Umleitung, wodurch eine Selbstbindung des Adaptors minimiert werden sollte. Zur Erkennung der DNA war geplant, Pyrrol-Imidazol-Polyamide (PIPs), triplexbildende Oligonukleotide (TFOs) oder pseudokomplementäre PNAs einzusetzen. Für Letztere war es möglich, eine neue Syntheseroute zu einem Fmoc geschützten Thiouracil-Monomer zu entwerfen. Dabei konnte eine selektive Alkylierung an der N1-Position des Thiouracils durchgeführt werden. Auf Basis der PIPs und der TFOs wurden jeweils verschiedene Adaptoren entworfen, deren Bindung zu ihren Zielen mit Band-Shift-Experimenten und im Fall der PIPs zusätzlich mit fluoreszenzbasierten Pulldown-Experimenten gezeigt wurde. Im Rahmen dieser Versuche zeigte sich, dass die PIP-basierten Systeme deutlich besser an die Zielsequenzen banden als die TFO-basierten Adaptoren. Das Konjugat K5a besaß hierbei die besten Eigenschaften. Weiterhin konnte mit diesem Adaptor in Pulldown-Experimenten gezeigt werden, dass Sp1 auf eine nicht kanonische AT-reiche Bindestelle umgeleitet wurde. Im Anschluss konnte das Sp1 in Western-Blots detektiert werden. Des Weiteren ließ sich zeigen, dass K5a in einem HeLa Lysat über mehrere Stunden stabil war und somit eine Anwendung in Zellkulturexperimenten möglich sein sollte.
Für die Rekrutierung der RISCs war lediglich eine Erkennung zweier einzelsträngiger RNA-Abschnitte notwendig. Hierzu wurden zwei LNAs oder LNA/DNA-Mixmere verwendet, die über einen Linker verknüpft waren (Abbildung I). Als Folge dieses Aufbaus mussten die beiden Adaptorhälften orthogonal sein, da eine Selbstbindung des Adaptors leichter als bei den TF-Adaptoren auftreten konnte. Diese Adaptoren wurden mit Band-Shift- und fluoreszenzbasierten Pulldown-Experimenten auf ihre Fähigkeit, eine Cy5-gelabelte miRNA auf eine Ziel-RNA umzuleiten, überprüft. Es konnte beobachtet werden, dass all-LNA Adaptoren sehr viele off-target-Effekt aufwiesen, welche die Umleitung von miRNAs verhinderte. Im Gegensatz dazu konnten mit DNA/LNA-Mixmeren eine vollständige Umleitung von miRNA-Modellen beobachtet werden. Es war ebenfalls möglich, spezifische RISCs aus HeLa-Lysaten mit unterschiedlichen Adaptoren in Pulldown-Experimenten zu isolieren und in nachfolgenden Western-Blots zu detektieren. Nachdem gezeigt war, dass eine Umleitung in vitro gelang, sollte die Funktion der Adaptoren in Zellkulturexperimenten geprüft werden. Allerdings konnten in diesen Versuchen keine eindeutigen Ergebnisse erhalten werden, sodass die biologische Relevanz der RISC-Umleitung bislang noch nicht bestätigt werden konnte.
Künstliche Ribonucleasen, die sequenzspezifisch und effizient die Spaltung von RNA-Phosphordiesterbindungen katalysieren, könnten potenziell nicht nur als biochemische Werkzeuge dienen, sondern auch als Wirkstoffe gegen eine Vielzahl von Erkrankungen, bei denen mRNA oder miRNA involviert sind, eine wichtige Rolle spielen. Obwohl in den letzten beiden Jahrzehnten zahlreiche sequenzspezifische RNA-Spalter entwickelt wurden, bleibt die Spaltaktivität dieser Verbindungen nach wie vor deutlich hinter der ihrer natürlichen Äquivalente zurück. Die Optimierung künstlicher Ribonucleasen und grundlegend dafür die Erforschung der Faktoren, die die Spaltaktivität einer Verbindung beeinflussen, sind daher weiterhin von großem Interesse. Zwar enthalten die meisten künstlichen Ribonucleasen Metallionen, doch sind auch metallfreie RNA-Spalter, zum Beispiel auf der Basis heterocyclischer Guanidine, bekannt. Prinzipiell kann die Hydrolyse des RNA-Rückgrates durch Deprotonierung der nucleophil am Phosphoratom angreifenden 2‘-OH-Gruppe, durch Protonierung der als Abgangsgruppe fungierenden 5‘-OH-Gruppe sowie durch Stabilisierung des bei der Spaltung durchlaufenen dianionischen Phosphorans katalysiert werden. Daher sollten potenzielle RNA-Spalter in der Lage sein, sowohl als Base als auch als Säure wirken zu können, was bei einem pKa-Wert im Bereich von 7 am besten gegeben ist. Fungiert ein und dasselbe Molekül als Protonenakzeptor und -donor, so kommt es im Fall von Guanidinanaloga zu einer Tautomerisierung vom Amino- zum Iminoisomer. Eine möglichst kleine Energiedifferenz zwischen beiden Formen sollte sich daher positiv auf die Spaltaktivität auswirken. In der vorliegenden Arbeit wurde eine Reihe heterocyclischer Guanidine synthetisiert, deren pKa-Werte bestimmt und die jeweiligen Energiedifferenzen zwischen Amino- und Iminotautomer grob mittels AM1-Rechnungen abgeschätzt. In Spaltexperimenten wurden Cy5-markierte RNA-Substrate mit den verschiedenen Verbindungen inkubiert (Spalter-Konzentration: 2 bzw. 10 mM). Die Analyse und Quantifizierung der Spaltprodukte erfolgten anschließend mithilfe eines DNA-Sequenziergerätes. Alle untersuchten und ausreichend löslichen Substanzen, die sowohl einen geeigneten pKa-Wert (6 – 8) als auch eine niedrige Energiedifferenz zwischen Amino- und Iminotautomer (≤ 5 kcal/mol) aufwiesen bzw. bei denen nur der pKa-Wert oder nur die Energiedifferenz in geringem Maße vom Idealwert abwich, spalteten RNA, wenn auch teilweise nur mit einer geringen Aktivität. In den Spaltexperimenten erwiesen sich Guanidinanaloga mit einem großen aromatischen System als besonders aktiv, allen voran 2-Aminoperimidin und seine Derivate, die auch bei Konzentrationen unter 50 µM Spaltaktivität zeigten. Gleichzeitig offenbarten diese Verbindungen in Fluoreszenzkorrelationsspektroskopie Experimenten eine große Tendenz zur Aggregation mit RNA, so dass die Spaltung in diesen Fällen möglicherweise nicht durch Einzelmoleküle, sondern durch Aggregate erfolgte. Um RNA-Substrate auch sequenzspezifisch spalten zu können, wurden PNA-Konjugate des bereits bekannten RNA-Spalters Tris(2-aminobenzimidazol) hergestellt, wobei der Spalter über eine neue, quecksilberfreie Route synthetisiert wurde. Es konnte gezeigt werden, dass diese PNA-Konjugate RNA sequenzspezifisch mit einer Halbwertszeit von etwa 11 h spalten, was im Rahmen der Halbwertszeit vergleichbarer DNA-Konjugate liegt. Um zu untersuchen, ob 2-Aminoperimidine auch als Einzelverbindungen aktiv sind, wurden zwei PNA-Konjugate von am Naphthylring substituierten 2-Aminoperimidin-Derivaten synthetisiert. Beide Konjugate zeigten keinerlei Spaltaktivität, was darauf hindeuten könnte, dass die Hydrolyse des RNA-Rückgrates nur durch mehrere Spalter-Einheiten – kovalent verknüpft oder in Form von Aggregaten – effizient katalysiert werden kann.
Im Rahmen dieser Arbeit werden die Synthese, Eigenschaften und Anwendungsmöglichkeiten von Arylalkyl-Rückgrat modifizierten DNA-Oligonucleotiden untersucht. Das erste Ziel der vorliegenden Arbeit war, lipophile, arylalkylmodifizierte Oligonucleotide zu synthetisieren und die Auswirkungen der absoluten Konfiguration der Modifikationen auf die Eigenschaften der resultierenden Duplexe zu untersuchen. Als zweites sollten die Modifikationen in Antisense-Oligonucleotide eingebaut werden um diese auf ihre Anwendbarkeit für die lnhibierung der HCV Genexpression zu testen. Im Rahmen dieser Arbeit wurden 18 unterschiedliche Rückgrat-Modifikationen synthetisiert. Dabei wurde die Alkylkettenlänge wie auch die Größe des aromatischen Systems variiert. Zudem wurde untersucht, welchen Einfluss Ringsubstituenten auf die Eigenschaften der resultierenden Oligonucleotide ausüben. Die Rückgratmodifikationen wurden über die Festphasensynthese nach der Phosphoramiditmethode in Oligonucleotide eingebaut. Als Ausgangsverbindungen für die modifizierten Phosphoramidite dienten die Arylalkylhalogide. Diese wurden in einer dreistufigen in situ Reaktion - über das Grignard-Reagenz zu der entsprechenden cadmiumorganischen Verbindung und deren weitere Reaktion mit Phosphortrichlorid - zu den Arylalkyldichlorphosphanen umgesetzt. Die als Phosphorylierungsreagenzien fungierenden (Arylalkyl)(diisopropylamin)-chlorphosphane konnten durch Umsetzung mit N,N-Diisopropylamin erhalten werden. Die folgende Reaktion mit den 5'-hydroxyl- und aminogeschützten, natürlichen Nucleosiden führte zu den modifizierten Phosphoramidit-Bausteinen. Diese wurden mittels der OligonucleotidFestphasensynthese selektiv, an verschiedenen Positionen in sehr guten Ausbeuten in ModellOligonucleotide eingebaut und die erhaltenen Diastereoisomeren mittels RP-HPLC getrennt. Die einfach modifizierten, diastereoisomerenreinen Oligonucleotide zeigten eine signifikant erhöhte Lipophilie im Vergleich zu den unmodifizierten Strängen. Die Lipophilie nahm bei der Verlängerung der Alkylkettenlänge und der Vergrößerung des aromatischen Ringsystems pro (CH2)-Gruppe sowie pro weiterem Sechsring in konstanten Schritten zu, wodurch die Lipophilie gezielt gesteuert werden kann. Um den Einfluss der Modifikationen im Doppelstrang zu untersuchen wurden die Tm-Werte der Duplexe bestimmt und diese zudem CD- und Fluoreszenzspektroskopisch untersucht. Die erhaltenen Tm-Werte variierten sehr stark in Abhängigkeit der Alkylkettenlänge, der Ringgröße und der absoluten Konfiguration. Mit den Rp-konfigurierten benzyl- (B), (naphth-1-yl)methyl- (I) und 2,4-difluorbenzylmodifizierten (M) Oligonucleotid-Duplexen konnte eine Schmelzpunktserhöhung erzielt werden. Auch konnte mit den 3-(Anthracen-9-yl)propylphosphonaten K eine signifikante Tm-Wert Steigerung aufgrund eines "Dangling-End-Effektes" beobachtet werden. Die erhaltenen Tm-Werte korrelierten hervorragend mit den erhaltenen CD- und Fluoreszenz-Daten. Für die Zuordnung der absoluten Konfiguration der Modifikation wurden drei 3-Phenylpropylphosphonat-Dimere E synthetisiert. Die Zuordnung erfolgte mittels der 2D-ROESY-NMR-Spektren und den berechneten Protonenabständen der diastereoisomerenreinen Dimere sowie über empirische Regeln die von den Methylphosphonaten S abgeleitet wurden. Diese Ergebnisse lassen sich auf längere Oligonucleotide übertragen. Neben den Untersuchungen der Charakteristika der Arylalkyl-Rückgrat modifizierten Oligonucleotide wurden während dieser Arbeit einige Modifikationen gezielt auf ihre Einsetzbarkeit für den Antisense-Einsatz getestet. Als RNA-Zielsequenz wurden die Nucleotide 326-342 der 5'-nicht codierenden Region des Hepatitis C Virus gewählt. Im Rahmen dieser Arbeit wurden fünf unterschiedlich modifizierte Antisense-Oligonucleotide synthetisiert. Die arylalkylmodifizierten Oligonucleotide zeigten gute Hybridisierungseigenschaften gegenüber der sense-DNA bzw. sense-RNA und eine deutlich erhöhte Stabilität gegenüber der Nuclease Pl. Ferner konnte die Lipophilie der Oligonucleotide signifikant gesteigert werden. Die 2-Phenylethylphosphonate (D) und 2,4-Difluorbenzylphosphonate (M) sind zudem in der Lage die RNase H zu aktivieren. Alle dargestellten Antisense-Oligonucleotide wurden in einem zellfreien in vitro- sowie in einem in vitro-Zellkultur-Translations-Assay auf ihr lnhibierungspotential gegen die Hepatitis C Virus Genexpression getestet. Dabei zeigten die Benzylphosphonate (B), Phosphorthioate (Ps) und die 2-Phenylethylphosphonate (D) im zellfreien in vitro Testsystem hohe, spezifische Inhibierungsraten (>87%), bei einer Oligonucleotid-Konzentration von 5 µM. Auch erwiesen sich die arylalkylmodifizierten Antisense-Oligonucleotide, mit Ausnahme der 4-Phenylbutylphosphonate F, als sehr gute lnhibitoren der HCV-Genexpression in CCI13- und HepG2-Zellen.
Ein wichtiges Element zur Steuerung der Transkriptionseffizienz im Replikationszyklus des HI-Virus ist das Tat/TAR-System. Im Rahmen dieser Arbeit wurden einige kleine heterozyklische Verbindungen synthetisiert, die als potenzielle Inhibitoren des Tat-TAR-Komplexes von HIV-1 wirken sollten. Nach der Synthese des 1H-Pyrazol-3,4,5-triamin-sulfates sollte diese Verbindung dann in größere Strukturmotive eingebettet werden, von denen man sich erhoffte, dass sie in ihrer reduzierten Form in der Lage sein sollten, weitere H-Brücken zu benachbarten Basen der RNA auszubilden und dadurch die Affinität zu erhöhen. Es zeigte sich, dass die im Rahmen dieser Dissertation synthetisierten Phenazinderivate zwar alle mit Natriumdithionit reduziert werden konnten, diese Strukturen aber nicht luftstabil waren.