Institutes
Refine
Year of publication
Document Type
- Doctoral Thesis (249)
- Article (153)
- Contribution to a Periodical (21)
- Preprint (10)
- Book (9)
- Report (2)
Language
- English (332)
- German (111)
- Multiple languages (1)
Has Fulltext
- yes (444)
Is part of the Bibliography
- no (444)
Keywords
- SARS-CoV-2 (8)
- RNA (7)
- photochemistry (7)
- NMR (6)
- NMR spectroscopy (6)
- Cell biology (5)
- inflammation (5)
- DNA-PAINT (4)
- fluorescence (4)
- COVID19-NMR (3)
Institute
- Biochemie, Chemie und Pharmazie (444)
- Präsidium (30)
- Medizin (14)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (14)
- Biowissenschaften (9)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (7)
- Physik (4)
- Geowissenschaften / Geographie (2)
- MPI für Biophysik (2)
- Exzellenzcluster Makromolekulare Komplexe (1)
Rhizomes from Zingiber officinale Roscoe are traditionally used for the treatment of a plethora of pathophysiological conditions such as diarrhea, nausea, or rheumatoid arthritis. While 6-gingerol is the pungent principle in fresh ginger, in dried rhizomes, 6-gingerol is dehydrated to 6-shogaol. 6-Shogaol has been demonstrated to exhibit anticancer, antioxidative, and anti-inflammatory actions more effectively than 6-gingerol due to the presence of an electrophilic Michael acceptor moiety. In vitro, 6-shogaol exhibits anti-inflammatory actions in a variety of cell types, including leukocytes. Our study focused on the effects of 6-shogaol on activated endothelial cells. We found that 6-shogaol significantly reduced the adhesion of leukocytes onto lipopolysaccharide (LPS)-activated human umbilical vein endothelial cells (HUVECs), resulting in a significantly reduced transmigration of THP-1 cells through an endothelial cell monolayer. Analyzing the mediators of endothelial cell–leukocyte interactions, we found that 30 µM of 6-shogaol blocked the LPS-triggered mRNA and protein expression of cell adhesion molecules. In concert with this, our study demonstrates that the LPS-induced nuclear factor κB (NFκB) promoter activity was significantly reduced upon treatment with 6-shogaol. Interestingly, the nuclear translocation of p65 was slightly decreased, and protein levels of the LPS receptor Toll-like receptor 4 remained unimpaired. Analyzing the impact of 6-shogaol on angiogenesis-related cell functions in vitro, we found that 6-shogaol attenuated the proliferation as well as the directed and undirected migration of HUVECs. Of note, 6-shogaol also strongly reduced the chemotactic migration of endothelial cells in the direction of a serum gradient. Moreover, 30 µM of 6-shogaol blocked the formation of vascular endothelial growth factor (VEGF)-induced endothelial sprouts from HUVEC spheroids and from murine aortic rings. Importantly, this study shows for the first time that 6-shogaol exhibits a vascular-disruptive impact on angiogenic sprouts from murine aortae. Our study demonstrates that the main bioactive ingredient in dried ginger, 6-shogaol, exhibits beneficial characteristics as an inhibitor of inflammation- and angiogenesis-related processes in vascular endothelial cells.
Catecholaminergic polymorphic ventricular tachycardia (CPVT) is an inherited disturbance of the heart rhythm (arrhythmia) that is induced by stress or that occurs during exercise. Most mutations that have been linked to CPVT are found in two genes, i.e., ryanodine receptor 2 (RyR2) and calsequestrin 2 (CASQ2), two proteins fundamentally involved in the regulation of intracellular Ca2+ in cardiac myocytes. We inserted six CPVT-causing mutations via clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 into unc-68 and csq-1, the Caenorhabditis elegans homologs of RyR and CASQ, respectively. We characterized those mutations via video-microscopy, electrophysiology, and calcium imaging in our previously established optogenetic arrhythmia model. In this study, we additionally enabled high(er) throughput recordings of intact animals by combining optogenetic stimulation with a microfluidic chip system. Whereas only minor/no pump deficiency of the pharynx was observed at baseline, three mutations of UNC-68 (S2378L, P2460S, Q4623R; RyR2-S2246L, -P2328S, -Q4201R) reduced the ability of the organ to follow 4 Hz optogenetic stimulation. One mutation (Q4623R) was accompanied by a strong reduction of maximal pump rate. In addition, S2378L and Q4623R evoked an altered calcium handling during optogenetic stimulation. The 1,4-benzothiazepine S107, which is suggested to stabilize RyR2 channels by enhancing the binding of calstabin2, reversed the reduction of pumping ability in a mutation-specific fashion. However, this depends on the presence of FKB-2, a C. elegans calstabin2 homolog, indicating the involvement of calstabin2 in the disease-causing mechanisms of the respective mutations. In conclusion, we showed for three CPVT-like mutations in C. elegans RyR a reduced pumping ability upon light stimulation, i.e., an arrhythmia-like phenotype, that can be reversed in two cases by the benzothiazepine S107 and that depends on stabilization via FKB-2. The genetically amenable nematode in combination with optogenetics and high(er) throughput recordings is a promising straightforward system for the investigation of RyR mutations and the selection of mutation-specific drugs.
The scope of this thesis is to elaborate on the use cases of the EEG in pain research. It has been submitted as a cumulative dissertation, meaning that the main part of this thesis has been previously published in international peer-reviewed journals. The first part of this thesis begins with an introduction which describes the general methodoligcal considerations and theoretical background information that is needed to perform pain research using the EEG. Then, I will give a summary of the results of all three studies and the subsequently published manuscripts. The discussion will give an outlook on two ongoing projects and elaborate how the methodology that has been compiled throughout my time as a PhD student can be further applied to scientific problems in pain research. I will conclude with the possibilities and the limitations of the EEG in pain research. The second part of this thesis consists of three publications that cover three individual studies, of which I am the lead/first author. These publications describe different use cases for the EEG in pain research. The first publication lays out the methodological backbone of this thesis, analyzing the exact EEG parameters that are needed to achieve the results in the following projects. Then, I present two additional studies. The first study describes the usefulness of pain-related evoked signatures after standardized noxious stimulation in the EEG in patients undergoing general anesthesia. The second study outlines differences in the pain processing of elite endurance athletes versus a normally active control group. Furthermore, it outlines how the function of the endogenous pain modulatory system can be measured in the EEG using CPM. All studys are discussed individually as per the journal guidelines.
K+ plays an essential role in a different cellular processes in bacteria, and is a central player in microbial adaptation towards a number of environmental challenges. Accordingly, K+ transporters are subject to tight regulation by a diverse set of mechanisms. Here, we discuss three regulatory strategies from three transport systems, as well as the general regulation of K+ homeostasis by the second messenger c-di-AMP.
Background. Recent pathomolecular studies on the MLL-AF4 fusion protein revealed that the murinized version of MLL-AF4, the MLL-Af4 fusion protein, was able to induce leukemia when expressed in murine or human hematopoietic stem/progenitor cells (Lin et al. in Cancer Cell 30:737–749, 2016). In parallel, a group from Japan demonstrated that the pSer domain of the AF4 protein, as well as the pSer domain of the MLL-AF4 fusion is able to bind the Pol I transcription factor complex SL1 (Okuda et al. in Nat Commun 6:8869, 2015). Here, we investigated the human MLL-AF4 and a pSer-murinized version thereof for their functional properties in mammalian cells. Gene expression profiling studies were complemented by intracellular localization studies and functional experiments concerning their biological activities in the nucleolus.
Results: Based on our results, we have to conclude that MLL-AF4 is predominantly localizing inside the nucleolus, thereby interfering with Pol I transcription and ribosome biogenesis. The murinized pSer-variant is localizing more to the nucleus, which may suggest a different biological behavior. Of note, AF4-MLL seems to cooperate at the molecular level with MLL-AF4 to steer target gene transcription, but not with the pSer-murinized version of it.
Conclusion: This study provides new insights and a molecular explanation for the described differences between hMLL-hAF4 (not leukemogenic) and hMLL-mAf4 (leukemogenic). While the human pSer domain is able to efficiently recruit the SL1 transcription factor complex, the murine counterpart seems to be not. This has several consequences for our understanding of t(4;11) leukemia which is the most frequent leukemia in infants, childhood and adults suffering from MLL-r acute leukemia.
In Vorarbeiten wurde gezeigt, dass der Kaliumkanal Slack an der Verarbeitung neuropathischer Schmerzen funktionell beteiligt ist und dass das klassische Neuroleptikum Loxapin Slack-abhängig neuropathisches Schmerzverhalten im Mausmodell lindert (Lu et al. 2015).
Ausgehend von Loxapin als Leitstruktur wurden in der vorliegenden Arbeit im FluxOR™ Kaliumkanal-Assay an Slack-transfizierten HEK-Zellen insgesamt 68 neue Loxapin-Derivate gescreent. Hierbei wurden 23 Substanzen mit Slack-aktivierenden Eigenschaften identifiziert, von denen VHP93, VH408 und VH425 weiter in vivo untersucht wurden. Dabei zeigten Mäuse nach systemischer Gabe von VHP93 ein reduziertes Verhalten in einem Modell für neuropathische Schmerzen. Dem gegenüber wurde durch VH408 das Verhalten im neuropathischen Schmerzmodell nicht beeinflusst.
Des Weiteren konnte in dieser Arbeit gezeigt werden, dass durch eine Slack-Aktivierung nicht nur neuropathisches Schmerzverhalten gehemmt wird, sondern auch die Kratzreaktionen im Chloroquin-Modell des Histamin-unabhängigen Juckreizes reduziert werden können.
Neben Slack wurde in dieser Arbeit auch die Gewebsexpression und funktionelle Bedeutung des eng mit Slack verwandten Kaliumkanals Slick charakterisiert. Expressionsanalysen ergaben, dass Slick überwiegend in dünn myelinisierten A-delta-Fasern und inhibitorischen Interneuronen im Dorsalhorn des Rückenmarks lokalisiert ist. Tierexperimentelle Untersuchungen zeigten, dass Slick-Knockout-Mäuse ein erhöhtes Schmerzverhalten nach thermischer Stimulation aufwiesen. Außerdem wurde bei Slick-Knockout-Mäusen in der späten Phase des Capsaicin- und Formalin-Tests ein signifikant erhöhtes Leckverhalten verzeichnet. Die Ergebnisse dieser Arbeit liefern somit Hinweise auf eine funktionelle Beteiligung von Slick bei der Detektion von Hitzeschmerzen und bei der TRPV1- und TRPA1-vermittelten Schmerzantwort. Zusammengefasst zeigen diese Daten, dass Slick vorrangig an der Verarbeitung thermischer und chemischer Noxen beteiligt ist und dabei eine antinozizeptive Funktion ausübt.
The repertoire of natural products offers tremendous opportunities for chemical biology and drug discovery. Natural product-inspired synthetic molecules represent an ecologically and economically sustainable alternative to the direct utilization of natural products. De novo design with machine intelligence bridges the gap between the worlds of bioactive natural products and synthetic molecules. On employing the compound Marinopyrrole A from marine Streptomyces as a design template, the algorithm constructs innovative small molecules that can be synthesized in three steps, following the computationally suggested synthesis route. Computational activity prediction reveals cyclooxygenase (COX) as a putative target of both Marinopyrrole A and the de novo designs. The molecular designs are experimentally confirmed as selective COX-1 inhibitors with nanomolar potency. X-ray structure analysis reveals the binding of the most selective compound to COX-1. This molecular design approach provides a blueprint for natural product-inspired hit and lead identification for drug discovery with machine intelligence.
Mitochondrial NADH:ubiquinone oxidoreductase (complex I) is a 1-MDa membrane protein complex with a central role in energy metabolism. Redox-driven proton translocation by complex I contributes substantially to the proton motive force that drives ATP synthase. Several structures of complex I from bacteria and mitochondria have been determined, but its catalytic mechanism has remained controversial. We here present the cryo-EM structure of complex I from Yarrowia lipolytica at 2.1-Å resolution, which reveals the positions of more than 1600 protein-bound water molecules, of which ~100 are located in putative proton translocation pathways. Another structure of the same complex under steady-state activity conditions at 3.4-Å resolution indicates conformational transitions that we associate with proton injection into the central hydrophilic axis. By combining high-resolution structural data with site-directed mutagenesis and large-scale molecular dynamic simulations, we define details of the proton translocation pathways and offer insights into the redox-coupled proton pumping mechanism of complex I.
Lysosomes are major degradative organelles that contain enzymes capable of breaking down proteins, nucleic acids, carbohydrates, and lipids. In the last decade, new discoveries have traced also important roles for lysosomes as signalling hubs, affecting metabolism, autophagy and pathogenic infections. Therefore, maintenance of a healthy lysosome population is of utmost importance to the cell to respond to both stress conditions and also homeostatic signalling. For example, for minor perturbations to the lysosomal membrane, the cell activates repair processes which seal membrane nicks. For more extensive damage, autophagy is activated to remove damaged organelles from the cell. on the other hand, during pathogen invasion host cells have also evolved mechanisms to hijack the endolysosomal pathway to facilitate their own growth and replication in host cells.
The first part of the thesis work focuses on a lysosomal regeneration program which is activated under conditions where the entire lysosomal pool of the cell is damaged. Upon extensive membrane damage induced by the lysosomotropic drug LLOMe, the cell activates a regeneration pathway which helps in the formation of new functional lysosomes by recycling damaged membranes. I have identified the molecules important for this novel pathway of lysosomal regeneration and showed how the protein TBC1D15 orchestrates this process to regenerate functional organelles from completely damaged membrane masses in the first 2 hours following lysosomal membrane damage. This process resembles the process of auto- lysosomal reformation (ALR)- involving the formation of lysosomal tubules which are extended along microtubules and cleaved in a dynamin2 dependent manner to form proto-lysosomes which develop into fully functional mature lysosomes. These lysosomal tubules are closely associated with ATG8 positive autophagosomal membranes and require ATG8 proteins to bind to the lysophagy receptor LIMP2 on damaged membranes. This process is physiologically important under conditions of crystal nephropathy where calcium oxalate crystals induce damage to lysosomal membranes in nephrons in kidney disease.
The second part of the thesis shows how the endolysosomal system of the cell is hijacked by the bacteriaLegionella pneumophila. During Legionella infection the formation of conventional ATG8 positive autophagosomes are blocked due to the protease activity of the bacterial effector protein RavZ which cleaves lipidated ATG8 proteins from autophagosomal membranes. The SidE effectors of Legionella modify STX17 and SNAP29 by the process of non-canonical ubiquitination called phosphoribose-linked serine ubiquitination (PR-Ub). These proteins are essential for the formation of the autophagosomal SNARE complex which is used for fusion of the autophagosome with the lysosome. Upon Legionella infection, PR-UB of STX17 aids in formation of autophagosome-like replication vacuoles. ThesevacuolesdonotfusewiththelysosomebecauseSNAP29isalsoPR-Ubmodified. PR-UbofSTX17 and SNAP29 sterically blocks the formation of the autophagosomal-SNARE complex thereby preventing fusion of the autophagosome with the lysosome. As a result, Legionella can replicate in autophagosome- like vacuoles which do not undergo lysosomal degradation. In absence of PR-Ub modified STX17, bacterial replication is compromised when measured by bacterial replication assays in lung epithelial (A549) cells.
Taken together, this thesis highlights two important aspects of the autophagy-lysosomal system- how it responds to extensive membrane damage and its importance in Legionella pneumophila infection. Extensive damage to lysosomal membranes triggers a rapid regeneration process to partially restore lysosomal function before the effects of TFEB dependent lysosomal biogenesis becomes apparent. On the other hand, Legionella pneumophila infection segregates the lysosomes from the rest of the endo-lysosomal system by blocking autophagosome-lysosome fusion. Though lysosomes remain active, they are incapable of degrading pathogens since pathogen containing vacuoles do not fuse with the lysosome.