Refine
Year of publication
Document Type
- Doctoral Thesis (18)
Has Fulltext
- yes (18)
Is part of the Bibliography
- no (18)
Keywords
- Pflanzenökologie (2)
- Phytodiversität (2)
- West Africa (2)
- Angewandte Botanik (1)
- Artenreichtum (1)
- Benin (1)
- Biodiversität (1)
- Burkina Faso (1)
- Ecological niche modelling (1)
- Ethnobotanik (1)
In der vorliegenden Arbeit wird ein neu entwickeltes Erfassungsinstrument für die pflanzliche Artenvielfalt in der Normallandschaft vorgestellt, dass den Namen GISMap trägt. Die standardisierte Vorgehensweise und eine große Reproduzierbarkeit des Aufnahmeverfahrens sind wichtige Eigenschaften der Methode. GISMap basiert auf der GIS-gestützten Auswertung der Landschaftsstruktur, die in Form eines digitalen Landschaftsmodells (DLM) zugrunde gelegt wird. Im Zentrum der Methode steht ein im Rahmen der Arbeit entwickelter Algorithmus, der eine zufallsgesteuerte Festlegung von Aufnahmeflächen in der zu untersuchenden Landschaft vornimmt und sich dabei an den Ökotonen orientiert, die sich zwischen zwei benachbarten Landschaftselementen ausbilden. Ökotone sind als Übergangsbiotope häufig sehr reich an Strukturen und können daher eine große Artenvielfalt aufweisen. GIS-Map macht sich diese ökologische Gegebenheit zunutze, um auf möglichst kleinem Raum eine große Artenzahl zu erfassen. Die von GISMap errechneten Aufnahmeflächenkoordinaten wurden mit Hilfe eines GPS-Empfängers im Gelände lokalisiert und einer floristischen Untersuchung unterzogen. Als geeignete Aufnahmeflächengröße erwies sich dabei ein Kreis mit einer Fläche von 700 m². Die Flächen wurden mit Magneten markiert, um sie zur Dauerbeobachtung der Flora nutzen zu können. In dem 33 km² großen Untersuchungsgebiet, das im östlichen Bereich des Taunus liegt, wurden insgesamt 141 Aufnahmeflächen für 16 64tel-MTB-Rasterfelder angelegt. Um den mit der Methode zu erzielenden Erfassungsgrad abschätzen zu können, wurden umfangreiche Vergleichsuntersuchungen durchgeführt, die auch eine Auswertung vorliegender Literaturquellen mit einschlossen. In den 16 untersuchten Rasterfeldern konnten durchschnittlich 73 % der insgesamt vorkommenden Arten mit der Methode erfasst werden. Dazu müssen nur 0,3 % der Fläche tatsächlich einer floristischen Untersuchung unterzogen werden. Alle kartierten Arten erhalten dabei eine punktgenaue Koordinate. Die Methode wurde als Basisinstrument konzipiert und sollte mit bereits vorliegenden Fachdaten kombiniert werden, um die Erfassung der Farn- und Samenpflanzen eines Gebietes zu vervollständigen. Diskutiert wird der Einsatz im Rahmen eines Landschaftsinformationssystems (LIS). Durch eine Ergänzung der mit GISMap erhobenen Daten mit anderen vegetationskundlichen Daten aus dem Untersuchungsgebiet konnte der Erfassungs-grad von 73 % auf 85 % gesteigert werden. Im Rahmen der Arbeit werden zahlreiche Möglichkeiten der technischen Weiterentwicklung dargestellt, die zu einer Optimierung der Methode beitragen können. Ausgehend von den Daten des digitalen Landschaftsmodells wurden zur Beschreibung der landschaftlichen Struktur des Untersuchungsgebietes verschiedene Landschaftsstrukturmaße berechnet, wie sie in der modernen landschaftsökologischen Forschung mittlerweile häufig zum Einsatz kommen. Diese wurden mit den erfassten Sippenzahlen korreliert, um Zusammenhänge zwischen der Landschaftsstruktur und dem auftretenden floristischen Ar-tenreichtum darzustellen. Dabei wurde auch der Fragestellung nachgegangen, ob auf der Basis von Maßzahlen für die Landschaftsstruktur Prognosen über die zu erwartende pflanzli-che Artenvielfalt getroffen werden können. Ein weiterer Aspekt der Untersuchungen bestand in der Nutzung des entstandenen Aufnahmeflächennetzes zur langfristigen Beobachtung von Veränderungen der Vegetation des betrachteten Landschaftsausschnittes. Anhand der Frequenzen in den Aufnahmeflächen kann mit GISMap ein langfristiges Monitoring auf der Ebene einzelner Arten durchgeführt werden. Dies wird u. a. in Hinblick auf die im Untersuchungsgebiet auftretenden Neophyten diskutiert. Als Möglichkeit zum Monitoring der gesamten Vegetation wurde der Ansatz verfolgt, die Verteilung der kartierten Arten auf 24 häufig in der Literatur beschriebene Pflanzenformationen festzustellen. Es wird vorgeschlagen, eine langfristige Beobachtung dieses Verteilungsmusters vorzunehmen, um einen Aufschluss über ökologische Veränderungen der Landschaft anhand der Vegetation zu erhalten. Weitere Auswertungen der gesammelten floristischen Daten beziehen sich auf ihre Eignung zum Monitoring von klimatischen Veränderungen. Die Berechnung mittlerer Temperaturzahlen für 6 Höhenstufen erwies sich dabei als ungeeignet, da ihre Unterschiede zwischen den Höhenstufen nicht statistisch abzusichern waren. Darüber hinaus wurde die Verteilung von Kühlezeigern in dem entstandenen Aufnahmeflächennetz für die verschiedenen Höhenstufen untersucht. Hinweise zu ihrer Eignung als Indikatoren für klimatische Veränderungen werden diskutiert.
The ongoing debate on deforestation in the tropics usually points out agriculture and logging as the main causes. The two activities are often linked and the trails created by logging com-panies with their heavy machines are afterwards used by farmers to penetrate deep into the forest and cultivate. Shifting cultivation is a widespread agricultural practice in the tropics and its sustainability is often a matter of controversy. It is necessary to investigate forest recovery after shifting cultivation, analyze its succession stages for comparison with regeneration after natural disturbance, and evaluate its role for discussing the hazards of deforestation.
Termites are important ecosystem engineers of the savanna biome, with the large mounds of fungus-cultivating termites being sources of habitat heterogeneity and structural complexity in African savanna landscapes. Studies from different localities throughout Africa have shown that termite mounds have a strong influence of diversity and composition of plant communities. However, most research has been conducted only at the local scale, and integrating knowledge across Africa is hampered by different methodology of studies and differing environmental context. Little is known about the variation in vegetation composition on termite mounds compared to the surrounding savanna at the regional scale and at the landscape scale, and the main determinants of plant communities on mounds are yet to be ascertained.
This thesis aimes at better understanding the influence of termite mounds on vegetation compared to the surrounding savanna across spatial scales. Three research projects analyse vegetation data and soil data from paired mound and savanna plots in West Africa. The first project examines the influence of termite-induced heterogeneity on plant diversity and vegetation composition at a regional scale, following a bioclimatic gradient from the Sahel of Burkina Faso to the Sudanian vegetation zone in North Benin. The second Project analysed variation of vegetation on and off mounds at the landscape scale in Pendjari National Park, North Benin. The third is a monitoring study over the course of two years, exploring dynamics of juvenile woody plant communities on mounds and in the surrounding savanna at a local scale. The thesis thus provides the first comparative quantitative analysis across scales of mound and savanna vegetation and the drivers of the mound–savanna difference in vegetation.
Synthesizing across scales, its results confirm that termite mounds strongly contribute to savanna plant diversity, even though mounds are not generally more species rich than the surrounding savanna. Variation in mound vegetation is much higher along climatic and soil gradients than previously acknowledged. Mound vegetation differs from the surrounding savanna in the whole study area and in each sampled savanna type, with the strongest differences occurring at the most humid study sites. A large proportion of the differences between mound and savanna vegetation is explained by clay enrichment and related soil factors, such as cation concentrations. Plants on mounds thus benefit from favourable soil conditions, including higher fertility and higher water availability, which is also mirrored by the higher abundance and basal area of juvenile woody plants found on mounds. The variation in mound vegetation between study sites across scales results in part from local differences in soil composition and from climatic differences that influence the regional distribution of species. Different sets of characteristic mound species are identified in each project. Specific plant families and traits like succulency, lianescence, and adaptations to zoochory are found to be overrepresented in mound communities.
In addition to the findings in this thesis, remaining parts of the variation in mound vegetation between study sites could likely be explained by investigating further factors. Specifically, mound vegetation depends on habitat context, which includes available species pools, spatial distribution of mounds, biotic interactions with dispersers and herbivores, fire, and also anthropogenic influence. The high proportion of species with adaptations to zoochory found on mounds, for example, indicates that animal dispersers should be of particular importance for vegetation on termite mounds. Herbivory and fire regime, which are known to contribute to the diversity and community composition of the mound–savanna system, also show strong local variation, not least because of anthropogenic influence.
In conclusion, termite mounds play a crucial role in maintaining heterogeneity and plant diversity in the savanna across scales. Ecosystem services provided by termites, especially considering long-term effects on soil fertility and ecosystem resilience, are most likely undervalued. Mounds should be considered in management plans from local to regional, transnational scales as a matter of course, accompanied by further research on the role of termite mounds in savanna ecology on a longer temporal scale. The research presented here thus provides a basis for future studies on termite mound vegetation that should specifically consider the biotic and abiotic context of the mound–savanna system.
Global climate change and land use change will not only alter entire ecosystems and biodiversity patterns, but also the supply of ecosystem services. A better understanding of the consequences is particularly needed in under-investigated regions, such as West Africa. The projected environmental changes suggest negative impacts on nature, thus representing a threat to the human well-being. However, many effects caused by climate and land use change are poorly understood so far. Thus, the main objective of this thesis was to investigate the impact of climate and land use change on vegetation patterns, plant diversity and important provisioning ecosystem services in West Africa. The three different aspects are separately explored and build the chapters of this thesis. The findings help to improve our understanding of the effects of environmental change on ecosystems and human well-being. In the first study, the main objectives were to model trends and the extent of future biome shifts in West Africa that may occur by 2050. Also, I modelled a trend in West African tree cover change, while accounting for human impact. Additionally, uncertainty in future climate projections was evaluated to identify regions with reliable trends and regions where the impacts remain uncertain. The potential future spatial distributions of desert, grassland, savanna, deciduous and evergreen forest were modelled in West Africa, using six bioclimatic models. Future tree cover change was analysed with generalized additive models (GAMs). I used climate data from 17 general circulation models (GCMs) and included human population density and fire intensity to model tree cover. Consensus projections were derived via weighted averages to: 1) reduce inter-model variability, and 2) describe trends extracted from different GCM projections. The strongest predicted effect of climate change was on desert and grasslands, where the bioclimatic envelope of grassland is projected to expand into the Sahara desert by an area of 2 million km2. While savannas are predicted to contract in the south (by 54 ± 22 × 104 km2), deciduous and evergreen forest biomes are expected to expand (64 ± 13 × 104 km2 and 77 ± 26 × 104 km2). However, uncertainty due to different GCMs was particularly high for the grassland and the evergreen forest biome shift. Increasing tree cover (1–10%) was projected for large parts of Benin, Burkina Faso, Côte d’Ivoire, Ghana and Togo, but a decrease was projected for coastal areas (1–20%). Furthermore, human impact negatively affected tree cover and partly changed the direction of the projected climate-driven tendency from increase to decrease. Considering climate change alone, the model results of potential vegetation (biomes) showed a ‘greening’ trend by 2050. However, the modelled effects of human impact suggest future forest degradation. Thus, it is essential to consider both climate change and human impact in order to generate realistic future projections on woody cover. The second study focused on the impact and the interplay of future (2050) climate and land use change on the plant diversity of the West African country Burkina Faso. Synergistic forecasts for this country are lacking to date. Burkina Faso covers a broad bioclimatic gradient which causes a similar gradient in plant diversity. Thus, the impact of climate and land use change can be investigated in regions with different levels of species richness. The LandSHIFT model from the Centre of Environmental System research CESR (Kassel, Germany) was adapted for this study to derive novel regional, spatially explicit future (2050) land use simulations for Burkina Faso. Additionally, the simulations include different assumptions on the technological developments in the agricultural sector. Oneclass support vector machines (SVMs), a machine learning method, were performed with these land use simulations together with current and future (2050) climate projections at a 0.1° resolution (cell: ~ 10 × 10 km). The modelling results showed that the flora of Burkina Faso will be primarily negatively impacted by future climate and land use changes. The species richness will be significantly reduced by 2050 (P < 0.001, paired Wilcoxon signed-rank test). However, contrasting latitudinal patterns were found. Although climate change is predicted to cause species loss in the more humid regions in Southern Burkina Faso (~ 200 species per cell), the model projects an increase of species richness in the Sahel. However, land use change is expected to suppress this increase to the current species diversity level, depending on the technological developments. Climate change is a more important threat to the plant diversity than land use change under the assumption of technological stagnation in the agricultural sector. Overall, the study highlights the impact and interplay of future climate and land use change on plant diversity along a broad bioclimatic gradient in West Africa.Furthermore, the results suggest that plant diversity in dry and humid regions of the tropics might generally respond differently to climate and land use change. This pattern has not been detected by global studies so far. Several of the plant species in West Africa significantly contribute to the livelihoods of the population. The plants provide so-called non-timber forest products (NTFPs), which are important provisioning ecosystem services. However, these services are also threatened by environmental change. Thus, the third study aimed at developing a novel approach to assess the impacts of climate and land use change on the economic benefits derived from NTFPs. This project was carried out in cooperation with Katja Heubach (BiK-F) who provided data on household economics. These data include 60 interviews that were conducted in Northern Benin on annual quantities and revenues of collected NTFPs from the three most important savanna tree species: Adansonia digitata, Parkia biglobosa and Vitellaria paradoxa. The current market prices of the NTFPs were derived from respective local markets. To assess current and future (2050) occurrence probabilities of the three species, I calibrated niche-based models with climate data (from Miroc3.2medres) and land use data (LandSHIFT) at a 0.1° resolution (cell: ~ 10 × 10 km). Land use simulations were taken from the previous study on plant diversity. Three different niche-based models were used: 1) generalized additive models (regression method), 2) generalized boosting models (machine learning method), and 3) flexible discriminant analysis (classification method). The three model simulations were averaged (ensemble forecasting) to increase the robustness of the predictions. To assess future economic gains and losses, respectively, the modelled species’ occurrence probabilities were linked with the spatially assigned monetary values. Highest current annual benefits are obtained from V. paradoxa (54,111 ± 28,126 US$/cell), followed by P. biglobosa (32,246 ± 16,526 US$/cell) and A. digitata (9,514 ± 6,243 US$/cell). However, in the prediction large areas will lose up to 50% of their current economic value by 2050. Vitellaria paradoxa and Parkia biglobosa, which currently reveal the highest economic benefits, are heavily affected. Adansonia digitata is negatively affected less strongly by environmental change and might regionally even supply increasing economic benefits, in particular in the west and east of the investigation area. We conclude that adaptive strategies are needed to create alternative income opportunities, in particular for women that are responsible for collecting the NTFPs. The findings provide a benchmark for local policy-makers to economically compare different land use options and adjust existing management strategies for the near future. Overall, this thesis improves our understanding of the impacts of climate and land use changes on West African vegetation patterns, plant diversity and provisioning ecosystem services. Climate change had spatially varying impacts (positive and negative effects) on the vegetation cover and plant diversity, while predominantly negative effects resulted from human pressure. Regional contrasting impacts of environmental change were also found considering the provisioning ecosystem services.
The impacts of human activities, notably the conversion of tropical forests into farmland habitat, has profound impacts on biological diversity and ecosystem functions (Millennium Ecosystem Assessment 2005). It is widely debated to what extent human modified landscapes can maintain tropical biodiversity and their ecosystem functionality (e.g. Waltert et al. 2004, Sekercioglu et al. 2007). In this thesis, I have used a huge and temporarily replicated dataset to assess the value of different habitat types differing in land-use intensities for bird communities in tropical East Africa. I investigated bird abundance and species richness along a forest-farmland habitat gradient and assessed spatial and temporal fluctuations of bird assemblages and their food resources.
I could show that forest and farmland habitats harbor distinct bird communities. Moreover, the protection of natural forests merits the highest priority for conserving the high diversity of forest-dependent bird species. My study, however, also shows that farmland habitats in the proximity of natural forest can support a high bird diversity. High bird diversity in tropical farmlands depends on a high structural complexity, such as in small-scale subsistence farmlands. From my findings, I conclude that the conversion of forest to farmland leads to substantial losses in bird diversity, in particular in specialized feeding guilds such as insectivores, while the conversion of structurally heterogeneous subsistence farmlands to sugarcane plantation causes erosion of bird diversity in agricultural ecosystems. Both findings are important for conservation planning in times when tropical forests and agroecosystems are under constantly high pressure due to increasing human population numbers and global demands for biofuel crops (Gibbs et al. 2008). From an ecosystem function perspective, my study demonstrates the potential of agroecosystems in supporting important ecosystem functions, such as seed dispersal by frugivorous birds and pest control by insectivorous birds. I could show that bird abundances in both frugivorous and insectivorous guilds were strongly predicted by their respective food resources, implying that seasonal shifts in fruit and invertebrate abundance at Kakamega forest and surrounding farmlands affect community dynamics and appear to influence local movement patterns of birds. The most interesting finding of this study was that feeding guilds responded idiosyncratically to resource fluctuations. Frugivore richness fluctuated asynchronously in forest and farmland habitats, suggesting foraging movements and fruit tracking across habitat borders. In contrast, I found that insectivores fluctuated synchronously in the two habitat types, suggesting a lack of inter-habitat movements. I therefore predict that insectivorous bird communities in this forest-farmland landscape may be more susceptible to the combined effects of land-use and climate change, due to their narrow habitat niche and limited capacity to track their resources.
The fact that a number of bird species regularly moved across the landscape mosaic in my study system implies that birds are able to provide long-distance seed dispersal across habitat borders. Thus, birds may enhance forest regeneration in human-modified landscapes, such as those in most parts of tropical Africa, given that forest remnants are protected within an agricultural habitat matrix. In order to effectively conserve tropical biodiversity within forest-farmland mosaics, this study advocates for conservation strategies that go beyond forest protection and explicitly integrate farmlands into forest management plans and policies. This should emphasize the retention of keystone habitat elements within tropical farmland landscapes, such as indigenous trees, forest galleries and hedgerows, whose presence enhance species diversity. Such grassroot-level approaches can be operationalized for instance through providing incentives to farmers to maintain their traditional subsistence land-use practices and through community-based livelihood projects aiming at enhancing local habitat heterogeneity and inter-habitat connectivity.
Savannas are the most important timber and non-timber forest products (NTFPs) providing ecosystems in West Africa. They have been shaped by traditional human land-use (i.e. agriculture, grazing, and harvesting) for thousands of years. In the last decades, land-use has drastically changed due to the rapid population growth and the growing production of cash-crop in West Africa and this process is still continuing. The percentage of land intensively used for agriculture has increased, while the length of fallow periods has decreased. Such changes have enormous ecological, economic, and social consequences. In the context of land-use changes, there is an urgent need to better understand and evaluate the impact of land-use on savannas. Such an understanding provides insights on appropriate management activities that ensure the maintenance of savannas and guarantee the availability of savanna products for subsistence and commercial use of rural West African people.
The major objective of the present thesis was to study the impact of land-use on savanna vegetation and diversity as well as on populations of two important NTFP-providing tree species in a semi-arid area in West Africa. The study area was located in the south-eastern part of Burkina Faso and comprised the protected W National Park and its adjacent communal area.
In the first study (chapter 2), I investigated in cooperation with a colleague from Burkina Faso (Blandine Nacoulma) the impact of land-use on the savanna vegetation. We analyzed which environmental factors determine the occurrence of the vegetation types and investigated the effect of land-use on vegetation structure and the occurrence of life forms and highly valued tree species. Furthermore, we tested whether land-use has an impact on plant diversity pattern and if this impact differed between the vegetation types and layers (woody and herb layer). Vegetation relevés were performed and the vegetation and plant diversity of the protected W National Park were compared with those of its surrounding communal area. Our results reveal five vegetation types occurring in both areas. Elevation and physical soil characteristics and thus soil water availability for plants played the most important role for the occurrence of the vegetation types. The influence of land-use on plant diversity differed between the five vegetation types and the two layers. The impact was highest on the vegetation types with the most favorable soil conditions for cultivation and lowest on rocky habitats with poor soils. While the diversity of the woody layer was increased under human land-use, the diversity of the herb layer was diminished. Overall, as land-use effects were not only negative, our findings suggest that land-use does not automatically lead to a loss of plant species and to a degradation of savanna habitats. We conclude that both protected and communal areas are of great importance for the conservation of savanna vegetation and diversity. Our study highlights furthermore the importance of different management strategies for each vegetation type.
In the following two studies (chapter 3 and 4), the impact of land-use - and in particular of harvesting - on populations of Adansonia digitata L., the baobab tree, and Anogeissus leiocarpa (DC.) Guill. & Perr. was examined. These two tree species were chosen as they provide several NTFPs for the local population and as they show different levels of human protection and opposed life histories. Thus, they may react differently to land-use. Stands of the protected W National Park were compared with those of its surrounding communal area (in fallows, croplands, and villages). I applied dendrometric methods to study the population structures and combined it with rates and patterns of NTFP-harvesting (debarking and chopping/pruning). Furthermore, the impact of land-use and harvesting on the fruit production of A. digitata and on the sprouting ability of A. leiocarpa were studied. The inverse J-shaped size class distribution curve indicates that the stands of A. digitata were in a healthy state in the park, while the low number of smaller size classes in fallows, croplands, and villages may give evidence of an ageing population. However, a high number of seedlings were recorded in villages. The stands of A. leiocarpa were also in healthy states in the park and likewise in fallows. In contrast, the absence of saplings gives evidence of a declining population in croplands. Both species were strongly harvested by local people and harvesting was tree size-specific. Pruning in interaction with tree-size had a significant impact on fruit production of A. digitata. While smaller trees were more vulnerable to pruning, bigger trees benefited from slight-pruning. A. leiocarpa had a great ability to respond to chopping by sprouting. The sprouting ability increased even with higher chopping intensity. Results suggest that despite the intense harvesting and the land-use impact, populations of both species are still well preserved. While A. digitata can withstand the harvesting and land-use pressure by its longevity, extremely low adult mortality rates, and particularly due to positive human influences, A. leiocarpa is able to withstand the use pressure by its fast growing, high recruitment, and high sprouting ability. I conclude that a none protected tree species (A. leiocarpa) might not necessarily be at higher risk to the harvesting and land-use impact than a protected tree species (A. digitata) as the adverse impact of harvesting and land-use can be compensated by its specific life history.
Important additional information to such ecological findings can be provided by local people. Learning from traditional knowledge and management systems of local people will help to produce culturally and ecologically reasonable conservation and management strategies. Thus, I investigated local uses and management strategies of A. digitata and A. leiocarpa in the last two studies (chapter 5 and 6). Quantitative ethnobotanical surveys among the Gulimanceba people were conducted in the communal area in order to document uses of the different plant parts, harvesting modes, perceptions about the population status, and conservation status of both species. Hereby, differences in knowledge between gender, generations, and people from different villages were tested. Interviews reveal that both species are harvested for multipurpose and emphasize the high importance of both species for local people. Especially the leaves and fruits of A. digitata add valuable minerals and vitamins to the otherwise micronutrient-“poor” staple crops of the Gulimanceba people. In comparison with other studies in West Africa, it has turned out that people in this area could benefit even more from A. leiocarpa, e.g. for dyeing of clothes, for treatment of malaria and skin problems. Local knowledge did not differ between genders and generations, while it slightly differed between people from different villages. The lack of age differences suggests that the traditional knowledge about these two species is passed on from one generation to another. Differences between people from different villages might be explained by influences from the neighboring countries Niger and Benin. Current local harvesting modes and management strategies of both species resulted in sustainable use. However, ongoing land-use intensifications require adapted harvesting and management techniques to guarantee the persistence of these economically important species. These results provide, in combination with the ecological findings (chapter 3 and 4), appropriate management recommendations for A. digitata and A. leiocarpa that are reliable under currently practiced management strategies.
For millennia, rural West African communities living in or adjacent of savanna ecosystems have been collecting components of local plant species (e.g. fruits, leaves, bark) in order to fulfil essential household subsistence needs (alimentation, medical care, energy demand etc.), to generate cash income and to overcome times of (financial) crisis. Thus, these non-timber forest products (NTFPs) make a considerable contribution to the well-being of local households. However, climate and land use change severely impact West African savanna ecosystems and, consequently, the safe-guarding of dependent rural livelihoods. The conversion of savanna area into cultivated land for subsistence farming owing to the ongoing population growth, as well as the progressive promotion of cash crops (e.g. cotton) is ever-increasing. As a consequence, present land-use management in West Africa has to cope with serious trade-offs. Within this decision-making NTFPs have been constantly understated due to a lack of appropriate economic figures to use within common cost-benefit analysis, and, thus, have been frequently outcompeted by seemingly more profitable land-use options. Therefore, it is crucial to provide appropriate economic data for NTFPs in order to create positive incentives for both decision-makers and NTFP beneficiaries to conserve NTFP-providing trees. The key finding of this analysis is that income from NTFPs accounts for 39 % on average of an annual total household income in Northern Benin, representing the second largest income share next to crop income and proving the respective households to be economically heavily dependent on NTFPs. Thereby, socio-economic characteristics of NTFP users tremendously shape their preferences for woody species. Particularly ethnicity has a major impact on the species used and the economic return obtained by them. Moreover, the study investigated the impacts of climate and land use change on the economic benefits derived from the three economically most important tree species in the region Vitellaria paradoxa, Parkia biglobosa and Adansonia digitata in 2050: Environmental changes will have primarily negative effects on the economic returns from all the three species. At large, the study underpins the economic relevance of NTFPs for rural communities in West African savannas and, consequently, the necessity to appropriately sustain them in order to safe-guard local livelihoods. Providing key figures on the current and future economic benefits obtained from NTFPs can augment common cost-benefit analysis, and, delivering detailed information about peoples’ use preferences for local species, this study clearly contributes to improve the basis of decision-making with reference to local land-use policies.
Savannas provide essential ecosystem services for human well-being in West Africa. Thus, ecosystem change not only directly affects biodiversity but also human livelihoods. Human land use considerably shaped these savanna ecosystems for millennia, particularly agriculture, livestock grazing, logging and the collection of non-timber forest products (NTFPs). NTFPs are wild plant products and comprise all organic matter from herbaceous plants, shrubs, and trees (excluding timber). Current increasing land use pressure through fast demographic changes is widely esteemed as a severe threat for savanna biodiversity and the socio-economy of rural communities. In consideration of the pivotal role of NTFP species for biodiversity and livelihoods, it is important to evaluate the effect of increasing land use change on savanna vegetation and on its provisioning service for human well-being. Thus, the major aim of this thesis is to investigate the impacts of land use intensification on vegetation composition, diversity and function and its consequences for provisioning ecosystem services (NTFPs) and human well-being in a West African savanna.
The research for this study was conducted in the North Sudanian vegetation zone of south-eastern Burkina Faso, where population growth exceeds the nationwide trend. Generally, Burkina Faso belongs to the worldwide poorest countries, where nearly one quarter of the population suffers from malnutrition (FAO 2014). The integration of NTFPs and particularly wild food species into rural household economies is, thus, an important measure in the national combat against poverty and food insecurity (FAO 2014). Against this background, I focus on vegetation changes, the economic importance of NTFPs as well as the decrease and substitution of wild food species in this study.
Vegetation resurveys of different vegetation types since the early 1990s showed that land use change led to more pronounced changes in the herbaceous than in the woody vegetation layer. Most woody vegetation types stayed stable in species composition and richness, even though some highly useful tree species (Vitellaria paradoxa, Parkia biglobosa) declined in some woody vegetation types. In contrast, in most herbaceous vegetation types species richness increased and species composition considerably changed. This change might be explained by a general ruderalisation process through a pronounced increase of wide-ranging herbaceous species. However, in spite of a general species increase in the herbaceous layer, a decrease of preferred herbaceous fodder species was found. Thus, the decline of useful species in both layers is alarming. Herbaceous vegetation types also showed more pronounced changes in plant functional trait characteristics in comparison to woody vegetation types. However, an increase of smaller plant species and species with a high diaspore terminal velocity (VTerm) was found in both vegetation layers. Since these two trait responses are generally related to grazing and browsing, the strong increase of livestock herds is likely to be responsible for the detected vegetation changes.
In addition to the vegetation study, interviews showed that all useful food species were widely considered to decline. The two economically most important tree species, the shea tree (Vitellaria paradoxa) and the locust bean tree (Parkia biglobosa) that contribute with 70% to wild food income, were considered among the most declining species of all cited wild food species. On this matter, local perceptions of species decline and results from field observations are in accordance. However, a wide range of cited substitutes indicated a great knowledge on alternative plant species in the area. Most wild food species are, however, substituted by other highly valued wild food species. Although our results suggest that rural communities are able to cope with the decrease or absence of wild food species, growing decline of one species would concurrently increase the pressure on other native food species. Therefore, the need to counteract the decrease of highly useful wild food species should be of high priority in management measures. In general, I showed that NTFPs are an essential component in rural households, since it contributed with 45 % to total household income. Significant differences in NTFP dependency between the two investigated villages and across the three main ethnic groups were detected, reflecting different traditional uses and harvesting practices. In general, it was shown that poorer households depend more on NTFP income than wealthier households. Against the background of this study, management strategies for agroforestry systems and poverty alleviation should consider local differences, and ethnicity-dependent NTFP-use patterns.
Overall, the combination of field studies on temporal and functional vegetation change with socio-economic and ethno-botanic interviews increases the knowledge on qualitative and quantitative vegetation changes and on the consequences for rural populations. This thesis gives a thorough insight into decreasing trends of economically valued plant species and thus gives evidence on the consequences of vegetation changes for ecosystem services of West African savanna ecosystems. Further, different NTFP-dependencies and use preferences according to socio-economic and cultural variables, such as ethnicity, present a valuable basis for specific decision-making and should be considered in management plans.
Ziele der vorliegenden Arbeit waren einerseits die Inventarisierung der Neo- und Archäophyten, die im Stadtgebiet von Frankfurt am Main im Zeitraum 1700-2006 nachweisbar sind, und die Analyse der Veränderungen während dieses Zeitraumes, andererseits die Untersuchung möglicher Auswirkungen von Neo- und Archäophyten auf die Biodiversität am Beispiel von Brachestandorten. Zur Inventarisierung wurde eine Kombination aus Literatur- und Herbarrecherche im Herbarium Senckenbergianum (FR) mit Feldarbeit in Form einer Rasterkartierung zwischen September 2002 und September 2005 mit Nachträgen aus dem Jahr 2006 durchgeführt. 609 Arten (unter Berücksichtigung von Unterarten/Varietäten 634 Sippen) aus 84 Familien wurden über den Gesamtzeitraum nachgewiesen, wobei mehr als 75 % der Sippen zu 20 Familien gehören. Die erfassten Sippen wurden nach ihrer Einwanderungsgeschichte, Einwanderungsweise und ihrem Einbürgerungsgrad bewertet. 54 % aller Sippen erwiesen sich als Ergasiophygophyten. Aktuell wurden 462 anthropochore Sippen nachgewiesen. Die Familie mit den meisten anthropochoren Vertretern sind sowohl aktuell als auch im Gesamtzeitraum die Asteraceae, die auch auf Brachen eine heruasragende Stellung einnehmen. Der gesamte Untersuchungszeitraum wurde in neun Abschnitte untergliedert. Die Häufigkeit jeder Sippe wurde für die einzelnen Abschnitte in einer sechsstufigen Skala, die sich an die Ergebnisse der Rasterkartierung anlehnt, eingeschätzt. Dadurch wurde es erstmals möglich die starke Zunahme der Neophyten in der Stadtflora sowie den Rückgang von Archäophyten für einen Zeitraum von 300 Jahren quantitativ darzustellen. Untersuchungen zur Diversität erfolgten auf Brachestandorten im Stadtgebiet. Dazu wurden 2003 und 2004 insgesamt 220 Vegetationsaufnahmen nach Braun-Blanquet durchgeführt. Die Probeflächen wurden nach geschätztem Alter in vier Kategorien unterteilt und mit Hilfe von Diversitätsindizes (Evenness, Simpsonund Shannon-Index) verglichen. Es zeigte sich, dass die Diversität auf jungen, d.h. 1-2 Jahre alten Brachen, am höchsten ist und mit zunehmendem Alter abnimmt. Brachen, die erst im Untersuchungsjahr angelegt worden waren, zeigten die größte Variabilität. Auf nährstoffreichen Böden war die Diversität besonders hoch, auf nährstoffarmen Böden extrem niedrig. Brachen, die älter als 5 Jahre waren, zeigten die geringste Diversität und die niedrigsten Zahlen von Archäo- und Neophytenarten. Die höchste Gesamtartenzahl auf 25 m² betrug 58, wobei maximal 16 Archäophyten- und 19 Neophytenarten, im Mittel jedoch nur drei Archäophyten- und vier Neophytenarten, nachgewiesen wurden. Zwischen der Gesamtartenzahl auf Brachen und der Artenzahl von Neo- und Archäophyten ließ sich kein signifikanter Zusammenhang feststellen. Allerdings sind Neophyten auf Brachen aller Altersklassen gleich erfolgreich, während Archäophyten ihren Schwerpunkt auf jungen Brachen haben und mit zunehmendem Brachealter zurückgehen. Die beiden am häufigsten auf Brachen gefundenen Sippen sind die indigenen Hypericum perforatum und Artemisia vulagris. Der Neophyt Fallopia x bohemica und das einheimische Calamagrostis epigejos sind als einzige im Untersuchungsgebiet in der Lage Einart-Bestände zu bilden. Andere, auf den ersten Blick von einer Art (z.B. Solidago canadensis) dominierte Flächen, wiesen bei näherer Untersuchung eine für Brachen durchschnittliche Diversität auf. Die Ergebnisse weisen darauf hin, dass jungen Brachen bis zum 3. Jahr eine besondere Bedeutung in der Stadtökologie zukommt. Sie bieten z.B. Segetalarten Lebens- und Rückzugsraum. Die Diversität alter Brachen beruht auf ihrem Mosaik verschiedener Lebensräume, die mit dieser Untersuchung nicht erfasst werden konnten.
Arten von Aschersonia Mont. (Anamorphe von Hypocrella spp., Clavicipitaceae, Hypocreales, Sordariomycetidae, Askomycota) parasitieren Weiße Fliegen und Schildläuse. Petch (1921) stellte eine Monographie über Hypocrella und Aschersonia vor. Seit dieser Zeit wurden einige Arten neu beschrieben und vereinzelte Artkomplexe revidiert. Die vorgestellte Arbeit ist seit rund 80 Jahren das umfassendste Werk über die Gattung Aschersonia. Hierfür wurden Proben in Kuba, Malaysia, Mexico, Panama, Taiwan und Thailand gesammelt und z.T. kultiviert. Es werden 20 Arten detailliert vorgestellt und illustriert. Die Arten sind: A. acutispora, A. aurantiaca, A. australiensis, A. badia, A. basicystis, A. blumenaviensis, A. caespiticia [A. insperata, syn. nov.], A. columnifera, A. crenulata, A. duplex, A. hypocreoidea [A. goldiana, syn. nov.; A. confluens, syn. nov.], A. marginata, A. oxystoma, A. philippinensis, die Anamorphe von H. rhombispora, A. samoensis, A. taitensis [A. aleyrodis, syn. nov.; A. placenta, syn. nov.; A. tamurai, syn. nov.], die Anamorphe von H. tubulata, A. turbinata [A. coffeae, syn. nov.] und A. viridans. Hierzu wurden auch wichtige Merkmale wie Stromataform und Konidiengröße in situ und in vitro charakterisiert. Mit anderen gültigen Beschreibungen von Arten, die nicht untersucht werden konnten, gibt es 32 Arten. Zum ersten Mal wurden ausführliche Daten über die Wirtsinsekten sowie die Trägerpflanzen berücksichtigt. Erstmals wurde die Verbreitung der Aschersonia-Arten kritisch beleuchtet. Die Funde von A. acutispora, A. basicystis, A. hypocreoidea, A. oxystoma, A. turbinata und A. viridans sind Erstnachweise für Panama. Die Funde von A. australiensis, A. hypocreoidea, A. marginata und A. tubulata sind Erstnachweise für Taiwan. Zum ersten Mal wird für Arten der Gattung Aschersonia ein dichotomer Bestimmungsschlüssel vorgestellt. Es werden drei Hypothesen zur Phylogenie der Aschersonia spp. vorgestellt: 1. Die Stellung der Aschersonia spp. innerhalb der Clavicipitaceae basierend auf Sequenzdaten des LSU-Gens: Aschersonia bildet eine schwach unterstützte Paraphylie, dabei steht A. badia basaler als die übrigen Aschersonia-Arten. 2. Die Beziehung der Aschersonia spp. zueinander: A. badia und eng verwandte Arten parasitieren ausschließlich Weiße Fliegen und stehen basal. Arten einer zweiten Gruppe parasitieren Arten der Aleurodidae und Coccidae und Arten einer dritten Gruppe parasitieren ausschließlich Arten der Coccidae. 3. Eine phylogenetische Hypothese basierend auf Sequenzdaten der ITS: Es gibt noch zu wenig Sequenzen um eine eindeutige Aussage treffen zu können.