## Institutes

### Refine

#### Year of publication

#### Document Type

- Article (374)
- Doctoral Thesis (207)
- Preprint (42)
- Conference Proceeding (13)
- Master's Thesis (12)
- Bachelor Thesis (9)
- Contribution to a Periodical (9)
- Book (4)
- Habilitation (3)
- Other (1)

#### Has Fulltext

- yes (676)

#### Is part of the Bibliography

- no (676)

#### Keywords

- Relativistic heavy-ion collisions (6)
- ALICE (5)
- Black holes (5)
- Heavy-ion collisions (5)
- LHC (5)
- Toroidales Magnetfeld (5)
- Equation of state (4)
- Fluctuations (4)
- QCD equation of state (4)
- RFQ (4)

#### Institute

Many Polyakov loop models can be written in a dual formulation which is free of sign problem even when a non-vanishing baryon chemical potential is introduced in the action. Here, results of numerical simulations of a dual representation of one such effective Polyakov loop model at finite baryon density are presented. We compute various local observables such as energy density, baryon density, quark condensate and describe in details the phase diagram of the model. The regions of the first order phase transition and the crossover, as well as the line of the second order phase transition, are established. We also compute several correlation functions of the Polyakov loops.

The effect of a single site mutation of Arg-54 to methionine in Paracoccus denitrificans cytochrome c oxidase was studied using a combination of optical spectroscopy, electrochemical and rapid kinetics techniques, and time-resolved measurements of electrical membrane potential. The mutation resulted in a blue-shift of the heme a alpha-band by 15 nm and partial occupation of the low-spin heme site by heme O. Additionally, there was a marked decrease in the midpoint potential of the low-spin heme, resulting in slow reduction of this heme species. A stopped-flow investigation of the reaction with ferrocytochrome c yielded a kinetic difference spectrum resembling that of heme a(3). This observation, and the absence of transient absorbance changes at the corresponding wavelength of the low-spin heme, suggests that, in the mutant enzyme, electron transfer from Cu(A) to the binuclear center may not occur via heme a but that instead direct electron transfer to the high-spin heme is the dominating process. This was supported by charge translocation measurements where Deltapsi generation was completely inhibited in the presence of KCN. Our results thus provide an example for how the interplay between protein and cofactors can modulate the functional properties of the enzyme complex.

We show examples of the impact of the Maxwellian averaged capture cross sections determined at n_TOF over the past 20 years on AGB stellar nucleosynthesis models. In particular, we developed an automated procedure to derive MACSs from evaluated data libraries, which are subsequently used as input to stellar models computed by means of the FuNS code. In this contribution, we present a number of s-process abundances obtained using different data libraries as input to stellar models, with a focus on the role of n_TOF data.

Subensemble is a type of statistical ensemble which is the generalization of grand canonical and canonical ensembles. The subensemble acceptance method (SAM) provides general formulas to correct the cumulants of distributions in heavy-ion collisions for the global conservation of all QCD charges. The method is applicable for an arbitrary equation of state and sufficiently large systems, such as those created in central collisions of heavy ions. The new fluctuation measures insensitive to global conservation effects are presented. The main results are illustrated in the hadron resonance gas and van der Waals fluid frameworks.

Present nuclear reaction network computations for astrophysical simulations involve many different types of rates, including neutron-capture reactions of interest for the modeling of heavy-element nucleosynthesis. While for many of them we still have to rely on theoretical calculations, an increasing number of experimentally-determined cross sections have now become available. In this contribution, we present “ASTrophysical Rate and rAw data Library” (ASTRAL), a new online database for neutron-capture cross sections based on experimental results, mainly obtained through activation and timeof-flight measurements. For the evaluation process, cross sections were re-calculated starting from raw data and by considering recent changes in physical properties of the involved isotopes (e.g., half-life and γ-ray intensities). We show the current status of the database, the techniques adopted to derive the recommended Maxwellian-averaged cross sections, and future developments.

Prediction for hyper nuclei multiplicities from GSI to LHC energies from the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model combined with a final state coalescence approach is presented and compared to the thermal model. The influence of the coalescence radius on the collision energy and centrality dependence of the Λ3H/ΛΛ3H/Λ ratio is discussed.

We study the μ-μ45-T phase diagram of the 2+1-dimensional Gross-Neveu model, where μ denotes the ordinary chemical potential, μ45 the chiral chemical potential and T the temperature. We use the mean-field approximation and two different lattice regularizations with naive chiral fermions. An inhomogeneous phase at finite lattice spacing is found for one of the two regularizations. Our results suggest that there is no inhomogeneous phase in the continuum limit. We show that a chiral chemical potential is equivalent to an isospin chemical potential. Thus, all results presented in this work can also be interpreted in the context of isospin imbalance.

This article summarizes some of the current theoretical developments and the experimental status of hypernuclei in relativistic heavy-ion collisions and elementary collisions. In particular, the most recent results of hyperhydrogen of mass A = 3 and 4 are discussed. The highlight at SQM2022 in this perspective was the discovery of the anti-hyperhydrogen-4 by the STAR Collaboration, in a large data set consisting of different collision systems. Furthermore, the production yields of hyperhydrogen-4 and hyperhelium-4 from the STAR Collaboration can be described nicely by the thermal model when the excited states of these hypernuclei are taken into account. In contrast, the production measurements in small systems (pp and p–Pb) from the ALICE Collaboration tends to favour the coalescence model over the thermal description. New measurements from STAR, ALICE and HADES Collaborations of the properties, e.g. lifetime, of A = 3 and 4 hypernuclei give similar results of these properties. Also the anti-hyperhydrogen-4 lifetime is in rather good agreement with previous measurements. Interestingly, the new STAR measurement on the R3 value, that is connected to the branching ratio, points to a Λ separation energy that is below 100 keV but definitely consistent with the value of 130 keV assumed since the 70s.