Refine
Document Type
- Doctoral Thesis (12)
Has Fulltext
- yes (12)
Is part of the Bibliography
- no (12)
Keywords
- Adenom (1)
- Apoptosis (1)
- Carcinogenese (1)
- Krebs (Medizin) (1)
- Messenger-RNS ; Translokation ; Peptide ; Wechselwirkung ; Leukämie (1)
- Nekrose (1)
- Tumor (1)
- Zelltod (1)
Institute
- Biochemie und Chemie (6)
- Georg-Speyer-Haus (6)
- Biowissenschaften (4)
- Medizin (3)
Die X-chromosomal gebundene chronische Granulomatose (X-CGD) ist eine seltene Erbkrankheit, bei der die NADPH-Oxidase der Phagozyten nicht funktionell ist. Der Grund hierfür liegt meist in Mutationen in der GP91phox Untereinheit der Phagozyten-Oxidase. Hierdurch treten lebensbedrohliche Bakterien- und Pilzinfektionen bei Patienten auf, was neben einer geringen Lebensqualität zu einer erheblich verkürzten Lebenserwartung führt. Eine Stammzelltransplantation eines gesunden Spenders ist bislang der einzige heilende Therapieansatz. Für X-CGD-Patienten, die keinen passen-den Spender zur Verfügung haben, stellt die genetische Modifikation autologer hämato-poetischer Stammzellen eine alternative Form der Therapie dar. Im Jahr 2004 wurden daher in einer präklinischen Phase I/II Studie in Frankfurt zwei X-CGD-Patienten gentherapeutisch behandelt. Hierbei wurden CD34+ Stammzellen ex vivo mit einem γ-retroviralen Vektor transduziert, der eine LTR-getriebene Expressionskassette für GP91phox trägt. Nach einer nicht-myeloablativen Konditionierung wurden die genetisch modifizierten Zellen der Patienten retransplantiert. Beide behandelten Patienten zeigten schon kurz nach Therapiebeginn eine deutliche Verminderung der Infektionsanfälligkeit und somit eine stark verbesserte Lebensqualität. Auf zellulärer Ebene konnte ein gutes Engraftment der modifizierten hämatopoetischen Stammzellen im Knochenmark beobachtet werden. In funktionellen Tests konnte die Bildung superoxidproduzierender Phagozyten für die Immunabwehr gezeigt werden. Das molekulare Monitoring beider Patienten hat jedoch über die Zeit eine Verringerung der Enzymaktivität in den Phagozyten (Superoxidproduktion) gezeigt, obwohl der Anteil genetisch modifizierter Zellen nicht geringer wurde. Im Rahmen der vorliegenden Arbeit konnte durch quantitative RT-PCR-Analysen proviraler mRNA-Transkripte, eine Korrelation zwischen dem Verlust der Enzymaktivität und reduzierter Transgen-expression gezeigt werden. Durch DNA-Analysen peripherer Blutproben beider Patienten konnte eine verstärkte Methylierung an der Promotor-CpG-Insel, welche die Transgen-expression reguliert, als Ursache identifiziert werden. Weiterführende klonale Untersuchungen genmodifizierter Kolonien aus dem Knochenmark der Patienten offenbarten einen direkten Zusammenhang zwischen der Abwesenheit von Transkription bzw. Superoxidbildung und der Methylierung dieser CpG-Insel im proviralen Promotor-bereich. Somit konnte zum ersten Mal ein epigenetisches Silencing bei Patienten nach einer Behandlung mit Gentherapie nachgewiesen werden. In weiteren Versuchen konnte die vollständig ausgebildete, spezifische Methylierung des SFFV-Promotors in transduzierten Knochenmarkzellen eines Patienten durch in vitro Behandlung mit einem Methyltransferase-Inhibitor (Aza-D) in Kombination mit einem Histondeacetylase-Inhibitor (TSA) bis zu 30% reduziert werden. Dieser Teilerfolg zeigt, dass eine klinisch relevante Reaktivierung der Transgenexpression, durch Umkehrung des Silencings am SFFV-Promotor, prinzipiell möglich ist. Das Phänomen der Abschaltung der Genexpression des γ-retroviralen Vektors in der Frankfurter Gentherapiestudie, hat ein Testsytem zur Evaluierung zukünftiger Gentherapie-Vektoren erfordert. Durch Monitoring proviraler Parameter (Kopien, Transgenexpression, Proteinexpression und Promotor-CpG-Methylierung), in der murinen embryonalen Stammzelllinie P19 konnte in dieser Arbeit ein prädiktiver Silencing-Assay erfolgreich etabliert werden. Mit Hilfe dieses Systems wurden vielversprechende Silencing-resistente Vektoren mit dem UCOE (Ubiquitous Chromatin Opening Element) identifiziert. Hierdurch wurden wichtige Grundlagen geschaffen, um zukünftige virale Vektorsysteme in Bezug auf ihre Langzeitexpression testen zu können. Zusätzlich zu der Inaktivierung der transduzierten Expressionskassette konnte in beiden Patienten ein klonales Auswachsen von Subklonen beobachtet werden, das letztendlich zu einem myelodisplastischen Syndrom bei beiden Patienten führte. Der virale Enhancer war im Gegensatz zum viralen Promotor niemals methyliert, wodurch seine transaktivierenden Eigenschaften unbeeinflusst blieben. Diese enhancervermittelte Aktivierung proliferationsfördernder Gene (Mds1-Evi1-Genlokus) konnte durch RT-PCR-Analysen zunächst in Mischpopulationen aus peripherem Blut der Patienten nach-gewiesen werden. Weiterführende klonale Analysen in Knochenmarkzellen zeigten den direkten Zusammenhang zwischen der transkriptionellen Aktivierung des Mds1-Evi1-Genlokus und den proviralen Insertionen. Somit konnte die Ursache für die therapie-assoziierte, klonale Dominanz in beiden X-CGD-Patienten aufgeklärt werden. In der Frankfurter Gentherapiestudie wurde erstmals ein klinischer Erfolg für X-CGD-Patienten erzielt. Durch intensives molekulares Monitoring konnte im Rahmen dieser Arbeit aufgedeckt werden, dass der eingesetzte γ-retrovirale Vektor über das Phänomen der Insertionsmutagenese hinaus, auch in Bezug auf die epigenetische Abschaltung der Transkription (Silencing), für zukünftige Studien modifiziert werden muss. Sicherheits-verbesserte Vektoren mit einer Resistenz gegenüber Silencing in murinen embryonalen Stammzellen konnten in dieser Arbeit charakterisiert werden. Mit diesen Genfähren könnte der angestrebte Langzeittherapieerfolg in Zukunft möglich werden.
Im Rahmen dieser Dissertation sollte der Effekt der Zelldichte auf Proliferation und Apoptose bei der RKO-Rektumkarzinomzelllinie untersucht werden. Neben Invasion, Entdifferenzierung und Metastasierung kann bei Krebserkrankungen auch eine hohe Wachstumsgeschwindigkeit zu den Charakteristika der Malignität gezählt werden. Bei Leukämien, Lymphomen und bestimmten soliden Tumoren, bei denen eine chirurgische Resektion nur eingeschränkt möglich ist, bedeutet jedoch ein langsames Wachstum, d.h. eine geringe Proliferation der Tumorzellen, in der Regel keine verbesserte Prognose, da sie mit schlechterem Ansprechen auf Chemotherapie und Bestrahlung einhergeht. Die molekularen Ursachen dieser Behandlungsresistenz sind bisher nicht vollständig geklärt und wahrscheinlich nicht bei allen Krebserkrankungen auf identischen Mechanismen beruhend. Vorstellbar ist, dass sich das Gesamtsystem der Zelle während des Teilungsprozesses sensibler gegenüber Schädigungen der DNA, wie sie durch Bestrahlung und die meisten Chemotherapeutika ausgelöst werden, präsentiert. Dies kann durch unterschiedlichste molekulare Mechanismen verursacht sein. Um den möglichen Einfluss des Proliferationsverhaltens einer Zellpopulation auf das Apoptose-Verhalten zu untersuchen, wurde im Rahmen dieser Arbeit versucht, die Proliferationsgeschwindigkeit einer Zellkultur mittels Dichte-Arretierung zu senken. Hierzu wurden RKO-Zellen in konfluenter und subkonfluenter Dichte kultiviert. Ebenfalls wurden Unterschiede bei der Verteilung der Zellen auf die verschiedenen Zellzyklusphasen ermittelt. Durch Inkubation mit CD95L konnte dann ein Zusammenhang von Proliferation und Apoptosesensitivität ermittelt werden, d.h. die „Zellzyklusabhängigkeit“ der CD95L-induzierte Apoptose untersucht werden. Hierbei zeigten sich Zellen mit geringerer Proliferationsrate resistenter gegenüber CD95L. Verschiedene Methoden (z.B. Western-Blot-Analyse, FACS-Messungen) wurden zur Aufklärung der molekularen Ursachen genutzt. Die Arbeit zeigte auch das Vorhandensein eines molekular nicht identifizierten, autokrin in das Medium sezernierten Faktors, der zu verstärkter Resistenz gegenüber CD95L führte. Dieser Faktor erhöhte auch die Migration und Invasivität der RKO-Zellen und verstärkte damit die malignen Eigenschaften der Tumorzellen. Die zukünftige molekulare Identifikation dieses Faktors könnte therapeutisch bedeutsam sein.
Die maligne Transformation von Zellen beruht auf der Mutation von Genen, die entartete Zellen der regulierenden Wachstumskontrolle entziehen, ihre Versorgung sicher stellen und sie unempfindlich gegen apoptoseinduzierende Signale machen (Hanahan und Weinberg, 2000). Klassische Behandlungsmethoden wie Strahlen- und Chemotherapie wirken häufig über die Aktivierung apoptotischer Signalwege, die jedoch in behandlungsresistenten Tumorzellen blockiert sein können. Das selektive Einbringen proapoptotischer Proteine in Tumorzellen stellt daher eine vielversprechende Strategie zur Umgehung solcher Blockaden dar. In dieser Arbeit wurden tumorspezifische Antikörperfusionsproteine generiert, die humane Zelltod auslösende Proteine als Effektorfunktion enthalten. Das mitochondriale Protein „apoptosis inducing factor“ (AIF) wird durch diverse Apoptosesignale in das Zytoplasma freigesetzt. AIF leitet nach der Translokation in den Zellkern Chromatinkondensation und Degradation der nukleären DNA ein (Cande et al., 2004b). Zur selektiven Einschleusung von zytoplasmatischem AIF (AIF!100) in ErbB2 exprimierende Tumorzellen wurde es an das ErbB2-spezifische „single chain“ Antikörperfragment scFv(FRP5) fusioniert, welches von dem monoklonalen Antikörper FRP5 abgeleitet ist (Wels et al., 1992b). Daneben enthält ein zunächst generiertes AIF!100-DT183-378-5 Fusionsprotein eine Translokationsdomäne aus Diphtherietoxin (AA 183-378) als mögliche „endosome escape“ Aktivität. Diese Domäne sollte der Effektordomäne nach rezeptorvermittelter Aufnahme den Übergang in das Zytoplasma erlauben. Die Expression dieses Moleküls in E. coli und der Hefe Pichia pastoris führte jedoch nicht zu funktionellen AIF!100-DT183-378-5 Proteinen. Daher wurde für nachfolgende Arbeiten ein ähnliches AIF-Fusionsprotein (5-E-AIF!100) aus früheren Arbeiten unserer Gruppe eingesetzt und sein Wirkmechanismus eingehend untersucht. Im Gegensatz zu AIF!100-DT183-378-5 enthält 5-E-AIF!100 die Translokationsdomäne aus Pseudomonas Exotoxin A. Bakteriell exprimiertes, gereinigtes und renaturiertes 5-E-AIF!100 zeigte eine hohe Spezifität für ErbB2 exprimierende Tumorzellen. Im Gegensatz zu unfusioniertem AIF!100 induzierte 5-E-AIF!100 nach Mikroinjektion in das Zytoplasma der Zielzellen keine Apoptose. Dies deutet darauf hin, dass möglicherweise die N-terminale Antikörperdomäne die proapoptotische Aktivität der AIF-Domäne blockiert. Erst die rezeptorvermittelte Aufnahme von 5-E-AIF!100 in Anwesenheit von Chloroquin resultierte in einer hohen Zytotoxizität. Auf diesem Weg wird sehr wahrscheinlich durch proteolytische Spaltung der innerhalb der Translokationsdomäne vorhandenen Furin-Schnittstelle der N-terminale Bereich des Fusionsproteins entfernt. Die eigentliche Translokation der AIF-Domäne findet jedoch ohne die Zugabe endosomolytischer Reagenzien nicht statt, was für eine unzureichende Aktivität der Translokationsdomäne spricht. Die vollständige Entfernung der Translokationsdomäne führte dennoch zu einem AIF-Fusionsprotein, das weder in Abwesenheit noch in Gegenwart von Chloroquin zytotoxisch aktiv ist (Dälken, 2005). Somit ist die in der Translokationsdomäne enthaltene Furin- Schnittstelle sehr wahrscheinlich für die Aktivierung von 5-E-AIF!100 von entscheidender Bedeutung. Im Fall des natürlichen Exotoxin A ist zusätzlich zu der in 5-E-AIF!100 verwendeten Translokationsdomäne ein C-terminales ER-Retentionssignal für einen effizienten Übertritt der katalytisch aktiven Toxindomäne ins Zytoplasma notwendig (Jackson et al., 1999). Das Anfügen eines KDEL-Signals an den C-Terminus von 5-E-AIF!100 führte jedoch nicht zur Erhöhung der „endosome escape“ Aktivität der Translokationsdomäne. Die ladungsabhängige DNA-Bindungsaktivität von AIF ist für die proapoptotische Funktion des Proteins essentiell. Bindung an DNA wurde auch für 5-E-AIF!100 nachgewiesen, und konnte durch Vorinkubation mit negativ geladenem Heparin inhibiert werden. Die Komplexierung mit Heparin führte zu einer erheblichen Reduktion der zytotoxischen Aktivität von 5-E-AIF!100. Mit großer Wahrscheinlichkeit ist die Abschwächung der Zytotoxizität auf die intrazelluläre Inhibition der AIF/DNA-Interaktion zurückzuführen. Dies bestätigt, dass diese Wechselwirkung für die zelltodinduzierende Eigenschaft von 5-E-AIF!100 von Bedeutung ist. Die Freisetzung Immuntoxin-ähnlicher Proteine, die sich nach rezeptorvermittelter Aufnahme in endosomalen Kompartimenten finden, erfordert häufig die Zugabe endosomolytischer Reagenzien. Um eine von endosomolytischen Reagenzien unabhängige Zytotoxizität der Antikörperfusionsproteine zu erreichen, wurden in dieser Arbeit Möglichkeiten zur Umgehung dieser Abhängigkeit untersucht. Hierzu wurde die Natürliche Killerzelllinie NK-92 eingesetzt. Die Eliminierung von infizierten und transformierten Zellen durch NK-Zellen geschieht hauptsächlich über die Ausschüttung von zytotoxischen Granula, die das porenbildende Protein Perforin und verschiedene Serinproteasen wie Granzym B (GrB) enthalten (Atkinson et al., 1990; Smyth et al., 2001). Dabei ist Perforin für die zytosolische Translokation der Proteasen verantwortlich (Browne et al., 1999). Anhand des Modellproteins Granzym B-scFv(FRP5) (GrB-5) wurde untersucht, ob Antikörperfusionsproteine mit Hilfe von Perforin in das Zytoplasma der Zielzellen gelangen können. GrB-5 wurde in NK-92 Zellen unter Beibehaltung der Spezifität und enzymatischen Aktivität exprimiert. GrB-5 ist wie Wildtyp GrB in zytotoxischen Granula lokalisiert und wird nach der Degranulation sehr wahrscheinlich zusammen mit Perforin sekretiert. Freigesetztes GrB-5 zeigte Bindung an ErbB2 exprimierende Zellen. Zudem wiesen Überstände von aktivierten NK-92 Zellen, die GrB-5 und Perforin enthielten, im Vergleich zu Überständen von Kontrollzellen eine höhere Zytotoxizität gegenüber ErbB2-positiven Tumorzellen auf. Dies lässt darauf schließen, dass GrB-5 in Abwesenheit exogener endosomolytischer Reagenzien durch einen Perforin-vermittelten Mechanismus in die Zielzellen gelangen konnte. Weiterhin wurden NK-92 Zellen generiert, die den GrB-Inhibitor Protease Inhibitor-9 (PI-9) exprimieren. Diese Zellen zeigten im Vergleich zu parentalen Zellen eine höhere Zytotoxizität, die sich auf eine verbesserte Inaktivierung fehlgeleiteter, zytoplasmatischer GrB-Moleküle durch das ektopisch exprimierte PI-9 zurückführen lässt. NK-92-PI-9 Zellen könnten genutzt werden, um größere Mengen von GrB-Fusionsproteinen zu exprimieren, ohne dabei die Zellen durch die Erhöhung der zytoplasmatischen GrB-Konzentration zu gefährden. Die in dieser Arbeit gewonnenen Ergebnisse zeigen, dass AIF für den Einsatz als Effektorfunktion in Immuntoxin-ähnlichen Fusionsproteinen geeignet ist. Die Anwendung von NK-Zellen zur Expression und Sekretion tumorspezifischer Antikörperfusionsproteinen zusammen mit Perforin zeigt einen möglichen Lösungsweg für das generelle Aufnahmeproblem von Immuntoxin-ähnlichen Proteinen. Die erzielten Ergebnisse können nun für die weitere Optimierung humanisierter Antikörperfusionsproteine genutzt werden.
NK cells are part of the innate immune system, and are important players in the body’s first defence line against virus-infected and malignantly transformed cells. While T cells recognize neoplastic cells in an MHC-restricted fashion, NK cells do not require prior sensitization and education about the target. In leukemia and lymphoma patients undergoing allogeneic hematopoietic stem cell transplantation not only T cells but also NK cells have been found to mediate potent graft-versus-tumor effects. Hence, autologous or donor-derived NK cells hold great promise for cancer immunotherapy. Since the generation of highly purified NK cell products for clinical applications is labor-intensive and time consuming, established human NK cell lines such as NK-92 are also being considered for clinical protocols. NK-92 cells display phenotypic and functional characteristics similar to activated primary NK cells. While NK-92 cells are highly cytotoxic towards malignant cells of hematologic origin, they do not affect healthy human tissues. NK-92 cells can be expanded under GMP-compliant conditions, and can therefore be provided in sufficient numbers with defined phenotypic characteristics for clinical applications. Safety of NK-92 cells for adoptive immunotherapy was already shown in two phase I/II clinical trials...
Screening und Charakterisierung von Peptidliganden für den BCR-ABL mRNA Translokationsbereich
(2005)
Die reziproke Translokation t(9;22) ist in 95% der chronischen myeloischen Leukämie vorhanden. Bei der Translokation entsteht ein Fusionsprotein BCR-ABL, welches ausreichend für die Entstehung von Leukämien ist. 30% aller akuten lymphatischen Leukämien sind ebenfalls positiv für diese Translokation. Durch die Translokation entsteht am Translokationsbruchpunkt eine einzigartige RNA-Sequenz, welche als Ziel für eine RNA-Liganden Suche dienen kann. Ziel dieser Arbeit war es, Peptidliganden zu finden, welche die BCR-ABL mRNA binden können. Zunächst wurde die bcr-abl mRNA nach Sekundärstruktur-Elementen durchsucht, welche als Interaktionspartner mit Peptiden in Fragen kommen. Hierzu wurde die BCR-ABL mRNA durch das MFold-Programm von Zuker analysiert. Durch die Auswertung der errechneten Diagramme für die thermodynamische Stabilität und die kinetische Prävelanz der Basenpaarinteraktion, wurden zehn verschiedene BCR-ABL mRNA-Bereiche ausgewählt, welche die Möglichkeit besitzen, sich in stabile Sekundärstruktur-Elemente zu falten. Um diese strukturellen Gegebenheiten am BCR-ABL Translokationsbruchpunkt b2a2 im Experiment zu überprüfen, wurden in Kooperation mit Prof. Göbel und Dr. Scheffer RNase-Mapping und Mapping mit einer künstlichen Nuklease durchgeführt. Es konnte im Experiment das Vorhandensein einer Sekundärstruktur nachgewiesen werden. Diese Struktur wird aus einem Stamm mit einer Fehlpaarung, einem asymmetrischen internen Loop, einem weiteren Stamm und durch einen Loop definiert. Gegen diese b2a2-Struktur und gegen neun weitere mRNA-Bereiche wurde eine Phage-Display-Selektion durchgeführt, welche zum Ziel hat, Peptide zu gewinnen, welche die entsprechende RNA-Struktur spezifisch binden können. Nach der Sequenzierung der Phagen, konnten insgesamt 14 verschiedene Peptid-Sequenzen für die zehn unterschiedlichen RNA-Bereiche gefunden werden, welche die Möglichkeit besitzen, mit der jeweiligen Ziel-RNA zu interagieren. Die Phagen-RNA Interaktion wurde durch Fluoreszenz-Korrelations-Spektroskopie ermittelt. Bei dieser Meßmethode werden Diffusionszeiten von markierten Molekülen in Lösung bestimmt. Zwei von den 14 Phagen-Präsentierten-Peptiden zeigen eine Interaktion mit der Ziel RNA. Die gefundenen Peptide besitzen die folgenden AS-Sequenz: das Peptid 12, KHLHLHK und das Peptid 14, NPEKVKMLYVEF. Die Interaktion mit der RNA wurde in nicht kompetitiven und in kompetitiven FCS Experimenten gezeigt. Kompetiert wurde die Phagen-RNA Interaktion mit kompetitor RNA und in einem weiteren Experiment mit den synthetisierten Peptiden. Beide Peptide zeigten im FCS eine Interaktion mit dem b2a2 BCR-ABL Translokationsbruchpunkt. Die kD-Werte der Peptid-RNA Interaktion wurde durch CDTitration ermittelt. Peptid 12 bindet die b2a2-RNA mit einem kD-Wert von 42 μM und Peptid 14 bindet diese RNA mit einem kD-Wert von 52 μM. Durch die CD-Titration wurde auch der Interaktionsort der beiden Peptide mit der b2a2-RNA ermittelt. Ausgehend von unserem b2a2-Strukturmodell, wurden RNA-Mutanten generiert und in Gegenwart von den Peptiden CD-Spektrometrisch untersucht. Die Interaktion von Peptid 12 mit der RNA findet am Loop und am oberen Stamm statt. Das längere Peptid 14 benötigt alle b2a2-RNA Strukturmerkmale, außer dem unteren Stamm, zur Interaktion. Der Einfluß der Peptide auf die Translation wurde durch ein In-vitro-Translationssystem ermittelt. Demnach bindet Peptid 14 an die b2a2-RNA-Struktur und verringert auf diese Weise die Translation. Peptid 12 bindet zwar ebenfalls an die b2a2-RNA, jedoch konnte eine Verringerung der Translation bei diesem Peptid nicht beobachtet werden.
Tumorerkrankungen, insbesondere solche im metastasierenden Stadium, erfordern effiziente Therapien. Krebstherapien wie Bestrahlung oder Chemotherapie wirken über die Induktion von Apoptose. Resistenz gegen diese Behandlungsansätze geht einher mit der Blockierung relevanter apoptotischer Signalwege. Dennoch haben Tumorzellen nicht grundsätzlich die Fähigkeit verloren, apoptotischen Zelltod zu sterben, d. h. mit einem geeigneten Stimulus kann in jeder Tumorzelle Apoptose induziert werden. In dieser Arbeit wurden Proteine entwickelt, die Enzyme apoptotischer Signalkaskaden selektiv in Tumorzellen einschleusen. Um Spezifität für transformierte Zellen zu erlangen, wurden diese Proteine mit Zellbindungsdomänen gekoppelt, die an tumorassoziierte Antigene binden. Als Zielstrukturen auf der Oberfläche von Krebszellen dienten die Rezeptoren der ErbB Familie „epidermal growth factor receptor“ (EGFR) und ErbB2. Überexpression dieser Rezeptoren wird auf einer Vielzahl von Tumoren epithelialen Ursprungs beobachtet und ist ursächlich beteiligt an der malignen Transformation. Als Apoptoseinduktoren wurden die Serinprotease Granzym B (GrB) sowie das Protein „apoptosis inducing factor“ (AIF) eingesetzt. GrB induziert Apoptose durch direkte Aktivierung von Caspasen und Spaltung zentraler Caspasen-Substrate. Damit greift die Protease am unteren Effektorende apoptotischer Signalwege ein und umgeht so die meisten Resistenzmechanismen transformierter Zellen. Um GrB in Tumorzellen einzuschleusen, wurde die Protease mit dem ErbB2 spezifischen Antikörperfragment scFv(FRP5) gekoppelt. Zunächst wurde eine biotinylierte Variante der Protease (bGrB) über die hochaffine Streptavidin/ Biotin Interaktion mit einem Fusionsprotein komplexiert, das aus dem scFv(FRP5) und Streptavidin besteht (SA-5). Komplexe aus enzymatisch aktivem bGrB und SA-5 wiesen selektive cytotoxische Aktivität gegenüber ErbB2 exprimierenden Zellen auf, die allerdings von der Präsenz des endosomolytischen Reagenz Chloroquin abhing. Dies zeigt die Notwendigkeit einer Translokation vom endosomalen Kompartiment, um internalisiertem GrB Zugang zu seinen cytosolischen Substraten zu ermöglichen. Aufbauend auf diesen Ergebnissen, die grundsätzlich nachweisen, daß das Einbringen von GrB in Tumorzellen ausreichend ist, um in diesen Zellen Apoptose zu induzieren, wurden Fusionsproteine abgeleitet, in denen GrB direkt mit Zellbindungsdomänen fusioniert ist. Neben dem scFv(FRP5) wurde auch der EGFR-Ligand TGFalpha eingesetzt. Fusionsproteine bestehend aus reifem GrB und scFv(FRP5) (GrB-5) bzw. TGFalpha (GrB-T) wurden in der Hefe Pichia pastoris exprimiert und mit hohen Ausbeuten gereinigt. GrB-5 und GrB-T zeigten enzymatische Aktivität und wiesen Affinität zu ErbB2 bzw. EGFR auf. In Gegenwart von Chloroquin zeigten GrB-5 und GrB-T selektive cytotoxische Aktivität gegenüber Zellen, die den jeweiligen Zielrezeptor exprimieren. Die IC50 Werte der Proteine lagen im pico- bis nanomolaren Bereich und sind damit vergleichbar mit denen rekombinanter Immun- bzw. Wachstumsfaktortoxine, die Exotoxin A (ETA) aus Pseudomonas aeruginosa als Effektor nutzen. Induktion von Apoptose erfolgte durch GrB-5 und GrB-T allerdings deutlich schneller (3 h) als durch ETA Fusionsproteine (72 h), da GrB im Gegensatz zu ETA direkt in apoptotische Signalkaskaden eingreift. Um die weitere Charakterisierung von GrB-5 und GrB-T zu erleichtern, wurden in der vorliegenden Arbeit Möglichkeiten für eine Optimierung der Expression dieser Fusionsproteine in Hefe untersucht. Dazu wurde eine Strategie entwickelt, die auf der Beobachtung beruht, daß die Löslichkeit und Stabilität von Proteinen durch Fusion mit solchen Domänen erhöht werden kann, die selbst eine hohe Löslichkeit und Stabilität besitzen. Ein Protein mit diesen Eigenschaften ist das Maltose Bindungsprotein (MBP) aus E. coli. In dieser Arbeit wurde MBP bei der Expression rekombinanter Proteine in P. pastoris eingesetzt, um die Ausbeute löslicher Proteine zu steigern. Es wurde eine Strategie entwickelt, die es erlaubt, MBP posttranslational in vivo vom Fusionspartner zu trennen. Hierzu wurde eine Erkennungssequenz der Protease Furin (furS) zwischen MBP und Fusionspartner eingefügt. Zunächst wurde untersucht, ob GrB als MBP Fusionsprotein in enzymatisch aktiver Form exprimiert werden kann, was eine Grundvoraussetzung für die Expression tumorspezifischer GrB Fusionsproteine in diesem System darstellt. Die Ausbeute von GrB konnte durch diese Strategie erheblich gesteigert werden. Daneben war eine vollständige Prozessierung der Fusionsproteine innerhalb der Furin-Erkennungssequenz nachweisbar. Als MBP Fusionsprotein exprimiertes GrB wies allerdings keine enzymatische Aktivität auf. Weitere Untersuchungen zeigten, daß das terminale Serin der furS-Sequenz, das nach Spaltung durch Furin am N-Terminus von GrB zurückbleibt, die enzymatische Aktivität der Serinprotease inhibiert. Im Rahmen dieser Arbeit wurde daher nicht weiter versucht, die Ausbeute an tumorspezifischen GrB Fusionsproteinen durch Fusion mit löslichen Proteindomänen zu erhöhen. Für Proteine, die ein N-terminales Serin tolerieren, stellt das hier entwickelte System allerdings eine neuartige Strategie dar, um die Ausbeute in P. pastoris um ein Vielfaches zu steigern. Dies wurde anhand von rekombinantem ErbB2 als Modellprotein bestätigt. Als alternativer Effektor in tumorspezifischen Fusionsproteinen wurde AIF als caspasenunabhängig agierendes proapoptotisches Signalmolekül eingesetzt. In apoptotischen Zellen bewirkt die Freisetzung von AIF aus dem mitochondrialen Intermembranraum die nachfolgende Translokation des Proteins in den Zellkern, woraufhin DNA-Fragmentierung induziert wird. Zum Einschleusen von AIF in Tumorzellen wurde das Flavoprotein mit dem scFv(FRP5) fusioniert (5-AIF). Um eine cytosolische Translokation von AIF zu erreichen, wurde ein Konstrukt abgeleitet, das zusätzlich die Translokationsdomäne von Exotoxin A enthält (5-E-AIF). Diese Domäne ist beim Wildtyp-Toxin notwendig für dessen retrograden Transport vom Endosom über den Golgi Apparat und das ER in das Cytosol. Innerhalb der Translokationsdomäne findet zudem eine Prozessierung durch die endosomale Protease Furin statt. AIF Fusionsproteine wurden in E. coli exprimiert, gereinigt und renaturiert. Die Proteine wiesen Affinität für ErbB2 auf und interagierten mit DNA, eine Eigenschaft, die essentiell für die proapoptotische Aktivität von AIF ist. 5-E-AIF zeigte gegenüber ErbB2 exprimierenden Zellen cytotoxische Aktivität, die vergleichbar mit der des Immuntoxins scFv(FRP5)-ETA war. Diese Aktivität war allerdings nur in Gegenwart von Chloroquin gegeben. Das Protein 5-AIF, in dem die Translokationsdomäne fehlt, zeigte auch in Kombination mit Chloroquin keine Cytotoxizität. Eine mögliche Folgerung hieraus ist, daß die N-terminale Antikörperdomäne der Fusionsproteine die proapoptotische Aktivität der AIF Domäne blockiert. 5-E-A wird sehr wahrscheinlich durch die endosomale Protease Furin „aktiviert“, die den scFv(FRP5) durch proteolytische Spaltung innerhalb der ETA-Domäne entfernt haben könnte. Für die eigentliche Translokation reicht der ETA-Anteil allerdings nicht aus, wahrscheinlich, weil in dem hier abgeleiteten Konstrukt ein für die Funktionsweise des Wildtyp-Toxins essentielles ER Retentionssignal fehlte. Die Ergebnisse dieser Arbeit zeigen, daß durch Einsatz apoptotischer Signalmoleküle in tumorzellspezifischen Fusionsproteinen hohe und selektive cytotoxische Aktivitäten erzielt werden können. Eine weitere Entwicklung dieser Proteine als mögliche Tumortherapeutika erscheint daher sinnvoll.
Zur erfolgreichen Behandlung von Tumorerkrankungen sind effiziente Therapien notwendig. Oftmals kommt es nach einer klassischen Tumortherapie zum Auftreten von Rezidiven, die aus residuellen Tumorzellen hervorgehen. Grund hierfür können eine bereits erfolgte Metastasierung oder Resistenzmechanismen der Tumorzellen sein. Auf Grund ihrer Fähigkeit Gewebe aktiv zu infiltrieren bietet der Einsatz zytotoxischer Lymphozyten im Rahmen einer zellulären Immuntherapie den Vorteil, auch bereits metastasierte Tumorzellen zu erreichen. Dadurch können auch Tumorzellen eliminiert werden, die Resistenzmechanismen meist im oberen Teil apoptotischer Signalkaskaden aufweisen. Eine spezifische Ausrichtung zytotoxischer Lymphozyten auf Tumorantigene ist grundsätzlich über chimäre Antigenrezeptoren möglich. Dabei bietet die Generierung von Tumor-spezifischen zytotoxischen Effektorzelllinien den Vorteil, Zellklone mit definierter Aktivität und Spezifität bereitstellen zu können. Im Hinblick auf einen klinischen Einsatz scheint hierfür die Natürliche Killerzelllinie NK-92 besonders geeignet. Die Ergebnisse einer klinischen Studie mit parentalen NK-92 Zellen zeigten eine gute Verträglichkeit ohne Nebenwirkungen. Im Rahmen dieser Arbeit wurden NK-92 Zellen genetisch so modifiziert, dass sie chimäre Antigenrezeptoren mit Spezifität für die Tumorantigene CD20, EpCAM, GD2 und CD138 exprimieren. In der Tumortherapie stellen das mit Tumoren der B-Zell-Reihe assoziierte CD20-Molekül und das auf den meisten Tumorzellen epithelialen Ursprungs exprimierte EpCAM-Protein wichtige Zielantigene monoklonaler Antikörper dar. Studien zeigten, dass auch die auf Tumorzellen des Neuroblastoms bzw. Multiplen Myeloms exprimierten Moleküle GD2 bzw. CD138 geeignete Angriffspunkte für immuntherapeutische Ansätze sein könnten. Die chimären Antigenrezeptoren sind aus einem Antigenspezifischen scFv-Antikörperfragment aufgebaut, das über ein Fragment der CD8alpha-Kette mit der CD3zeta-Kette als Signaltransduktionsdomäne verbunden ist. Nach retroviraler Transduktion zeigte sich eine hohe und homogene Oberflächenexpression dieser Rezeptoren auf modifizierten NK-92 Zellen. Auf das Oberflächenprotein CD20 ausgerichtete NK-92-scFv(Leu-16)-Zeta Zellen wiesen gegen CD20- positive Tumorzelllinien und primäre Tumorzellen eine hohe zytotoxische Aktivität auf. Im Vergleich waren parentale NK-92 Zellen gegen diese Tumorzellen nicht oder deutlich weniger aktiv. Dabei war die zytotoxische Aktivität der NK-92-scFv(Leu-16)-Zeta Zellen mit dem monoklonalen anti-CD20 Antikörper Rituximab kompetitierbar. Mit Hilfe der gegen parentale und modifizierte NK-92 Zellen resistenten Zelllinie NIH3T3 wurde gezeigt, dass allein über die stabile Expression des CD20-Proteins in NIH3T3 Zellen die Resistenz gegen modifizierte NK-92 Zellen überwunden werden kann. NK-92-scFv(Leu-16)-Zeta Zellen waren in der Lage, CD20-positive NIH3T3-CD20 Zellen auch bei niedrigen E/T-Verhältnissen effizient abzutöten. In Mischkulturen aus NIH3T3 und NIH3T3-CD20 Zellen war zudem eine selektive zytotoxische Aktivität der NK-92-scFv(Leu-16)-Zeta Zellen ausschließlich gegen Antigen-positive Zellen nachweisbar. Über die Analyse von Zellkonjugaten zwischen zytotoxischen Effektorzellen und ihren Zielzellen, deren Bildung grundsätzliche Voraussetzung für eine Eliminierung ist, wurden Hinweise erhalten, dass der chimäre Antigenrezeptor hierzu keinen Beitrag zu leisten scheint, sondern vor allem die anschließende Aktivierung der modifizierten NK-92 Zellen bewirkt. Mit EpCAM-spezifischen NK-92-scFv(MOC31)-Zeta Zellen war auch bei niedrigen E/T-Verhältnissen eine effiziente Abtötung von unterschiedlichen Tumorzelllinien epithelialen Ursprungs möglich. Eine erfolgreiche Blockierung dieser zytotoxischen Aktivität mit dem monoklonalen Antikörper MOC31 bestätigte, dass diese spezifisch über den chimären Antigenrezeptor vermittelt wurde. Die untersuchten epithelialen Zelllinien erwiesen sich dagegen als vollkommen resistent gegen parentale bzw. mit demleeren Expressionsvektor modifizierte NK-92-Mock Zellen. Weitere Ergebnisse zeigten, dass die zytotoxische Aktivität von NK-92-scFv(MOC31)-Zeta Zellen tatsächlich über Granzym B vermittelt wird. Eine erhöhte FasL-Oberflächenexpression infolge der Cokultur mit Antigen-positiven Zielzellen war dagegen nicht nachweisbar. Anhand dieser Ergebnisse kann eine signifikante Beteiligung von FasL an der zytotoxischen Aktivität der modifizierten NK-92 Zellen ausgeschlossen werden. Weiterhin wurden therapeutische Effekte von NK-92-scFv(MOC31)-Zeta Zellen in einem Xenograftmodell in NOD-scid/scid Mäusen mit einer humanen EpCAM-positiven Tumorzelllinie untersucht. Hier wurde im Vergleich zur Kontrollgruppe durch Behandlung mit EpCAM-spezifischen NK-92 Zellen, unerwarteterweise aber auch mit NK-92-Mock Zellen, ein signifikant längeres Überleben der Tiere beobachtet. Nach der Ableitung CD138-spezifischer NK-92-scFv(B-B4)-Zeta Zellen wurde zwar eine hohe zytotoxische Aktivität gegen CD138-positive Zelllinien erhalten. Es war jedoch keine im Vergleich zu parentalen NK-92 Zellen weiter verstärkte Zytotoxizität nachweisbar. Als Ursache hierfür ist eine mangelnde Funktionalität des scFv-Antikörperfragments im Kontext des chimären Antigenrezeptors denkbar. Da die Bindungseigenschaften von scFv-Fragmenten entscheidend durch die Anordnung ihrer schweren und leichten Antikörperketten zueinander beeinflusst werden können, wurden NK-92 Zellen etabliert, die ein scFv-Fragment mit umgekehrter Orientierung der Antikörperketten in ihrem chimären Antigenrezeptor tragen. Diese werden derzeit im Rahmen einer externen Zusammenarbeit auf ihre Funktionalität hin überprüft. Zur Konstruktion gegen das Disialogangliosid GD2 gerichteter chimärer Antigenrezeptoren wurden parallel zwei scFv-Fragmente des Antikörpers ch14.18 eingesetzt, die sich in der Orientierung der schweren und leichten Antikörperketten zueinander unterscheiden. Mit den Antigenrezeptorkonstrukten modifizierte NK-92 Zellen zeigten eine im Vergleich zu parentalen NK-92 und NK-92-Mock Zellen stark erhöhte Zytotoxizität gegen GD2 exprimierende humane Tumorzelllinien. Dabei wurde weder bei der Expressionsdichte der chimären Antigenrezeptoren noch in der zytotoxischen Aktivität modifizierter NK-92 Zellen mit unterschiedlicher Anordnung der variablen Antikörperdomänen im scFv Antikörperfragment ein signifikanter Unterschied beobachtet. Mit der extrazellulären Domäne von CTLA-4 als Modellprotein wurde der mögliche Einsatz einer zu scFv-Antikörperfragmenten alternativen Antigenbindungsdomäne geprüft. CTLA-4 wird normalerweise auf T-Zellen exprimiert und bindet an CD80 bzw. CD86 auf APCs. CD80- und/oder CD86-positive Zielzellen wurden von NK-92-sCTLA-4-Zeta Zellen im Vergleich zu parentalen NK-92 Zellen spezifisch und mit hoher Effizienz lysiert. In Zytotoxizitätsassays wurde mit Hilfe einer sowohl gegen parentale als auch modifizierte NK-92 Zellen resistenten Tumorzelllinie gezeigt, dass allein die stabile Expression des CD86 Proteins in dieser Zelllinie ausreicht, um die Resistenz gegen NK-92-sCTLA-4-Zeta Zellen aufzuheben. Daraus kann geschlossen werden, dass grundsätzlich auch der Einsatz von zu scFv- Antikörperfragmenten alternativen Antigenbindungsdomänen eine spezifische Ausrichtung und effiziente Aktivierung von NK-92 Zellen gewährleistet. Die Ergebnisse dieser Arbeit zeigen, dass die genetische Modifikation der Natürlichen Killerzelllinie NK-92 zur Ausrichtung auf Tumor-spezifische Zielstrukturen einen grundsätzlich geeigneten Ansatz zur Behandlung maligner Erkrankungen darstellt. Eine Weiterentwicklung Antigen-spezifischer NK-92 Derivate als mögliche Zelltherpeutika erscheint daher sinnvoll und vielversprechend.
Das onkogene Fusionsprotein AML1/ETO entsteht durch die chromosomale
Translokation t(8;21), die in etwa 12 % aller primären akuten myeloischen Leukämien (AML)
auftritt. Die DNA-Bindedomäne des hämatopoetischen Transkriptionsfaktors AML1 wird
hierbei mit fast dem gesamten ETO-Protein fusioniert, das als transkriptioneller Repressor
wirkt. In den transformierten Zellen kommt es somit zur Blockierung der myeloischen
Differenzierung und zur verstärkten Proliferation. Entscheidend für das leukämische Potential
von AML1/ETO ist die Fähigkeit zur Oligomerisierung, die durch die Nervy-Homologie-Region-2
(NHR2)-Domäne im ETO-Anteil vermittelt wird.
Durch lentivirale Transduktion konnte bereits gezeigt werden, dass Proteine, welche die
NHR2-Domäne enthalten, die Oligomerisierung von AML1/ETO inhibieren und damit den
leukämischen Phänotyp AML1/ETO-exprimierender myeloischer Zellen aufheben. In der
vorliegenden Arbeit sollten nun alternative Wege zur Einbringung der therapeutischen
Proteine in t(8;21)-positive AML-Zellen untersucht werden. Dafür wurde sowohl die
Möglichkeit der Proteintransduktion als auch die Verwendung nicht-integrierender viraler
Vektoren analysiert.
Im ersten Projekt wurden durch Fusion mit der HIV-1 TAT-Domäne zellpermeable
NHR2-Proteine generiert. Zunächst wurde ein Protokoll zur Expression und Reinigung der
rekombinanten Proteine etabliert. Durch eine ausführliche biochemische Charakterisierung
konnte gezeigt werden, dass die aus Bakterien aufgereinigten NHR2-Proteine funktionell und
sehr rein waren. Sie wiesen den erwarteten hohen alpha-helikalen Anteil auf und behielten ihre
Fähigkeit zur Bildung von Tetrameren in vitro bei. Die TAT-NHR2-Fusionsproteine sind in der
Lage, in humane Zellen einzudringen und konnten erfolgreich in den Lysaten nachgewiesen
werden. Mikroskopische Studien zeigten, dass der Großteil der internalisierten Proteine in
Endosomen-ähnlichen Vesikeln lokalisiert war. Die Zugabe des Endosomeninhibitors
Chloroquin oder eines endosomolytischen, zellpermeablen Peptides ermöglichte eine erhöhte
intrazelluläre Stabilität der zellpenetrierenden Proteine. Co-Immunpräzipitations-Experimente
konnten bestätigen, dass die aufgenommenen NHR2-Proteine spezifisch an das ETO-Protein
in transfizierten, adhärenten Zellen binden können. Die Proteintransduktion in die myeloische,
AML1/ETO-wachstumsabhängige Zelllinie Kasumi-1 ist unter serumfreien Bedingungen
ebenfalls möglich. Die konsekutive Behandlung der AML-Zellen mit den TAT-NHR2-
Fusionsproteinen führte zu einer Reduktion der Expression des Stammzellmarkers c-kit
(CD117) in 26 % der behandelten Zellen. Die Anwendung zellpermeabler NHR2-Proteine ist
demnach prinzipiell möglich, bedarf aber weiterer Optimierung, um die notwendige hohe
Bioverfügbarkeit zu erreichen.
In einem zweiten Projekt wurden Adeno-assoziierte virale (AAV) Vektoren verwendet,
um die NHR2-Proteine in den hämatopoetischen Zellen zu exprimieren. Mit Hilfe mehrerer
Methoden konnte gezeigt werden, dass sich mit den generierten Vektoren, die auf dem AAV-
Serotyp 2 basierten, erfolgreich eine transiente Genexpression induzieren ließ. Der CMV-
Promoter vermittelte jedoch nur eine schwache Expression in den hämatopoetischen Zellen.
Unter Verwendung des stärkeren SFFV-Promoters konnte die Expressionsstärke deutlich
gesteigert werden. Die von den optimierten AAV-Vektoren vermittelte Expression der NHR2-
Proteine führte in den beiden AML1/ETO-positiven Zelllinien Kasumi-1 und SKNO-1 zu den
erwarteten, spezifischen Effekten. So wurde das Wachstum verlangsamt und gleichzeitig die
Apoptoserate erhöht. AML1/ETO-unabhängige Zellen wurden dagegen von den AAV-NHR2-
Vektoren nicht beeinflusst. Obwohl die Proteinexpression in SKNO-1 Zellen stärker war,
zeigten die Kasumi-1 Zellen deutlichere Effekte. Die NHR2-Proteine bewirkten in den
transduzierten t(8;21)-positiven Zellen außerdem eine Reduktion der Expression der
Stammzellmarker CD34 bzw. c-kit. Dies deutet auf eine partielle Differenzierung der beiden
AML1/ETO-abhängigen Zelllinien hin. Damit ließen sich durch AAV-vermittelte Transduktion
in den AML-Zellen dieselbe Wirkung in Hinblick auf Wachstum, Differenzierbarkeit und
Apoptoserate erzielen wie dies mit den lentiviralen Vektoren zuvor beschrieben wurde. In
einem abschließenden Vergleich wurde aber deutlich, dass nicht-integrierende
Vektorsysteme generell eine schwächere NHR2-Proteinexpression induzieren und
demzufolge auch schwächere Effekte als integrierende Vektoren in den AML1/ETO-positiven
Zellen auslösen.
Development of lentiviral vectors for the gene therapy of X-linked chronic granulomatous disease
(2010)
Es gibt eine Vielzahl von Erkrankungen, die auf einen einzelnen Gendefekt zurückzuführen sind (monogene Erkrankungen). Darunter befindet sich auch die Gruppe der primären Immundefizienzen (PIDs), von denen aktuell über 150 verschiedene Typen von der Weltgesundheitsorganisation registriert sind. In vielen fällen leiden betroffene Individuen unter einem stark erhöhten Infektionsrisiko durch bakterielle oder virale Pathogene, sowie den damit verbundenen schweren Symptomen - bis hin zum verfrühten Tod der Patienten. Meist können PIDs mit konventionellen Methoden präventiv behandelt werden. Dazu gehören zum Beispiel die regelmässige Gabe von Antibiotika, Antimykotika, Zytokinen oder Immunglobulinen. Der einzige zur Verfügung stehende kurative Behandlungsansatz beruht auf der Transplantation von hämatopoietischen Stammzellen (HSZT) eines gesunden und passenden Spenders. Häufig steht jedoch kein histokompatibler Spender zur Verfügung.
Für diese Patientengruppe hat sich die gentherapeutische Behandlung mit autologen hämatopoietischen Stammzellen als eine gute Option herausgestellt. Der Beweis hierfür wurde eindrucksvoll in klinischen Heilversuchen für zwei Formen des Schweren Kombinierten Immundefekts (X-SCID und ADA-SCID) geführt, einer Erkrankung die durch das vollständige Fehlen bzw. die nicht-Funktionalität der lymphoiden Immunzellen charakterisiert ist. Autologe hämatopoietische Stammzellen der Patienten wurden hier ex vivo mittels eines gamma-retroviralen Vektors mit einer funktionellen Kopie der defekten cDNA genetisch modifiziert und anschliessend zurück infundiert. In der Summe wurde bei über 30 Patienten eine deutliche Verbesserung des Gesundheitszustandes bis hin zur vollständigen Heilung erzielt. Bei einem vergleichbaren Ansatz wurden in Frankfurt, in einem Heilversuch für die septische Granulomatose (X-CGD), erstmals klinisch relevante Erfolge in der Gentherapie für einen Defekt in der myeloischen Linie von Immunzellen erzielt. Ursache der X-chromosomal gekoppelten Form der septischen Granulomatose sind Mutationen in dem Gen für gp91phox (CYBB), einer essentiellen Untereinheit des in Phagozyten benötigten NADPH-Oxidase Komplexes. In der Folge sind die Phagozyten dieser Patienten nicht mehr in der Lage, die für das Abtöten von Krankheitserregern nötigen reaktiven Sauerstoffspezies zu bilden. Ständig wiederkehrende schwere Infektionen mit sonst unproblematischen Erregern sind die Folge.
Neben klaren gesundheitlichen Verbesserungen in der Mehrzahl der Patienten hatte diese Gentherapeutische Behandlungsstrategie in einigen Fällen auch klare Nebenwirkungen. In fünf von 20 Patienten mit X-SCID, sowie in beiden behandelten X-CGD Patienten, kam es infolge der Therapie zu hämatologischen Veränderungen, die in der Ausbildung eines myelodysplastischen Syndroms (bei X-CGD) und Leukämie (bei X-SCID) mündeten. In allen Fällen war die Ursache eine Hochregulierung von Proto-Onkogenen in der Nähe von g-retroviralen Integrationsstellen. Diese Probleme demonstrieren deutlich die unbedingte Notwendigkeit zur Verbesserung der verwendeten therapeutischen Vektoren.
In der vorliegenden Arbeit wurden lentivirale Vektoren mit myeloid-spezifischen Promotoren entwickelt und auf ihre Eignung für die Gentherapie der X-chromosomal gekoppelten septischen Granulomatose getestet. Lentivirale Vektoren besitzen ein stark verringertes Risiko für Insertionsmutagenese, sowie die exklusive Fähigkeit ruhende Zellen zu transduzieren. Die Verwendung von myeloid-spezifischen Promotoren für die Transgenexpression verringert die Wahrscheinlichkeit der Proto-Onkogen Aktivierung in unreifen Stamm- und Vorläuferzellen – einer Zellpopulation die besonders sensitiv für die in der Leukämieentstehung obligaten Schritte der Immortalisierung und Transformation ist. Gleichzeitig bleibt der volle therapeutische Nutzen erhalten, da das Transgen gp91phox nur in reifen myeloischen Zellen benötigt wird.
Die entwickelten lentiviralen Vektoren exprimieren eine kodonoptimierte gp91phox cDNA unter der Kontrolle des microRNA223-Promoters (223), des MRP8-Promotors (M) oder eines chimären Fusionspromoters bestehend aus den regulatorischen Bereichen des Cathepsin G und des cFes-Promotors (Chim). Zusätzlich wurde ein sogenanntes „ubiquitär aktives Chromatin-öffnendes Element“ (UCOE) in beiden Orientierungen vor den MRP8-Promotor kloniert, um eine erhöhte und stabile Langzeitexpression des Transgens zu erreichen. Ziel der Arbeit war die Selektion eines geeigneten Kandidaten für präklinische Versuchsreihen.
Die für die Evaluierung der Vektoren relevanten Parameter waren die Transgenexpressionslevel, die Spezifität der Expression für myeloische Zellen sowie die vermittelte funktionelle Rekonstitution der NADPH-Oxidase Aktivität. Die Fragestellungen der Langzeitexpression, der Anfälligkeit für CpG-Methylierung sowie der Genotoxizität der Vektoren wurden ebenfalls bearbeitet. Die Vektoren wurden in vitro in verschiedenen Zelllinien sowie in in vitro differenzierten primären murinen und humanen Blutstammzellen getestet. Die beiden besten Kandidaten (223 und Chim) wurden in vivo in Maustransplantationsexperimenten (Maus-Maus und humane Stammzellen in NOD/SCID-Mäuse) analysiert.
Die beiden lentiviralen Vektoren 223 und Chim eignen sich beide für eine effiziente Expression in myeloische Zellen, die zur funktionellen Rekonstitution der NADPH-Oxidase Aktivität in vitro und in vivo führen. Sie sind den bisher in klinischen Anwendungen verwendeten Vektoren in allen Parametern klar überlegen. Daher ist in zukünftigen klinischen Anwendungen ein verbesserter therapeutischer Nutzen für die Patienten sowie eine Verminderung des Risikos von Nebenwirkungen zu erwarten.
Our understanding of human biology and disease is based on the last millennia’s gain of knowledge, which has been exponentially accelerated since the invention of optical and "biochemical" microscopes like transcriptomics and other omics technologies.
In order to broaden our knowledge of an important human transcription factor, T-Cell Acute Lymphocytic Leukemia 1 (TAL1), some of these technologies were used.
TAL1’s gene or promoter structure is altered in about 20-30% of T-ALL. In addition, there is an increase in TAL1 expression in ca. 60% of pediatric and about 45% of adult T-ALL. Physiologically, TAL1 is an indispensable factor in hematopoiesis: in the murine knockout model, blood cells vanish in the early embryonic period. In addition, the TF is also relevant in adult erythropoiesis.
Accordingly, the identification of novel TAL1 target genes was significant both for clinical reasons and in order to understand the hematopoietic functions.
We performend a combined RNA- and ChIPseq approach. After a lentiviral mediated knockdown in K562 cells RNAseq was performed using the Illumina high-throughput method. Overall, the RNAseq yielded one billion good quality sequencing fragments. They made identification of up- and downregulated transcripts as well as associated biological processes, cellular components, molecular function and dominant KEGG signaling pathways possible. Furthermore, more than 2-fold altered coding transcripts and lncRNA were analyzed for relevant TAL1-binding in the transcription start area. There were 3205 significantly altered coding transcripts and 5136 significantly altered lncRNA. By integrating an Encode TAL1-ChIPseq in K562 cells (using a cutoff fold change of 2x) a relevant TAL1 binding could be detected with 71 coding and 416 lncRNA genes.
The combination of RNA- and ChIPseq yields a wealth of relevant results. Accordingly, TAL1 has complex pro- and anti-malignant effects in all areas of oncogenesis like described by Hanahan and Weinberg. Various interactions with target genes and signaling cascades in inter alia proliferation (e.g. HEMGN, MYC, AHI1, YPEL3, BTG2), angiogenesis (e.g. EGFL7, LTBP3), apoptosis (e.g. BCL3, BCL2A1, BMF), immune evasion (e.g. CMTM6) and inflammation (e.g. IL23 and PTGS1) have been revealed, thus complementing the knowledge about pro- and anti-oncogenic effects of TAL1. In addition, it was possible to identify target genes relevant for erythropoiesis and possible osteogenesis. Concerning lncRNA, interesting potential effectors have been identified. However, they still need to be functionally characterized. Relating the results to Virchow’s first description of leukemia as "white blood" the role of TAL1 in leukemia’s genesis but also in erythropoiesis has been confirmed and extended, thus contributing to explain Virchow’s observation: "...therefore, when I speak of white blood, I mean in fact a blood in which the proportion between the red and colorless (in white) blood corpuscles is reversed ...” (Virchow R. Weisses Blut. Frorieps Notizen 1845;36:151-156).