Institutes
Refine
Year of publication
Document Type
- Article (408)
- Doctoral Thesis (223)
- Preprint (43)
- Conference Proceeding (17)
- Master's Thesis (12)
- Bachelor Thesis (9)
- Contribution to a Periodical (9)
- Book (5)
- Habilitation (3)
- Other (1)
Has Fulltext
- yes (732)
Is part of the Bibliography
- no (732)
Keywords
- Relativistic heavy-ion collisions (7)
- LHC (6)
- ALICE (5)
- Black holes (5)
- FEBID (5)
- Heavy-ion collisions (5)
- Toroidales Magnetfeld (5)
- Equation of state (4)
- Fluctuations (4)
- HADES (4)
Institute
Machine learning entails a broad range of techniques that have been widely used in Science and Engineering since decades. High-energy physics has also profited from the power of these tools for advanced analysis of colliders data. It is only up until recently that Machine Learning has started to be applied successfully in the domain of Accelerator Physics, which is testified by intense efforts deployed in this domain by several laboratories worldwide. This is also the case of CERN, where recently focused efforts have been devoted to the application of Machine Learning techniques to beam dynamics studies at the Large Hadron Collider (LHC). This implies a wide spectrum of applications from beam measurements and machine performance optimisation to analysis of numerical data from tracking simulations of non-linear beam dynamics. In this paper, the LHC-related applications that are currently pursued are presented and discussed in detail, paying also attention to future developments.
Nowadays, teachers are facing a more and more digitized world, as digital tools are being used by their students on a daily basis. This requires digital competencies in order to react in a professional manner to individual and societal challenges and to teach the students a purposeful use of those tools. Regarding the subject (e.g., STEM), this purpose includes specific content aspects, like data processing, or modeling and simulations of complex scientific phenomena. Yet, both pre-service and experienced teachers often consider their digital teaching competencies insufficient and wish for guidance in this field. Especially regarding immersive tools like augmented reality (AR), they do not have a lot of experience, although their willingness to use those modern tools in their lessons is high. The digital tool AR can target another problem in science lessons: students and teachers often have difficulties with understanding and creating scientific models. However, these are a main part of the scientific way of acquiring knowledge and are therefore embedded in curricula. With AR, virtual visualizations of model aspects can be superimposed on real experimental backgrounds in real time. It can help link models and experiments, which usually are not part of the same lesson and are perceived differently by students. Within the project diMEx (digital competencies in modeling and experimenting), a continuing professional development (CPD) for physics teachers was planned and conducted. Secondary school physics educators were guided in using AR in their lessons and their digital and modeling competencies for a purposeful use of AR experiments were promoted. To measure those competencies, various instruments with mixed methods were developed and evaluated. Among others, the teachers’ digital competencies have been assessed by four experts with an evaluation matrix based on the TPACK model. Technological, technical and design aspects as well as the didactical use of an AR experiment were assessed. The teachers generally demonstrate a high level of competency, especially in the first-mentioned aspects, and have successfully implemented their learnings from the CPD in the (re)design of their AR experiments.
Focused electron-beam-induced deposition (FEBID) is a highly versatile direct-write approach with particular strengths in the 3D nanofabrication of functional materials. Despite its apparent similarity to other 3D printing approaches, non-local effects related to precursor depletion, electron scattering and sample heating during the 3D growth process complicate the shape-true transfer from a target 3D model to the actual deposit. Here, we describe an efficient and fast numerical approach to simulate the growth process, which allows for a systematic study of the influence of the most important growth parameters on the resulting shape of the 3D structures. The precursor parameter set derived in this work for the precursor Me3PtCpMe enables a detailed replication of the experimentally fabricated nanostructure, taking beam-induced heating into account. The modular character of the simulation approach allows for additional future performance increases using parallelization or drawing on the use of graphics cards. Ultimately, beam-control pattern generation for 3D FEBID will profit from being routinely combined with this fast simulation approach for optimized shape transfer.
We derive an expression for the tensor polarization of a system of massive spin-1 particles in a hydrodynamic framework. Starting from quantum kinetic theory based on the Wigner-function formalism, we employ a modified method of moments which also takes into account all spin degrees of freedom. It is shown that the tensor polarization of an uncharged fluid is determined by the shear-stress tensor. In order to quantify this novel polarization effect, we provide a formula which can be used for numerical calculations of vector-meson spin alignment in relativistic heavy-ion collisions.
In this dissertation, we look at environmental effects in extreme and intermediate mass ratio inspirals into massive black holes. In these systems, stellar mass compact objects orbit massive black holes and lose orbital energy due to gravitational wave emission and other dissipative forces. We explore environmental interactions with dark matter spikes, stellar distributions, accretion disks, and combine and compare them. We discuss the existence and properties of dark matter spikes in the presence of these environmental effects. The signatures of the environmental effects, such as the phase space flow, dephasing, deshifting of the periapse, and alignment with accretion disks, are examined. These signatures are quantified in isolated spike systems, in dry, and in wet inspirals. We generally find dark matter effects to be subdominant to the other environmental effects, but their impact on the waveform is still observable and identifiable. Lastly, the rates of inspirals and the impact of spikes are estimated. All of these results are obtained with the help of a code imripy that is published alongside. If dark matter spikes exist, they should be observable with space-based gravitational wave observatories.
During the co-translational assembly of protein complexes, a fully synthesized subunit engages with the nascent chain of a newly synthesized interaction partner. Such events are thought to contribute to productive assembly, but their exact physiological relevance remains underexplored. Here, we examine structural motifs contained in nucleoporins for their potential to facilitate co-translational assembly. We experimentally test candidate structural motifs and identify several previously unknown co-translational interactions. We demonstrate by selective ribosome profiling that domain invasion motifs of beta-propellers, coiled-coils, and short linear motifs may act as co-translational assembly domains. Such motifs are often contained in proteins that are members of multiple complexes (moonlighters) and engage with closely related paralogs. Surprisingly, moonlighters and paralogs assemble co-translationally in only some but not all of the relevant biogenesis pathways. Our results highlight the regulatory complexity of assembly pathways.
We fabricated memristive devices using focused electron beam-induced deposition (FEBID) as a direct-writing technique employing a Pt/TiO2/Pt sandwich layer device configuration. Pinching in the measured current-voltage characteristics (i-v), the characteristic fingerprint of memristive behavior was clearly observed. The temperature dependence was measured for both high and low resistive states in the range from 290 K down to about 2 K, showing a stretched exponential behavior characteristic of Mott-type variable-range hopping. From this observation, a valence change mechanism of the charge transport inside the TiO2 layer can be deduced.
The photoelectric effect describes the ejection of an electron upon absorption of one or several photons. The kinetic energy of this electron is determined by the photon energy reduced by the binding energy of the electron and, if strong laser fields are involved, by the ponderomotive potential in addition. It has therefore been widely taken for granted that for atoms and molecules, the photoelectron energy does not depend on the electron’s emission direction, but theoretical studies have questioned this since 1990. Here, we provide experimental evidence that the energies of photoelectrons emitted against the light propagation direction are shifted toward higher values, while those electrons that are emitted along the light propagation direction are shifted to lower values. We attribute the energy shift to a nondipole contribution to the ponderomotive potential that is due to the interaction of the moving electrons with the incident photons.
Die Arbeit behandelt die Messung von Photonen mit Teilchendetektoren, die auf digitalen Silizium-Pixelsensoren basieren. Diskutiert werden zwei wesentliche Schritte in den Upgrade-Programmen des ALICE-Experiments am CERN-LHC:
1. FOCAL-Detektor-Upgrade (2027): Untersuchung der Detektorantwort des elektromagnetischen Pixel-Kalorimeters EPICAL-2 und der Form elektromagnetischer Schauer durch Teststrahl-Messungen und Monte Carlo Simulationen.
2. ALICE 3-Upgrade (2035): Simulationsstudien zum Untergrund in der Messung von Photonen mit sehr kleinem Transversalimpuls.
Teil 1: Performance des elektromagnetischen Pixel-Kalorimeters EPICAL-2
Detektordesign und Testmessungen: EPICAL-2, ein SiW-Sandwich-Design-Kalorimeter mit ALPIDE Sensoren, besitzt eine Tiefe von ca. 20 Strahlungslängen und etwa 25 Millionen Pixel. Testmessungen wurden an der Universität Utrecht (kosmische Myonen) sowie am DESY und CERN-SPS (Elektronen) durchgeführt.
Simulation und Validierung: Das EPICAL-2 wird im Simulationspaket Allpix2 implementiert, um die Testmessungen zu validieren und das Detektorverhalten zu untersuchen. Systematische Variationen bestätigen die Stabilität und Reproduzierbarkeit der Simulation.
Datenaufbereitung und Schauerprofile: Im Rahmen der Datenanalyse werden fehlerhafte Pixel ausgeschlossen, Pixel-Treffer zu Clustern gruppiert, Chips kalibriert und der Strahlwinkel korrigiert. Das longitudinale Profil elektromagnetischer Schauer zeigt, dass das Schauermaximum in der Simulation etwas tiefer liegt als in den Testdaten, was auf zusätzliches Material oder eine unvollständige Beschreibung der Schauerentwicklung in der Simulation zurückzuführen sein könnte. Das laterale Profil zeigt, dass eine Schauertrennung im Millimeter-Bereich möglich ist.
Energieantwort und -auflösung: Die nicht-lineare Energieantwort wird sowohl in Testdaten als auch in Simulationen beobachtet. Die Energieauflösung des EPICAL-2 für Cluster ist besser als für Pixeltreffer und vergleichbar mit dem analogen CALICE-Prototypen. Simulationen ohne Strahlenergie-Fluktuationen zeigen eine bessere Energieauflösung als in den Testdaten.
Teil 2: Untergrund in der Messung von Photonen in ALICE 3
Simulationssetup: Die ALICE 3-Detektorgeometrie wird in GEANT4 implementiert, um den Untergrund in der Messung weicher Photonen zu untersuchen. Simulationen mit PYTHIA und GEANT4 zeigen, dass der Untergrund hauptsächlich aus Zerfallsphotonen und Photonen aus externer Bremsstrahlung besteht.
Ergebnisse der Untergrundstudien: Der Untergrund durch Photonen aus externer Bremsstrahlung dominiert und liegt im Akzeptanzbereich des FCT um einen Faktor von 5 bis 10 über dem theoretischen Signal weicher Photonen. In der Simulation wird das Material zu 8%—14% X0 in ALICE 3 bestimmt, wobei bereits bei 5% X0 der Untergrund genauso stark ist wie das erwartete Signal.
Möglichkeiten zur Untergrundreduzierung: Untersuchungen zeigen, dass ein Elektron-Veto das Signal-zu-Untergrund-Verhältnis um den Faktor 30 verbessern und eine Materialreduktion durch ein optimiertes Strahlrohr um den Faktor 7.
Die Ergebnisse des ersten Teils dieser Arbeit demonstrieren insgesamt die gute Performance des EPICAL-2 in Bezug auf die Energiemessung und die Bestimmung der Schauerform. Darüber hinaus unterstützen sie den Einsatz digitaler Kalorimeter im FOCAL-Upgrade des ALICE-Experiments und zeigen das Potenzial der digitalen Kalorimetertechnologie für zukünftige Hochenergiephysik-Experimente.
Die Ergebnisse des zweiten Teils dieser Arbeit liefern einen wesentliche Beitrag zum geplanten ALICE 3-Upgrade. Weiterhin veranschaulichen sie, wie ein Elektron-Veto und die Reduzierung des Materials zusammen eine vielversprechende Messstrategie bilden können.
The thermodynamic properties of the interacting particle–antiparticle boson system at high temperatures and densities were investigated within the framework of scalar and thermodynamic mean-field models. We assume isospin (charge) density conservation in the system. The equations of state and thermodynamic functions are determined after solving the self-consistent equations. We study the relationship between attractive and repulsive forces in the system and the influence of these interactions on the thermodynamic properties of the bosonic system, especially on the development of the Bose–Einstein condensate. It is shown that under “weak” attraction, the boson system has a phase transition of the second order, which occurs every time the dependence of the particle density crosses the critical curve or even touches it. It was found that with a “strong” attractive interaction, the system forms a Bose condensate during a phase transition of the first order, and, despite the finite value of the isospin density, these condensate states are characterized by a zero chemical potential. That is, such condensate states cannot be described by the grand canonical ensemble since the chemical potential is involved in the conditions of condensate formation, so it cannot be a free variable when the system is in the condensate phase.