## Institutes

### Refine

#### Year of publication

#### Document Type

- Article (399)
- Doctoral Thesis (219)
- Preprint (44)
- Conference Proceeding (17)
- Master's Thesis (12)
- Bachelor Thesis (9)
- Contribution to a Periodical (9)
- Book (5)
- Habilitation (3)
- Other (1)

#### Has Fulltext

- yes (720)

#### Is part of the Bibliography

- no (720)

#### Keywords

- Relativistic heavy-ion collisions (6)
- ALICE (5)
- Black holes (5)
- Heavy-ion collisions (5)
- LHC (5)
- Toroidales Magnetfeld (5)
- Equation of state (4)
- Fluctuations (4)
- HADES (4)
- QCD (4)

#### Institute

Efficient modeling and mitigation of quadrupole errors in synchrotrons and their beam transfer lines
(2023)

This thesis investigates the problem of estimating quadrupole errors on synchrotrons as well as how to minimize the influence of quadrupole errors for beam transfer lines (beamlines). It emphasizes the importance to treat possible error sources in all parts of an accelerator in order to provide constantly high beam quality to the experimental stations. While the presented methods have been investigated by using the example of the SIS18 synchrotron and the HEST beamlines at GSI Helmholtz Centre for Heavy Ion Research, they are equally relevant for the future synchrotrons and beamlines of the Facility for Antiproton and Ion Research in Europe (FAIR).
Part 1 discusses the problem of estimating quadrupole errors via orbit response measurements at synchrotrons. An emphasis is put on investigating the influence of the availability of steerer magnets and beam position monitors (BPMs) on the solvability of the inverse problem as well as on the propagation of measurement uncertainty for the estimation of quadrupole errors. The problem is approached via analytical considerations as well as via dedicated simulation studies. By developing an analytical expression for the Jacobian matrix, the theoretical boundaries for the solvability of the inverse problem are derived. Moreover, it is shown that the analytical expressions for the Jacobian matrix can be used during the fitting procedure to achieve a significant improvement in the computational efficiency by a factor $N_{steerers} \times N_{quadrupoles}$, where $N$ denotes the number of lattice elements of the respective type. The presented results are tested via dedicated measurements at the SIS18 synchrotron.
Part 2 discusses – complementary to part 1 – the influence of quadrupole errors in beam transfer lines with respect to the beam quality requirements given by the experimental stations. A preventive approach is presented which allows to minimize the influence of possible quadrupole errors on the degradation of beam quality. By identifying and selecting robust quadrupole configurations, a stable operation of the beamline can be enabled and the time needed by operators to readjust the beamline parameters can be reduced. The concept of beamline robustness is developed and is studied with the help of dedicated simulations. The simulation results are used to identify certain properties that distinguish robust from nonrobust quadrupole configurations. Also, various methods for improving the computational process of identifying robust quadrupole configurations are presented. The methods and results are tested via dedicated measurements at two different beamlines at GSI Helmholtz Centre for Heavy Ion Research and at Forschungszentrum Jülich.

The gas-phase reaction of O + H₃⁺ has two exothermic product channels: OH+ + H2 and H2O+ + H. In the present study, we analyze experimental data from a merged-beams measurement to derive thermal rate coefficients resolved by product channel for the temperature range from 10 to 1000 K. Published astrochemical models either ignore the second product channel or apply a temperature-independent branching ratio of 70% versus 30% for the formation of OH+ + H2 versus H2O+ + H, respectively, which originates from a single experimental data point measured at 295 K. Our results are consistent with this data point, but show a branching ratio that varies with temperature reaching 58% versus 42% at 10 K. We provide recommended rate coefficients for the two product channels for two cases, one where the initial fine-structure population of the O(3PJ) reactant is in its J = 2 ground state and the other one where it is in thermal equilibrium.

The time-dependent Schrödinger equation for quadratic Hamiltonians has Gaussian wave packets as exact solutions. For the parametric oscillator with frequency ω(t), the width of these wave packets must be time-dependent. This time-dependence can be determined by solving a complex nonlinear Riccati equation or an equivalent real nonlinear Ermakov equation. All quantum dynamical properties of the system can easily be constructed from these solutions, e.g., uncertainties of position and momentum, their correlations, ground state energies, etc. In addition, the link to the corresponding classical dynamics is supplied by linearizing the Riccati equation to a complex Newtonian equation, actually representing two equations of the same kind: one for the real and one for the imaginary part. If the solution of one part is known, the missing (linear independent) solution of the other can be obtained via a conservation law for the motion in the complex plane. Knowing these two solutions, the solution of the Ermakov equation can be determined immediately plus the explicit expressions for all the quantum dynamical properties mentioned above. The effect of a dissipative, linear velocity dependent friction force on these systems is discussed.

The theoretical and experimental investigation of exotic hadrons like tetraquarks is an important branch of modern elementary particle physics. In this thesis I investigate different four-quark systems using lattice QCD and search for evidence of stable tetraquark states or resonances.
Lattice QCD as a non-perturbative approach to QCD allows an accurate and reliable determination of the masses of strongly bound hadrons.
However, most tetraquarks appear as weakly bound states or resonances, which makes a theoretical investigation using lattice QCD difficult due to the finite spatial volume. A rigorous treatment of such systems is feasible using the so-called Lüscher method. This allows to calculate the scattering amplitude based on the finite-volume energy spectrum determined in a lattice QCD calculation. Similarly to the analysis of experimental data, this scattering amplitude can be used to determine the binding energies of bound states or the masses and decay widths of resonances in the infinite volume.
In my work I calculate the low-energy energy spectra of different four-quark systems and use - if necessary - the Lüscher method to determine the masses of potential tetraquark states.
I focus on systems consisting of two heavy antiquarks and two light quarks, where at least one of the heavy antiquarks is a bottom quark.
Even though such tetraquarks have not yet been experimentally detected, they are considered promising candidates for particles that are stable with respect to the strong interaction.
A decisive step for successfully calculating low-lying energy levels for such four-quark systems is a carefully chosen set of creation operators, which represent the physical states most accurately. In addition to operators that generate a local structure where all four quarks are located at the same space-time point, I also use so-called scattering operators that resemble two spatially separated mesons. These scattering operators turned out to be relevant for successfully determining the lowest energy levels and are therefore essential, especially if a Lüscher analysis is carried out.
In my work, I considered two different lattice setups to study the four-quark systems $\bar{b}\bar{b}ud$ with $I(J^P)=0(1^+) $, $\bar{b}\bar{b}us$ with $J^P=1^+ $ and $\bar{b}\bar{c}ud$ with $I(J^P)=0(0^+) $ and $I(J^P)=0(1^+) $ and to predict potential tetraquark states. In both setups, I considered scattering operators. While in the first setup I used them only as annihilation operators, in the second setup they were included both as creation and annihilation operators. Additionally, in the second lattice setup, I performed a simplified investigation of the $\bar{b}\bar{b}ud$ system with $I(J^P)=0(1^-) $, which is a potential candidate for a tetraquark resonance. The results of the investigation of the mentioned four-quark systems can be summarized as follows:
For the $ \bar{b}\bar{b}ud $ four-quark system with $ I(J^P)=0(1^+) $ I found a deeply bound ground state slightly more than $ 100\,\textrm{MeV} $ below the lowest meson-meson threshold. The existence of a corresponding $\bar{b}\bar{b}ud$ tetraquark in the infinite volume was confirmed using a Lüscher analysis and possible systematic errors due to the use of lattice QCD were taken into account.
Similar results were obtained for the $ \bar{b}\bar{b}us $ four-quark system with $ J^P=1^+ $. Again, I found a ground state well below the lowest meson-meson threshold, but slightly weaker bound than for the $ \bar{b}\bar{b}ud $ system. Effects due to the finite volume turned out to be negligible for this system, as already predicted for the $ \bar{b}\bar{b}ud $ system. \item For the $ \bar{b}\bar{c}ud $ four-quark systems with $ (J^P)=0(0^+) $ and $ (J^P)=0(1^+) $ I was able to rule out the existence of a deeply bound tetraquark states based on the energy spectrum in the finite volume. However, by means of a scattering analysis using the Lüscher method, I found evidence a broad resonance for both channels.
In the case of the $ \bar{b}\bar{b}ud $ four-quark system with $ I(J^P)=0(1^-) $, I could neither confirm the existence of a resonance, nor rule out its existence with certainty.
In particular, my investigations showed that the results of the two different lattice simulations are consistent. The theoretical prediction of the bound tetraquark states $\bar{b}\bar{b}ud$ and $\bar{b}\bar{b}us$ as well as the tetraquark resonances in the $\bar{b}\bar{c}ud$ system in this work represent an important contribution to the future experimental search for exotic hadrons and can support the discovery of previously unobserved particles.

ATP-binding cassette (ABC) transporters shuttle diverse substrates across biological membranes. They play a role in many physiological processes but are also the reason for antibiotic resistance of microbes and multi drug resistance in cancer, and their dysfunction can lead to serious diseases. Transport is achieved through an ATP-driven closure of the two nucleotide binding sites (NBSs) which induces a transition between an inward-facing (IF) and an outward-facing (OF) conformation of the connected transmembrane domains (TMDs). In contrast to this forward transition, the reverse transition (OF-to-IF) that involves Mg2+-dependent ATP hydrolysis and release is less understood. This is particularly relevant for heterodimeric ABC transporters with asymmetric NBSs. These transporters possess an ATPase active consensus NBS (c-NBS) and a degenerate NBS (d-NBS) with little or no ATPase activity.
Crucial details regarding function and mechanism of the transport cycle remain elusive.
Here, these open questions were addressed using pulse electron-electron double resonance (PELDOR or DEER) spectroscopy of the heterodimeric ABC exporter TmrAB.
To better understand the transport cycle, the underlying kinetics of the conformational transitions need to be elucidated. By introducing paramagnetic nitroxide (NO) spin probes at key positions of TmrAB and employing time-resolved PELDOR spectroscopy, the forward transition could be followed over time and the rate constants for the conformational transition at the TMDs and NBSs were characterized.
The temperature dependence of these rate constants was further analyzed to determine for the first time the activation energy of conformational changes in a large membrane protein. For TMD opening and c-NBS dimerization, values of 75 ± 27 kJ/mol and 56 ± 3 kJ/mol, respectively were found. These values agree with reported activation energies of peptide transport and peptide dissociation in other ABC transporters, suggesting that the forward transition may be the rate-limiting step for substrate translocation.
The functional relevance of asymmetric NBSs is so far not well understood. By combining Mg2+-to-Mn2+ substitution with Mn2+-NO and NO-NO PELDOR spectroscopy, the binding of ATP-Mn2+, the conformation of the NBSs, and the conformation of the TMDs could be simultaneously monitored for the first time. These results reveal an asymmetric post-hydrolytic state. Time-resolved investigation showed that ATP hydrolysis at the active c-NBS triggers the reverse transition, whereas opening of the impaired d-NBS regulates the return to the IF conformation.

The Heidelberg Ion-Beam Therapy Centre (HIT) provides proton, helium, and carbon-ion beams with different energies and intensities for cancer treatment and oxygen-ion beams for experiments. For several experiments and possible future applications, such as helium ion beam radiography, a low-intensity ion beam monitor integrated into the dose delivery feedback system for the accelerator control is a necessary pre-requisite. The updated 2D prototype for this purpose consists of scintillating fibres with enhanced radiation hardness, silicon photomultipliers (SiPMs) to amplify the emitted light, and a dedicated front-end readout system (FERS) to process and record the generated signals. This setup was tested successfully on monitoring ion-beam position and profile horizontally and vertically, as well as the beam intensity, for all four ion types with energies from 50 to 430 MeV/u and intensities from 1E2 to 1E7 ions/s. Additionally, time-of-arrival (ToA) measurements on single ions have been successfully performed for a limited intensity range, allowing for ion tracking in a further update. This will reduce noise, and will also improve the accuracy and usability of ion radiography.

Measurement of the e+e−→π+π− cross section between 600 and 900 MeV using initial state radiation
(2016)

We extract the e+e− →π+π− cross section in the energy range between 600 and 900 MeV, exploiting the method of initial state radiation. A data set with an integrated luminosity of 2.93 fb−1 taken at a center-of-mass energy of 3.773 GeV with the BESIII detector at the BEPCII collider is used. The cross section is measured with a systematic uncertainty of 0.9%. We extract the pion form factor |Fπ|2 as well as the contribution of the measured cross section to the leading-order hadronic vacuum polarization contribution to (g−2)μ. We find this value to be aππ,LO μ (600–900 MeV) = (368.2 ±2.5stat±3.3sys) ·10−10, which is between the corresponding values using the BaBar or KLOE data.

Sparse sensor networks for Lamb wave-based structural health monitoring (SHM) can detect defects in plate-like structures. However, the limited number of sensor positions provides little information to characterize the unknown scatterer. This can be achieved by full wavefield analysis e.g. using Laser Doppler vibrometry measurements.
This paper proposes deconvolution processing that enhances the acoustic wavefield interpretation by increasing the temporal resolution of the underlying ultrasound signals. Applying this preprocessor to the whole wavefield allows improved non-destructive assessment of the defect. This approach is verified experimentally through a case study on an isotropic aluminum plate with four cracks.

The article presents the results of numerical and experimental investigations of guided wave propagation in aluminum plates with variable thickness. The shapes of plate surfaces have been specially designed and manufactured using a CNC milling machine. The shapes of the plates were defined by sinusoidal functions varying in phase shift, which forced the changes in thickness variability alongside the propagation path. The main aim of the study is to analyze the wave propagation characteristics caused by non-uniform thickness. In the first step, the influence of thickness variability on the time course of propagating waves has been analyzed theoretically. The study proves that the wave propagation signals can be determined based on knowledge about the statistical description of the specimen geometry. The histograms of thickness distribution together with the a priori knowledge of the dispersion curves were used to develop an iterative procedure assuming that the signal from the previous step becomes the excitation in the next step. Such an approach allowed for taking into account the complex geometry of the plate and rejecting the assumption about the constant average thickness alongside the propagation path. In consequence, it was possible to predict correctly the signal time course, as well as the time of flight and number of propagating wave modes in specimens with variable thickness. It is demonstrated that theoretical signals predicted in this way coincide well with numerical and experimental results. Moreover, the novel procedure allowed for the correct prediction of the occurrence of higher-order modes.