Refine
Year of publication
Document Type
- Doctoral Thesis (20)
- Bachelor Thesis (1)
- Master's Thesis (1)
Has Fulltext
- yes (22)
Is part of the Bibliography
- no (22)
Keywords
Institute
- Physik (22)
The focus of this thesis is on quantum Heisenberg magnets in low dimensions. We modify the method of spin-wave theory in order to address two distinct issues. In the first part we develop a variant of spin-wave theory for low-dimensional systems, where thermodynamic observables are calculated from the Gibbs free energy for fixed order parameter. We are able to go beyond linear spin-wave theory and systematically calculate two-loop correction to the free energy. We use our method to determine the low-temperature physics of Heisenberg ferromagnets in one, two and three spatial dimensions. In the second part of the thesis, we treat a two-dimensional Heisenberg antiferromagnet in the presence of a uniform external magnetic field. We determine the low-temperature behavior of the magnetization curve within spin-wave theory by taking the absence of the spontaneous staggered magnetization into account. Additionally, we perform quantum Monte Carlo simulations and subsequently show that numerical findings are qualitatively comparable to spin-wave results. Finally, we apply our method to an experimentally motivated case of the distorted honeycomb lattice in order to determine the strength of the exchange interactions.
The challenging intricacies of strongly correlated electronic systems necessitate the use of a variety of complementary theoretical approaches. In this thesis, we analyze two distinct aspects of strong correlations and develop further or adapt suitable techniques. First, we discuss magnetization transport in insulating one-dimensional spin rings described by a Heisenberg model in an inhomogeneous magnetic field. Due to quantum mechanical interference of magnon wave functions, persistent magnetization currents are shown to exist in such a geometry in analogy to persistent charge currents in mesoscopic normal metal rings. The second, longer part is dedicated to a new aspect of the functional renormalization group technique for fermions. By decoupling the interaction via a Hubbard-Stratonovich transformation, we introduce collective bosonic variables from the beginning and analyze the hierarchy of flow equations for the coupled field theory. The possibility of a cutoff in the momentum transfer of the interaction leads to a new flow scheme, which we will refer to as the interaction cutoff scheme. Within this approach, Ward identities for forward scattering problems are conserved at every instant of the flow leading to an exact solution of a whole hierarchy of flow equations. This way the known exact result for the single-particle Green's function of the Tomonaga-Luttinger model is recovered.
Im Rahmen der vorliegenden Arbeit wurde die Spindephasierung optisch angeregter itineranter Ladungsträger in magnetisch dotierten Volumenhalbleitern mit Methoden der zeitaufgelösten magneto-optischen Ultra-Kurzzeit-Spektroskopie untersucht und eine theoretische Beschreibung der Spindephasierung entwickelt, die ein hohes Maß an Übereinstimmung mit den experimentellen Ergebnissen aufweist. Beim untersuchten Material Cd1-xMnxTe handelt es sich um einen sog. magnetischen Halbleiter, der die elektronischen Eigenschaften eines Halbleiters mit den magnetischen Eigenschaften eines Paramagneten vereint. Bedingt durch die starke sp/d-Austauschwechselwirkung zwischen den Spins der lokalisierten magnetischen Ionen und denen der optisch angeregten itineranten Ladungsträger, kommt es zur Ausbildung vieler neuer, bisher unbekannter, aber auch zur Modifikation bereits bekannter Effekte. Die Wirkungsweise der sp/d-Austauschkopplung in magnetischen Halbleitern kann stark vereinfacht gesprochen als eine Art „Verstärker“ verstanden werden, der unter anderem zu einer Intensivierung all solcher Effekte führt, die durch Magnetfelder, seien sie externer oder interner Natur, bedingt sind. Durch diese starke Respons auf externe Magnetfelder kommt es in magnetischen Halbleitern zu einer starken Überhöhung der Zeeman-Aufspaltung, so daß eine getrennte Beobachtung der ansonsten entarteten Spinzustände möglich wird. Die Methode der Wahl zur Untersuchung der zeitlichen Entwicklung der energetisch aufgespaltenen Spinzustände ist die Detektion der zeitaufgelösten Spinquantenschwebungen der Ladungsträger, die das zeitaufgelöste Analogon zur Detektion des Hanle-Effektes in Gasen darstellt. Hierfür kam ein magneto-optischer Detektionsaufbau zum Einsatz, der es ermöglichte, die zeitliche Entwicklung der Komponenten der transienten Magnetisierungen der im Magnetfeld präzedierenden Ladungsträgerspins zu erfassen und so Rückschlüsse auf die Lebensdauer der angeregten Zustände zu schließen. Da die so bestimmten Dephasierungszeiten der detektierten Transienten der Spinquantenschwebungen eine starke Abhängigkeit von den externen Parametern wie der Temperatur, dem Magnetfeld und der magnetischen Dotierung aufweisen, war es ein Ziel dieser Arbeit, eine systematische Untersuchung der gefundenen Abhängigkeiten durchzuführen, um so eine möglichst breite Datenbasis für die weitere theoretische Untersuchung der gefundenen Ergebnisse zu schaffen. Im Zuge dieser Untersuchungen gelang uns unter anderem der erste experimentelle Nachweis der oszillatorischen Signaturen von kohärenten Lochspinquantenschwebungen in magnetisch dotierten Halbleitern. Obwohl magnetisch dotierte Halbleiter bereits seit mehr als 30 Jahren experimentell untersucht werden, konnten unsere experimentellen Befunde zur Spindephasierung optisch angeregter Ladungsträger durch keines der etablierten Modelle zur Beschreibung der Spindephasierung, sei es in magnetisch dotierten oder in undotierten Halbleitern, beschrieben werden. Aus diesem Grund wurde ausgehend vom Gedanken, daß lokale Fluktuationen der Magnetisierung der magnetischen Ionen einen starken Einfluß auf die Lebensdauer der itineranten Spins haben, ein neues Modell entwickelt. Dieses Modell beruht auf der Adaption einer Beschreibung der Spindephasierung, die im Rahmen von Kernresonanzexperimenten entwickelt wurde und der Orientierung der Störungen der Magnetisierung in bezug zur Orientierung der Spins der itineranten Ladungsträger besonders Rechnung trägt. Durch die konsequente Ableitung quantitativer Ausdrücke für die Stärke der Magnetisierungsfluktuationen unter Berücksichtigung quantenmechanischer Fluktuationen gelang es uns, eine einfache Beschreibung für die Spindephasierung optisch angeregter Elektronen und Löcher in magnetischen Halbleitern in Abhängigkeit von der Temperatur, dem Magnetfeld und der Mangan-Dotierung zu formulieren. Die im Rahmen unseres Modells berechneten Dephasierungszeiten weisen im Bereich geringer Mangan-Konzentrationen (x <4 %) ein hohes Maß an Übereinstimmung mit den experimentellen Daten auf und können die beobachteten Temperatur- und Magnetfeldabhängigkeiten sehr gut wiedergeben. Für noch höhere Konzentrationen der Mangan-Ionen treten zunehmend Abweichungen der berechneten Dephasierungszeiten von den experimentellen Daten auf, die allerdings immer noch eine qualitative Aussage über das Verhalten der Spindephasierung erlauben. So reproduziert unser Modell unter anderem den experimentell für alle Proben gefundenen, an sich nicht direkt einsichtigen Befund, zunehmender Spinlebenszeiten mit steigender Temperatur, der allgemein als "motional narrowing" bezeichnet wird. Da das von uns vorgestellte Modell ohne wahlfreie Parameter auskommt und die zur Berechnung der Spindephasierungszeiten notwendigen Größen der Literatur entnommen oder experimentell bestimmt werden können, ist der hohe Grad an Übereinstimmung mit den experimentellen Ergebnissen beachtlich. Weitere Verfeinerungen des Modells könnten zu einer weiteren Steigerung der Übereinstimmung vor allem im Bereich hoher Mangan-Konzentrationen führen, jedoch würde dies unserer Meinung nach den Rahmen des vorgestellten Modells sprengen. Wir verstehen unsere theoretische Untersuchung zur Spindephasierung vielmehr als einen Startpunkt für eine nun durchzuführende exakte quantenmechanische theoretische Untersuchung der Spindephasierung optisch angeregter Ladungsträger in magnetischen Halbleitern. Weitere Untersuchungen müssen nun klären, inwieweit das von uns für die Beschreibung der Spindephasierung in magnetisch dotierten CdTe-Volumenhalbleitern entwickelte Modell auf II-VI-Volumenhalbleiter allgemein und andere magnetisch dotierte Materialien wie z.B. magnetische III-V-Halbleiter vom Typ Ga1-xMnxAs übertragbar sind, die speziell im Hinblick auf ihre ferromagnetische Ordnung unter dem Einfluß der RKKY-Wechselwirkung und deren möglichen Einfluß auf die Spindephasierung von besonderem Interesse sind.
Die Arbeit beschäftigt sich mit der Herstellung sowie der strukturellen und magnetischen Charakterisierung von zwei Materialklassen von kupferbasierten zweidimensionalen Quanten-Spin-Systemen: Quadratische Gitter von Dimeren sowie geometrisch frustrierte Kagomé Gitter. In beiden Systemen werden Substitutionen vorgestellt die zu verbesserten Eigenschaften führen.
The present thesis is primarily concerned with the application of the functional renormalization group (FRG) to spin systems. In the first part, we study the critical regime close to the Berezinskii-Kosterlitz-Thouless (BKT) transition in several systems. Our starting point is the dual-vortex representation of the two-dimensional XY model, which is obtained by applying a dual transformation to the Villain model. In order to deal with the integer-valued field corresponding to the dual vortices, we apply the lattice FRG formalism developed by Machado and Dupuis [Phys. Rev. E 82, 041128 (2010)]. Using a Litim regulator in momentum space with the initial condition of isolated lattice sites, we then recover the Kosterlitz-Thouless renormalization group equations for the rescaled vortex fugacity and the dimensionless temperature. In addition to our previously published approach based on the vertex expansion [Phys. Rev. E 96, 042107 (2017)], we also present an alternative derivation within the derivative expansion. We then generalize our approach to the O(2) model and to the strongly anisotropic XXZ model, which enables us to show that weak amplitude fluctuations as well as weak out-of-plane fluctuations do not change the universal properties of the BKT transition.
In the second part of this thesis, we develop a new FRG approach to quantum spin systems. In contrast to previous works, our spin functional renormalization group (SFRG) does not rely on a mapping to bosonic or fermionic fields, but instead deals directly with the spin operators. Most importantly, we show that the generating functional of the irreducible vertices obeys an exact renormalization group equation, which resembles the Wetterich equation of a bosonic system. As a consequence, the non-trivial structure of the su(2) algebra is fully taken into account by the initial condition of the renormalization group flow. Our method is motivated by the spin-diagrammatic approach to quantum spin system that was developed more than half a century ago in a seminal work by Vaks, Larkin, and Pikin (VLP) [Sov. Phys. JETP 26, 188 (1968)]. By embedding their ideas in the language of the modern renormalization group, we avoid the complicated diagrammatic rules while at the same time allowing for novel approximation schemes. As a demonstration, we explicitly show how VLP's results for the leading corrections to the free energy and to the longitudinal polarization function of a ferromagnetic Heisenberg model can be recovered within the SFRG. Furthermore, we apply our method to the spin-S Ising model as well as to the spin-S quantum Heisenberg model, which allows us to calculate the critical temperature for both a ferromagnetic and an antiferromagnetic exchange interaction. Finally, we present a new hybrid formulation of the SFRG, which combines features of both the pure and the Hubbard-Stratonovich SFRG that were published recently [Phys. Rev. B 99, 060403(R) (2019)].
In this thesis we study strongly correlated electron systems within the Density Functional Theory (DFT) in combination with the Dynamical Mean-Field Theory (DMFT).
First, we give an introduction into the theoretical methods and then apply them to study realistic materials. We present results on the hole-doped 122-family of the iron-based superconductors and the transition-metal oxide SrVO3. Our investigations show that a proper treatment of strong electronic correlations is necessary to describe the experimental observations.
The term superconductivity describes the phenomenon of vanishing electrical resistivity in a certain material, then called a superconductor, below a critical typically very low temperature. Since the discovery of superconductivity in mercury in 1911 many other superconductors have been found and the critical temperature below which superconductivity occurs could recently be raised to the temperatures encountered in a cold antarctic winter.
Superconductors are promising materials for applications. They can serve as nearly loss-free cables for energy transmission, in coils for the generation of high magnetic fields or in various electronic devices, such as detectors for magnetic fields. Despite their obvious advantages, the cost for using superconductors, however, depends a lot on the cooling effort needed to realize the superconducting state. Therefore, the search for a superconductor with critical temperature above room-temperature, which would avoid the need for any specialized cooling system, is one of the main projects of contemporary research in condensed matter physics.
While a theory of superconductivity in simple metals has already been developed in the 1950s, it has meanwhile been recognized that many superconductors are unconventional in the sense that their behavior does not follow the aforementioned theory. Unconventional superconductors differ from conventional superconductors mainly by the momentum- and real-space symmetry of the order parameter, which is associated with the superconducting state. While conventional superconductors have a uniform order parameter, unconventional superconductors can have an order parameter that bears structure. Of course, alternative theoretical descriptions have been suggested, but the discussion on the right theory for unconventional superconductivity has not yet been settled. Ultimately, this lack of a general theory of superconductivity prevents a targeted search for the room-temperature superconductor. Any new theoretical approach must, however, prove its value by correctly predicting the structure of the superconducting order parameter and further material properties.
In this work we participate in the search for a theory of unconventional superconductivity. We discuss the theory of superconductivity mediated by electron-electron interactions, which has been popular in the last few decades due to its success in explaining various properties of the copper-based superconductors that emerged in the 1980s. We give a detailed derivation of the so-called random phase approximation for the Hubbard model in terms of a diagrammatic many-body theory and apply it in conjunction with low-energy kinetic Hamiltonians, which we construct from first principles calculations in the framework of density functional theory. Density functional theory is an established technique for calculating the electronic and magnetic properties of materials solely based on their crystal structure. Its practical implementations in computer codes, however, do for example not describe complicated many-electron phenomena like the superconducting state that we are interested in here. Nevertheless, it can provide important information about the properties of the normal state of the material, which superconductivity emerges from. In our theory we use these information and approach the superconducting state from the normal state.
Such an interfacing of different calculational techniques requires a lot of implementation work in the form of computer code. Inclusion of the computer code into this work would consume by far too much space, but since some of the decisions on approximations in the calculational formalism are guided by the feasibility of the associated computer calculations, we discuss the numerical implementation in great detail.
We apply the developed methods to quasi-two-dimensional organic charge transfer salts and iron-based superconductors. Finally, we discuss implications of our findings for the interpretation of various experiments.
The ab-initio molecular dynamics framework has been the cornerstone of computational solid state physics in the last few decades. Although it is already a mature field it is still rapidly developing to accommodate the growth in solid state research as well as to efficiently utilize the increase in computing power. Starting from the first principles, the ab-initio molecular dynamics provides essential information about structural and electronic properties of matter under various external conditions. In this thesis we use the ab-initio molecular dynamics to study the behavior of BaFe2As2 and CaFe2As2 under the application of external pressure. BaFe2As2 and CaFe2As2 belong to the family of iron based superconductors which are a novel and promising superconducting materials. The application of pressure is one of two key methods by which electronic and structural properties of iron based superconductors can be modified, the other one being doping (or chemical pressure). In particular, it has been noted that pressure conditions have an important effect, but their exact role is not fully understood. To better understand the effect of different pressure conditions we have performed a series of ab-initio simulations of pressure application. In order to apply the pressure with arbitrary stress tensor we have developed a method based on the Fast Inertial Relaxation Engine, whereby the unit cell and the atomic positions are evolved according to the metadynamical equations of motion. We have found that the application of hydrostatic and c axis uniaxial pressure induces a phase transition from the magnetically ordered orthorhombic phase to the non-magnetic collapsed tetragonal phase in both BaFe2As2 and CaFe2As2. In the case of BaFe2As2, an intermediate tetragonal non-magnetic tetragonal phase is observed in addition. Application of the uniaxial pressure parallel to the c axis reduces the critical pressure of the phase transition by an order of magnitude, in agreement with the experimental findings. The in-plane pressure application did not result in transition to the non-magnetic tetragonal phase and instead, rotation of the magnetic order direction could be observed. This is discussed in the context of Ginzburg-Landau theory. We have also found that the magnetostructural phase transition is accompanied by a change in the Fermi surface topology, whereby the hole cylinders centered around the Gamma point disappear, restricting the possible Cooper pair scattering channels in the tetragonal phase. Our calculations also permit us to estimate the bulk moduli and the orthorhombic elastic constants of BaFe2As2 and CaFe2As2.
To study the electronic structure in systems with broken translational symmetry, such as doped iron based superconductors, it is necessary to develop a method to unfold the complicated bandstructures arising from the supercell calculations. In this thesis we present the unfolding method based on group theoretical techniques. We achieve the unfolding by employing induced irreducible representations of space groups. The unique feature of our method is that it treats the point group operations on an equal footing with the translations. This permits us to unfold the bandstructures beyond the limit of translation symmetry and also formulate the tight-binding models of reduced dimensionality if certain conditions are met. Inclusion of point group operations in the unfolding formalism allows us to reach important conclusions about the two versus one iron picture in iron based superconductors.
And finally, we present the results of ab-initio structure prediction in the cases of giant volume collapse in MnS2 and alkaline doped picene. In the case of MnS2, a previously unobserved high pressure arsenopyrite structure of MnS2 is predicted and stability regions for the two competing metastable phases under pressure are determined. In the case of alkaline doped picene, crystal structures with different levels of doping were predicted and used to study the role of electronic correlations.
The study of systems whose properties are governed by electronic correlations is a corner stone of modern solid-state physics. Often, such systems feature unique and distinct properties like Mott metal-insulator transitions, rich phase diagrams, and high sensitivity to subtle changes in the applied conditions. Whereas the standard approach to electronic structure calculations, density functional theory (DFT), is able to address the complexity of real-world materials but is known to have serious limitations in the description of correlations, the dynamical mean-field theory (DMFT) has become an established method for the treatment of correlated fermions, first on the level of minimal models and later in combination with DFT, termed LDA+DMFT.
This thesis presents theoretical calculations on different materials exhibiting correlated physics, where we aim at covering a range in terms of systems --from rather weakly correlated to strongy correlated-- as well as in terms of methods, from DFT calculations to combined LDA+DMFT calculations. We begin with a study on a selection of iron pnictides, a recently discovered family of high-temperature superconductors with varying degree of correlation strength, and show that their magnetic and optical properties can be assessed to some degree within DFT, despite the correlated nature of these systems. Next, extending our analysis to the inclusion of correlations in the framework of LDA+DMFT, we discuss the electronic structure of the iron pnictide LiFeAs which we find to be well described by Fermi liquid theory with regard to many of its properties, yet we see distinct changes in its Fermi surface upon inclusion of correlations. We continue the study of low-energy properties and specifically Fermi surfaces on two more iron pnictides, LaFePO and LiFeP, and predict a topology change of their Fermi surfaces due to the effect of correlations, with possible implications for their superconducting properties. In our last study, we close the circle by presenting LDA+DMFT calculations on an organic molecular crystal on the verge of a Mott metal-insulator transition; there, we find the spectral and optical properties to display signatures of strong electronic correlations beyond Fermi liquid theory.