Refine
Year of publication
Document Type
- Doctoral Thesis (20)
- Bachelor Thesis (1)
- Master's Thesis (1)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
Institute
- Physik (22)
The focus of this thesis is on quantum Heisenberg magnets in low dimensions. We modify the method of spin-wave theory in order to address two distinct issues. In the first part we develop a variant of spin-wave theory for low-dimensional systems, where thermodynamic observables are calculated from the Gibbs free energy for fixed order parameter. We are able to go beyond linear spin-wave theory and systematically calculate two-loop correction to the free energy. We use our method to determine the low-temperature physics of Heisenberg ferromagnets in one, two and three spatial dimensions. In the second part of the thesis, we treat a two-dimensional Heisenberg antiferromagnet in the presence of a uniform external magnetic field. We determine the low-temperature behavior of the magnetization curve within spin-wave theory by taking the absence of the spontaneous staggered magnetization into account. Additionally, we perform quantum Monte Carlo simulations and subsequently show that numerical findings are qualitatively comparable to spin-wave results. Finally, we apply our method to an experimentally motivated case of the distorted honeycomb lattice in order to determine the strength of the exchange interactions.
The challenging intricacies of strongly correlated electronic systems necessitate the use of a variety of complementary theoretical approaches. In this thesis, we analyze two distinct aspects of strong correlations and develop further or adapt suitable techniques. First, we discuss magnetization transport in insulating one-dimensional spin rings described by a Heisenberg model in an inhomogeneous magnetic field. Due to quantum mechanical interference of magnon wave functions, persistent magnetization currents are shown to exist in such a geometry in analogy to persistent charge currents in mesoscopic normal metal rings. The second, longer part is dedicated to a new aspect of the functional renormalization group technique for fermions. By decoupling the interaction via a Hubbard-Stratonovich transformation, we introduce collective bosonic variables from the beginning and analyze the hierarchy of flow equations for the coupled field theory. The possibility of a cutoff in the momentum transfer of the interaction leads to a new flow scheme, which we will refer to as the interaction cutoff scheme. Within this approach, Ward identities for forward scattering problems are conserved at every instant of the flow leading to an exact solution of a whole hierarchy of flow equations. This way the known exact result for the single-particle Green's function of the Tomonaga-Luttinger model is recovered.
Im Rahmen dieser Dissertation wurde die Photophysik und die elektronische Struktur einer Klasse neuartiger Donator-Akzeptor-Ladungstransfer-Komplexe untersucht. Im Wesentlichen bestehen diese Verbindungen aus einem Ferrocen-Donator (Fc) und organischen Akzeptoren, die über B-N-Bindungen verbrückt sind, welche sich bei dieser Art von makromolekularen Systemen spontan bilden. Zentraler Gegenstand dieser Arbeit war die spektroskopische Untersuchung des Metall-zu-Ligand-Ladungstransfers (engl. Abkürzung: MLCT) im elektronischen Anregungszustand dieser kationischen Komplexverbindungen, die im Weiteren als „Fc-B-bpy“-Verbindungen bezeichnet werden. Die vorliegende Arbeit analysiert eine Vielzahl miteinander verwandter Fc-B-bpy-Derivate. Die Arbeit ist gegliedert in 1.) die Analyse der Absorptionsspektren vom UV- bis zum nahen Infrarot-Spektralbereich (250-1000 nm) von Lösungen, dotierten Polymer-Dünnfilmen und Einkristallen, 2.) die zeitaufgelöste optische Spektroskopie des angeregten Zustands auf der Pikosekunden-Zeitskala, 3.) die Analyse elektrochemischer Messungen an Lösungen, und 4.) die Auswertung quantenchemischer Berechnungen. Für die zeitaufgelösten Messungen wurde ein komplexes optisches Spektroskopie-System mit breitbandigen Femtosekunden-Pulsen sowie den entsprechenden zeitaufgelösten Detektionsmethoden (spektral gefilterte Weißlicht-Detektion) aufgebaut. Die Ergebnisse dieser Arbeit beweisen die Existenz eines MLCT-Übergangs mit fast vollständigem Übergang eines Fc-Donator-Elektrons zum B-bpy-Akzeptor bei optischer Anregung. Die vergleichenden Untersuchungen der spektroskopischen Eigenschaften verschiedener Derivate liefern wichtige Information für die Entwicklung neuartiger Derivate, einschließlich verwandter Polymere, mit verbesserten spektroskopischen Eigenschaften. Es wurden transiente Absorptionsmessungen bestimmter Fc-B-bpy-Derivate in Lösung nach gepulster Anregung der MLCT-Bande (bei 500 nm) über einen Zeitbereich von 0,1-1000 ps und einen Wellenlängenbereich von 460-760 nm vorgenommen. Aus den Messergebnissen geht hervor, dass die Relaxation aus dem angeregten MLCT-Zustand in den Grundzustand auf verschiedenen Zeitskalen geschehen kann, welche im Bereich zwischen ~18 und 900 ps liegen. Ein Vergleich verschiedener Derivate mit unterschiedlicher Flexibilität in der Konformation zeigt, dass die Starrheit der Bindungen zwischen Donatoren und Akzeptoren ein wesentlicher Faktor für die Lebensdauer des angeregten Zustands ist. Wenn die Akzeptorgruppen relativ frei rotieren können, ist es der Verbindung möglich, eine Geometrie einzunehmen, von der aus ein effizienter, strahlungsfreier Übergang in den Grundzustand erfolgen kann. Dieser Befund zeigt einen Weg auf, wie neuartige, verwandte Verbindungen mit größerer Lebensdauer das angeregten Zustands synthetisiert werden können, indem darauf geachtet wird, daß eine starre molekulare Architektur zwischen Donator und Akzeptor verwirklicht wird.
Im Rahmen der vorliegenden Arbeit wurde die Spindephasierung optisch angeregter itineranter Ladungsträger in magnetisch dotierten Volumenhalbleitern mit Methoden der zeitaufgelösten magneto-optischen Ultra-Kurzzeit-Spektroskopie untersucht und eine theoretische Beschreibung der Spindephasierung entwickelt, die ein hohes Maß an Übereinstimmung mit den experimentellen Ergebnissen aufweist. Beim untersuchten Material Cd1-xMnxTe handelt es sich um einen sog. magnetischen Halbleiter, der die elektronischen Eigenschaften eines Halbleiters mit den magnetischen Eigenschaften eines Paramagneten vereint. Bedingt durch die starke sp/d-Austauschwechselwirkung zwischen den Spins der lokalisierten magnetischen Ionen und denen der optisch angeregten itineranten Ladungsträger, kommt es zur Ausbildung vieler neuer, bisher unbekannter, aber auch zur Modifikation bereits bekannter Effekte. Die Wirkungsweise der sp/d-Austauschkopplung in magnetischen Halbleitern kann stark vereinfacht gesprochen als eine Art „Verstärker“ verstanden werden, der unter anderem zu einer Intensivierung all solcher Effekte führt, die durch Magnetfelder, seien sie externer oder interner Natur, bedingt sind. Durch diese starke Respons auf externe Magnetfelder kommt es in magnetischen Halbleitern zu einer starken Überhöhung der Zeeman-Aufspaltung, so daß eine getrennte Beobachtung der ansonsten entarteten Spinzustände möglich wird. Die Methode der Wahl zur Untersuchung der zeitlichen Entwicklung der energetisch aufgespaltenen Spinzustände ist die Detektion der zeitaufgelösten Spinquantenschwebungen der Ladungsträger, die das zeitaufgelöste Analogon zur Detektion des Hanle-Effektes in Gasen darstellt. Hierfür kam ein magneto-optischer Detektionsaufbau zum Einsatz, der es ermöglichte, die zeitliche Entwicklung der Komponenten der transienten Magnetisierungen der im Magnetfeld präzedierenden Ladungsträgerspins zu erfassen und so Rückschlüsse auf die Lebensdauer der angeregten Zustände zu schließen. Da die so bestimmten Dephasierungszeiten der detektierten Transienten der Spinquantenschwebungen eine starke Abhängigkeit von den externen Parametern wie der Temperatur, dem Magnetfeld und der magnetischen Dotierung aufweisen, war es ein Ziel dieser Arbeit, eine systematische Untersuchung der gefundenen Abhängigkeiten durchzuführen, um so eine möglichst breite Datenbasis für die weitere theoretische Untersuchung der gefundenen Ergebnisse zu schaffen. Im Zuge dieser Untersuchungen gelang uns unter anderem der erste experimentelle Nachweis der oszillatorischen Signaturen von kohärenten Lochspinquantenschwebungen in magnetisch dotierten Halbleitern. Obwohl magnetisch dotierte Halbleiter bereits seit mehr als 30 Jahren experimentell untersucht werden, konnten unsere experimentellen Befunde zur Spindephasierung optisch angeregter Ladungsträger durch keines der etablierten Modelle zur Beschreibung der Spindephasierung, sei es in magnetisch dotierten oder in undotierten Halbleitern, beschrieben werden. Aus diesem Grund wurde ausgehend vom Gedanken, daß lokale Fluktuationen der Magnetisierung der magnetischen Ionen einen starken Einfluß auf die Lebensdauer der itineranten Spins haben, ein neues Modell entwickelt. Dieses Modell beruht auf der Adaption einer Beschreibung der Spindephasierung, die im Rahmen von Kernresonanzexperimenten entwickelt wurde und der Orientierung der Störungen der Magnetisierung in bezug zur Orientierung der Spins der itineranten Ladungsträger besonders Rechnung trägt. Durch die konsequente Ableitung quantitativer Ausdrücke für die Stärke der Magnetisierungsfluktuationen unter Berücksichtigung quantenmechanischer Fluktuationen gelang es uns, eine einfache Beschreibung für die Spindephasierung optisch angeregter Elektronen und Löcher in magnetischen Halbleitern in Abhängigkeit von der Temperatur, dem Magnetfeld und der Mangan-Dotierung zu formulieren. Die im Rahmen unseres Modells berechneten Dephasierungszeiten weisen im Bereich geringer Mangan-Konzentrationen (x <4 %) ein hohes Maß an Übereinstimmung mit den experimentellen Daten auf und können die beobachteten Temperatur- und Magnetfeldabhängigkeiten sehr gut wiedergeben. Für noch höhere Konzentrationen der Mangan-Ionen treten zunehmend Abweichungen der berechneten Dephasierungszeiten von den experimentellen Daten auf, die allerdings immer noch eine qualitative Aussage über das Verhalten der Spindephasierung erlauben. So reproduziert unser Modell unter anderem den experimentell für alle Proben gefundenen, an sich nicht direkt einsichtigen Befund, zunehmender Spinlebenszeiten mit steigender Temperatur, der allgemein als "motional narrowing" bezeichnet wird. Da das von uns vorgestellte Modell ohne wahlfreie Parameter auskommt und die zur Berechnung der Spindephasierungszeiten notwendigen Größen der Literatur entnommen oder experimentell bestimmt werden können, ist der hohe Grad an Übereinstimmung mit den experimentellen Ergebnissen beachtlich. Weitere Verfeinerungen des Modells könnten zu einer weiteren Steigerung der Übereinstimmung vor allem im Bereich hoher Mangan-Konzentrationen führen, jedoch würde dies unserer Meinung nach den Rahmen des vorgestellten Modells sprengen. Wir verstehen unsere theoretische Untersuchung zur Spindephasierung vielmehr als einen Startpunkt für eine nun durchzuführende exakte quantenmechanische theoretische Untersuchung der Spindephasierung optisch angeregter Ladungsträger in magnetischen Halbleitern. Weitere Untersuchungen müssen nun klären, inwieweit das von uns für die Beschreibung der Spindephasierung in magnetisch dotierten CdTe-Volumenhalbleitern entwickelte Modell auf II-VI-Volumenhalbleiter allgemein und andere magnetisch dotierte Materialien wie z.B. magnetische III-V-Halbleiter vom Typ Ga1-xMnxAs übertragbar sind, die speziell im Hinblick auf ihre ferromagnetische Ordnung unter dem Einfluß der RKKY-Wechselwirkung und deren möglichen Einfluß auf die Spindephasierung von besonderem Interesse sind.
This thesis has two main parts.
The first part is based on our publication [1], where we use perturbation theory to calculate decay rates of magnons in the Kitaev-Heisenberg-Γ (KHΓ) model. This model describes the magnetic properties of the material α-RuCl 3 , which is a candidate for a Kitaev spin liquid. Our motivation is to validate a previous calculation from Ref. [2]. In this thesis, we map out the classical phase diagram of the KHΓ model. We use the Holstein-Primakoff
transformation and the 1/S expansion to describe the low temperature dynamics of the Kitaev-Heisenberg-Γ model in the experimentally relevant zigzag phase by spin waves. By parametrizing the spin waves in terms of hermitian fields, we find a special parameter region within the KHΓ model where the analytical expressions simplify. This enables us to construct the Bogoliubov transformation analytically. For a representative point in the special parameter region, we use these results to numerically calculate the magnon damping, which is to leading order caused by the decay of single magnons into two. We also calculate the dynamical structure factor of the magnons.
The second part of this thesis is based on our publication [3], where we use the functional renormalization group to analyze a discontinuous quantum phase transition towards a non-Fermi liquid phase in the Sachdev-Ye-Kitaev (SYK) model. In this thesis, we perform a disorder average over the random interactions in the SYK model. We argue that in the thermodynamic limit, the average renormalization group (RG) flow of the SYK model is identical to the RG flow of an effective disorder averaged model. Using the functional RG, we find a fixed point describing the discontinuous phase transition to the non-Fermi liquid phase at zero temperature. Surprisingly, we find a finite anomalous dimension of the fermions, which indicates critical fluctuations and is unusual for a discontinuous transition. We also determine the RG flow at zero temperature, and relate it to the phase diagram known from the literature.
Folgend auf den ersten Realisierungen von Bose-Einstein Kondensaten erschienen weitere innovative Experimente, die sich in den optischen Gittern gefangenen Quantengasen widmeten. In diesen zahlreichen, wissenschaftlichen Untersuchungen konnten die Eigenschaften von Bose-Einstein Kondensaten besser verstanden werden. Das Prinzip von Vielteilchensystemen, gefangen in einem periodischen Potential, bot eine Plattform zur Untersuchung weiterer Quantenphasen.
Eine konzeptionell einfache Modifikation von solchen Systemen erhält man durch die Kopplung der Grundzustände der gefangenen Teilchen an hoch angeregten Zuständen mithilfe einer externen Lichtquelle. Im Falle dessen, dass diese Zustände nahe der Ionisationsgrenze des Atoms liegen, spricht man von Rydberg-Zuständen und Atome, welche zu diesen Zuständen angeregt werden, bezeichnet man als Rydberg-Atome. Eines der vielen charakteristischen Eigenschaften von Rydberg-Atomen ist die Fähigkeit über große Entfernungen jenseits der atomaren Längenskalen zu wechselwirken. Im Rahmen von Vielteilchensystemen wurden dementsprechend Kristallstrukturen aus gefangenen Rydberg-Atomen experimentell beobachtet.
Nun stellt sich die Frage, was mit einem gefangenen Bose-Einstein Kondensat passiert, dessen Teilchen an langreichweitig wechselwirkenden Zuständen gekoppelt sind. Gibt es ein Parameterregime, in dem sowohl Kristallstruktur als auch Suprafluidität in solchen Systemen koexistieren können? Dies ist die zentrale Frage dieser Arbeit, die sich mit der Theorie von gefangenen Quantengasen gekoppelt an Rydberg-Zuständen auseinandersetzt.
In this thesis, we presented the theoretical description of the magnetic properties of various frustrated spin systems. Especially in search of exotic states, such as quantum spin liquids, magnetically frustrated systems have been subject of intense research within the last four decades. Relating experimental observations in real materials with theoretical models that capture those exotic magnetic phenomena has been one of the great challenges within the field of magnetism in condensed matter.
In order to build such a bridge between experimental observations and theoretical models, we followed two complementary strategies in this thesis. One strategy was based on first principles methods that enable the theoretical prediction of electronic properties of real materials without further experimental input than the crystal structure. Based on these predictions, low-energy models that describe magnetic interactions can be extracted and, through further theoretical modelling, can be compared to experimental observations. The second strategy was to establish low-energy models through comparison of data from experiments, such as inelastic neutron scattering intensities, with calculated predictions based on a variety of plausible magnetic models guided by microscopic insights. Both approaches allow to relate theoretical magnetic models with real materials and may provide guidance for the design of new frustrated materials or the investigation of promising models related to exotic magnetic states.
Great interest has emerged recently in the search for Kitaev spin liquid states in real materials. Such states rely on strongly anisotropic magnetic interactions, which have been suggested to exist in a number of candidate materials based on Ir and Ru. This thesis concentrates on two priority purposes. The first is the investigation of electronic and magnetic properties of candidate materials Na2IrO3, α-Li2IrO3, α-RuCl3, γ-Li2IrO3, and Ba3YIr2O9 for Kitaev physics where both spin-orbit coupling and correlation effects are important. The second is the method development for the microscopic description of correlated materials combining many-body methods and density functional theory (DFT). ...
The phenomenon of magnetism has been known to humankind for at least over 2500 years and many useful applications of magnetism have been developed since then, starting from the compass to modern information storage and processing devices. While technological applications are an important part of the continuing interest in magnetic materials, their fundamental properties are still being studied, leading to new physical insights at the forefront of physics. The magnetism of magnetic materials is a pure quantum effect due to the electrons that carry an intrinsic spin of 1/2. The physics of interacting quantum spins in magnetic insulators is the main subject of this thesis.We focus here on a theoretical description of the antiferromagnetic insulator Cs2CuCl4. This material is highly interesting because it is a nearly ideal realization of the two-dimensional antiferromagnetic spin-1/2 Heisenberg model on an anisotropic triangular lattice, where the Cu(2+) ions carry a spin of 1/2 and the spins interact via exchange couplings. Due to the geometric frustration of the triangular lattice, there exists a spin-liquid phase with fractional excitations (spinons) at finite temperatures in Cs2CuCl4. This spin-liquid phase is characterized by strong short-range spin correlations without long-range order. From an experimental point of view, Cs2CuCl4 is also very interesting because the exchange couplings are relatively weak leading to a saturation field of only B_c=8.5 T. All relevant parts of the phase diagram are therefore experimentally accessible. A recurring theme in this thesis will be the use of bosonic or fermionic representations of the spin operators which each offer in different situations suitable starting points for an approximate treatment of the spin interactions. The methods which we develop in this thesis are not restricted to Cs2CuCl4 but can also be applied to other materials that can be described by the spin-1/2 Heisenberg model on a triangular lattice; one important example is the material class Cs2Cu(Cl{4-x}Br{x}) where chlorine is partially substituted by bromine which changes the strength of the exchange couplings and the degree of frustration.
Our first topic is the finite-temperature spin-liquid phase in Cs2CuCl4. We study this regime by using a Majorana fermion representation of the spin-1/2 operators motivated by theoretical and experimental evidence for fermionic excitations in this spin-liquid phase. Within a mean-field theory for the Majorana fermions, we determine the magnetic field dependence of the critical temperature for the crossover from spin-liquid to paramagnetic behavior and we calculate the specific heat and magnetic susceptibility in zero magnetic field. We find that the Majorana fermions can only propagate in one dimension along the direction of the strongest exchange coupling; this reduction of the effective dimensionality of excitations is known as dimensional reduction.
The second topic is the behavior of ultrasound propagation and attenuation in the spin-liquid phase of Cs2CuCl4, where we consider longitudinal sound waves along the direction of the strongest exchange coupling. Due to the dimensional reduction of the excitations in the spin-liquid phase, we expect that we can describe the ultrasound physics by a one-dimensional Heisenberg model coupled to the lattice degrees of freedom via the exchange-striction mechanism. For this one-dimensional problem we use the Jordan-Wigner transformation to map the spin-1/2 operators to spinless fermions. We treat the fermions within the self-consistent Hartree-Fock approximation and we calculate the change of the sound velocity and attenuation as a function of magnetic field using a perturbative expansion in the spin-phonon couplings. We compare our theoretical results with experimental data from ultrasound experiments, where we find good agreement between theory and experiment.
Our final topic is the behavior of Cs2CuCl4 in high magnetic fields larger than the saturation field B_c=8.5 T. At zero temperature, Cs2CuCl4 is then fully magnetized and the ground state is therefore a ferromagnet where the excitations have an energy gap. The elementary excitations of this ferromagnetic state are spin-flips (magnons) which behave as hard-core bosons. At finite temperatures there will be thermally excited magnons that interact via the hard-core interaction and via additional exchange interactions. We describe the thermodynamic properties of Cs2CuCl4 at finite temperatures and calculate experimentally observable quantities, e.g., magnetic susceptibility and specific heat. Our approach is based on a mapping of the spin-1/2 operators to hard-core bosons, where we treat the hard-core interaction by the self-consistent ladder approximation and the exchange interactions by the self-consistent Hartree-Fock approximation. We find that our theoretical results for the specific heat are in good agreement with the available experimental data.
The objective of this work is twofold. First, we explore the performance of the density functional theory (DFT) when it is applied to solids with strong electronic correlations, such as transition metal compounds. Along this direction, particular effort is put into the refinement and development of parameterization techniques for deriving effective models on a basis of DFT calculations. Second, within the framework of the DFT, we address a number of questions related to the physics of Mott insulators, such as magnetic frustration and electron-phonon coupling (Cs2CuCl4 and Cs2CuBr4), high-temperature superconductivity (BSCCO) and doping of Mott insulators (TiOCl). In the frustrated antiferromagnets Cs2CuCl4 and Cs2CuBr4, we investigate the interplay between strong electronic correlations and magnetism on one hand and electron-lattice coupling on the other as well as the effect of this interplay on the microscopic model parameters. Another object of our investigations is the oxygen-doped cuprate superconductor BSCCO, where nano-scale electronic inhomogeneities have been observed in scanning tunneling spectroscopy experiments. By means of DFT and many-body calculations, we analyze the connection between the structural and electronic inhomogeneities and the superconducting properties of BSCCO. We use the DFT and molecular dynamic simulations to explain the microscopic origin of the persisting under doping Mott insulating state in the layered compound TiOCl.