Refine
Year of publication
Document Type
- Doctoral Thesis (22)
- Bachelor Thesis (1)
- Master's Thesis (1)
Has Fulltext
- yes (24)
Is part of the Bibliography
- no (24)
Keywords
Institute
- Physik (24)
In this thesis we discussed the expansion behaviour of an ultracold bosonic gas from an initial harmonic confinement. We studied the reaction of the non-interacting system to changes of the trap frequency ω and of the strongly interacting system to changes of the number of Mott insulating particles NMI in the initial state and the interaction U/J. The total number of particles is kept constant for the different simulations, which are performed by means of the Bosonic Gutzwiller approach...
Folgend auf den ersten Realisierungen von Bose-Einstein Kondensaten erschienen weitere innovative Experimente, die sich in den optischen Gittern gefangenen Quantengasen widmeten. In diesen zahlreichen, wissenschaftlichen Untersuchungen konnten die Eigenschaften von Bose-Einstein Kondensaten besser verstanden werden. Das Prinzip von Vielteilchensystemen, gefangen in einem periodischen Potential, bot eine Plattform zur Untersuchung weiterer Quantenphasen.
Eine konzeptionell einfache Modifikation von solchen Systemen erhält man durch die Kopplung der Grundzustände der gefangenen Teilchen an hoch angeregten Zuständen mithilfe einer externen Lichtquelle. Im Falle dessen, dass diese Zustände nahe der Ionisationsgrenze des Atoms liegen, spricht man von Rydberg-Zuständen und Atome, welche zu diesen Zuständen angeregt werden, bezeichnet man als Rydberg-Atome. Eines der vielen charakteristischen Eigenschaften von Rydberg-Atomen ist die Fähigkeit über große Entfernungen jenseits der atomaren Längenskalen zu wechselwirken. Im Rahmen von Vielteilchensystemen wurden dementsprechend Kristallstrukturen aus gefangenen Rydberg-Atomen experimentell beobachtet.
Nun stellt sich die Frage, was mit einem gefangenen Bose-Einstein Kondensat passiert, dessen Teilchen an langreichweitig wechselwirkenden Zuständen gekoppelt sind. Gibt es ein Parameterregime, in dem sowohl Kristallstruktur als auch Suprafluidität in solchen Systemen koexistieren können? Dies ist die zentrale Frage dieser Arbeit, die sich mit der Theorie von gefangenen Quantengasen gekoppelt an Rydberg-Zuständen auseinandersetzt.
The study of systems whose properties are governed by electronic correlations is a corner stone of modern solid-state physics. Often, such systems feature unique and distinct properties like Mott metal-insulator transitions, rich phase diagrams, and high sensitivity to subtle changes in the applied conditions. Whereas the standard approach to electronic structure calculations, density functional theory (DFT), is able to address the complexity of real-world materials but is known to have serious limitations in the description of correlations, the dynamical mean-field theory (DMFT) has become an established method for the treatment of correlated fermions, first on the level of minimal models and later in combination with DFT, termed LDA+DMFT.
This thesis presents theoretical calculations on different materials exhibiting correlated physics, where we aim at covering a range in terms of systems --from rather weakly correlated to strongy correlated-- as well as in terms of methods, from DFT calculations to combined LDA+DMFT calculations. We begin with a study on a selection of iron pnictides, a recently discovered family of high-temperature superconductors with varying degree of correlation strength, and show that their magnetic and optical properties can be assessed to some degree within DFT, despite the correlated nature of these systems. Next, extending our analysis to the inclusion of correlations in the framework of LDA+DMFT, we discuss the electronic structure of the iron pnictide LiFeAs which we find to be well described by Fermi liquid theory with regard to many of its properties, yet we see distinct changes in its Fermi surface upon inclusion of correlations. We continue the study of low-energy properties and specifically Fermi surfaces on two more iron pnictides, LaFePO and LiFeP, and predict a topology change of their Fermi surfaces due to the effect of correlations, with possible implications for their superconducting properties. In our last study, we close the circle by presenting LDA+DMFT calculations on an organic molecular crystal on the verge of a Mott metal-insulator transition; there, we find the spectral and optical properties to display signatures of strong electronic correlations beyond Fermi liquid theory.
In this thesis we study strongly correlated electron systems within the Density Functional Theory (DFT) in combination with the Dynamical Mean-Field Theory (DMFT).
First, we give an introduction into the theoretical methods and then apply them to study realistic materials. We present results on the hole-doped 122-family of the iron-based superconductors and the transition-metal oxide SrVO3. Our investigations show that a proper treatment of strong electronic correlations is necessary to describe the experimental observations.
Die Arbeit beschäftigt sich mit der Herstellung sowie der strukturellen und magnetischen Charakterisierung von zwei Materialklassen von kupferbasierten zweidimensionalen Quanten-Spin-Systemen: Quadratische Gitter von Dimeren sowie geometrisch frustrierte Kagomé Gitter. In beiden Systemen werden Substitutionen vorgestellt die zu verbesserten Eigenschaften führen.
Topological phases set themselves apart from other phases since they cannot be understood in terms of the usual Landau theory of phase transitions. This fact, which is a consequence of the property that topological phase transitions can occur without breaking symmetries, is reflected in the complicated form of topological order parameters. While the mathematical classification of phases through homotopy theory is known, an intuition for the relation between phase transitions and changes to the physical system is largely inhibited by the general complexity.
In this thesis we aim to get back some of this intuition by studying the properties of the Chern number (a topological order parameter) in two scenarios. First, we investigate the effect of electronic correlations on topological phases in the Green's function formalism. By developing a statistical method that averages over all possible solutions of the manybody problem, we extract general statements about the shape of the phase diagram and investigate the stability of topological phases with respect to interactions. In addition, we find that in many topological models the local approximation, which is part of many standard methods for solving the manybody lattice model, is able to produce qualitatively correct phase transitions at low to intermediate correlations.
We then extend the statistical method to study the effect of the lattice, where we evaluate possible applications of standard machine learning techniques against our information theoretical approach. We define a measure for the information about particular topological phases encoded in individual lattice parameters, which allows us to construct a qualitative phase diagram that gives a more intuitive understanding of the topological phase.
Finally, we discuss possible applications of our method that could facilitate the discovery of new materials with topological properties.
Diese Thesis befasst sich mit dem Problem korrelierter Elektronensysteme in realen Materialien. Ausgangspunkt hierbei ist die quantenmechanische Beschreibung dieser Systeme im Rahmen der sogenannten Kohn-Scham Dichtefunktionaltheorie, welche die Elektronen der Kristallsysteme als effektiv nicht-wechselwirkende Teilchen beschreibt.
Während diese Modellierung im Falle vieler Materialklassen erfolgreich ist, unterscheiden sich die korrelierten Elektronensysteme dadurch, dass der kollektive Charakter der Elektronendynamik nicht zu vernachlässigen ist.
Um diese Korrelationseffekte genauer zu untersuchen, verwenden wir in dieser Arbeit das Hubbard-Modell, welches mit der projektiven Wannierfunktionsmethode aus der Kohn-Scham Dichtefunktionaltheorie konstruiert werden kann.
Das Hubbard-Modell umfasst hierbei nur die lokale Elektron-Elektron-Wechselwirkung auf einem Gitter. Auch wenn das Modell augenscheinlich sehr simpel ist, existieren exakte Lösungen nur in bestimmten Grenzfällen. Dies macht die Entwicklung approximativer Ansätze erforderlich, wobei die Weiterentwicklung der sogenannten Two-Particle Self-Consistent Methode (TPSC) eine zentrale Rolle dieser Arbeit einnimmt.
Bei TPSC handelt es sich um eine Vielteilchenmethode, die in der Sprache funktionaler Ableitungen und sogenannter conserving approximations hergeleitet werden kann.
Der zentrale Gedanke dabei ist, den effektiven Wechselwirkungsvertex als statisch und lokal zu approximieren. Dies wiederum erlaubt die Bewegungsgleichung des Systems
erheblich zu vereinfachen, sodass eine numerische approximative Lösung des Hubbard-Modells möglich wird. Vorsetzung hierbei ist nur, dass sich das System in der normalleitenden Phase befindet und die bei Phasenübergängen entstehenden Fluktuationen nicht zu groß sind.
Während diese Methode ursprünglich von Y. M. Vilk und A.-M. Tremblay für das Ein-Orbital Hubbard-Modell entwickelt wurde, stellen wir in dieser Arbeit eine Erweiterung auf Viel-Orbital-Systeme vor.
Im Falle mehrerer Orbitale treten in der TPSC-Herleitung einzelne Komplikationen auf, die mit weiteren Approximationen behandelt werden müssen. Diese werden anhand eines einfachen Zwei-Orbital Modell-Systems diskutiert und die TPSC-Ergebnisse werden darüber hinaus mit den Ergebnissen der etablierten dynamischen Molekularfeldnährung verglichen.
In diesem Zusammenhang werden auch mögliche zukünftige Erweiterungen bzw. Verbesserungen von TPSC diskutiert.
Ein weiterer wichtiger Aspekt ist die Anwendung von TPSC auf reale Materialien.
In diesem Zusammenhang werden in dieser Arbeit die supraleitenden Eigenschaften der organischen K-(ET)2X Systeme untersucht. Hierbei lassen die TPSC-Resultate darauf schließen, dass das populäre Dimer-Modell, welches zur Beschreibung dieser Materialien herangezogen wird, nicht genügt um die experimentell bestimmten kritischen Temperaturen zu erklären und dass das komplexere Molekülmodell weitere exotische supraleitende Lösungen zulässt.
Schließlich untersuchen wir außerdem die elektronischen Eigenschaften des eisenbasierten Supraleiters LiFeAs und diskutieren inwieweit nicht-lokale Korrelationseffekte, welche durch TPSC aufgelöst werden können, die experimentellen Daten reproduzieren.
The term superconductivity describes the phenomenon of vanishing electrical resistivity in a certain material, then called a superconductor, below a critical typically very low temperature. Since the discovery of superconductivity in mercury in 1911 many other superconductors have been found and the critical temperature below which superconductivity occurs could recently be raised to the temperatures encountered in a cold antarctic winter.
Superconductors are promising materials for applications. They can serve as nearly loss-free cables for energy transmission, in coils for the generation of high magnetic fields or in various electronic devices, such as detectors for magnetic fields. Despite their obvious advantages, the cost for using superconductors, however, depends a lot on the cooling effort needed to realize the superconducting state. Therefore, the search for a superconductor with critical temperature above room-temperature, which would avoid the need for any specialized cooling system, is one of the main projects of contemporary research in condensed matter physics.
While a theory of superconductivity in simple metals has already been developed in the 1950s, it has meanwhile been recognized that many superconductors are unconventional in the sense that their behavior does not follow the aforementioned theory. Unconventional superconductors differ from conventional superconductors mainly by the momentum- and real-space symmetry of the order parameter, which is associated with the superconducting state. While conventional superconductors have a uniform order parameter, unconventional superconductors can have an order parameter that bears structure. Of course, alternative theoretical descriptions have been suggested, but the discussion on the right theory for unconventional superconductivity has not yet been settled. Ultimately, this lack of a general theory of superconductivity prevents a targeted search for the room-temperature superconductor. Any new theoretical approach must, however, prove its value by correctly predicting the structure of the superconducting order parameter and further material properties.
In this work we participate in the search for a theory of unconventional superconductivity. We discuss the theory of superconductivity mediated by electron-electron interactions, which has been popular in the last few decades due to its success in explaining various properties of the copper-based superconductors that emerged in the 1980s. We give a detailed derivation of the so-called random phase approximation for the Hubbard model in terms of a diagrammatic many-body theory and apply it in conjunction with low-energy kinetic Hamiltonians, which we construct from first principles calculations in the framework of density functional theory. Density functional theory is an established technique for calculating the electronic and magnetic properties of materials solely based on their crystal structure. Its practical implementations in computer codes, however, do for example not describe complicated many-electron phenomena like the superconducting state that we are interested in here. Nevertheless, it can provide important information about the properties of the normal state of the material, which superconductivity emerges from. In our theory we use these information and approach the superconducting state from the normal state.
Such an interfacing of different calculational techniques requires a lot of implementation work in the form of computer code. Inclusion of the computer code into this work would consume by far too much space, but since some of the decisions on approximations in the calculational formalism are guided by the feasibility of the associated computer calculations, we discuss the numerical implementation in great detail.
We apply the developed methods to quasi-two-dimensional organic charge transfer salts and iron-based superconductors. Finally, we discuss implications of our findings for the interpretation of various experiments.
The ab-initio molecular dynamics framework has been the cornerstone of computational solid state physics in the last few decades. Although it is already a mature field it is still rapidly developing to accommodate the growth in solid state research as well as to efficiently utilize the increase in computing power. Starting from the first principles, the ab-initio molecular dynamics provides essential information about structural and electronic properties of matter under various external conditions. In this thesis we use the ab-initio molecular dynamics to study the behavior of BaFe2As2 and CaFe2As2 under the application of external pressure. BaFe2As2 and CaFe2As2 belong to the family of iron based superconductors which are a novel and promising superconducting materials. The application of pressure is one of two key methods by which electronic and structural properties of iron based superconductors can be modified, the other one being doping (or chemical pressure). In particular, it has been noted that pressure conditions have an important effect, but their exact role is not fully understood. To better understand the effect of different pressure conditions we have performed a series of ab-initio simulations of pressure application. In order to apply the pressure with arbitrary stress tensor we have developed a method based on the Fast Inertial Relaxation Engine, whereby the unit cell and the atomic positions are evolved according to the metadynamical equations of motion. We have found that the application of hydrostatic and c axis uniaxial pressure induces a phase transition from the magnetically ordered orthorhombic phase to the non-magnetic collapsed tetragonal phase in both BaFe2As2 and CaFe2As2. In the case of BaFe2As2, an intermediate tetragonal non-magnetic tetragonal phase is observed in addition. Application of the uniaxial pressure parallel to the c axis reduces the critical pressure of the phase transition by an order of magnitude, in agreement with the experimental findings. The in-plane pressure application did not result in transition to the non-magnetic tetragonal phase and instead, rotation of the magnetic order direction could be observed. This is discussed in the context of Ginzburg-Landau theory. We have also found that the magnetostructural phase transition is accompanied by a change in the Fermi surface topology, whereby the hole cylinders centered around the Gamma point disappear, restricting the possible Cooper pair scattering channels in the tetragonal phase. Our calculations also permit us to estimate the bulk moduli and the orthorhombic elastic constants of BaFe2As2 and CaFe2As2.
To study the electronic structure in systems with broken translational symmetry, such as doped iron based superconductors, it is necessary to develop a method to unfold the complicated bandstructures arising from the supercell calculations. In this thesis we present the unfolding method based on group theoretical techniques. We achieve the unfolding by employing induced irreducible representations of space groups. The unique feature of our method is that it treats the point group operations on an equal footing with the translations. This permits us to unfold the bandstructures beyond the limit of translation symmetry and also formulate the tight-binding models of reduced dimensionality if certain conditions are met. Inclusion of point group operations in the unfolding formalism allows us to reach important conclusions about the two versus one iron picture in iron based superconductors.
And finally, we present the results of ab-initio structure prediction in the cases of giant volume collapse in MnS2 and alkaline doped picene. In the case of MnS2, a previously unobserved high pressure arsenopyrite structure of MnS2 is predicted and stability regions for the two competing metastable phases under pressure are determined. In the case of alkaline doped picene, crystal structures with different levels of doping were predicted and used to study the role of electronic correlations.