Institutes
Refine
Year of publication
Document Type
- Doctoral Thesis (311)
- Article (282)
- Preprint (38)
- Contribution to a Periodical (25)
- Book (18)
- Report (2)
Language
- English (521)
- German (154)
- Multiple languages (1)
Has Fulltext
- yes (676)
Is part of the Bibliography
- no (676)
Keywords
- RNA (12)
- SARS-CoV-2 (10)
- NMR spectroscopy (9)
- inflammation (9)
- photochemistry (9)
- NMR (8)
- Biochemistry (7)
- Cell biology (7)
- E2 enzyme (6)
- TRACT (6)
Institute
- Biochemie, Chemie und Pharmazie (676)
- Präsidium (43)
- Medizin (35)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (31)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (30)
- Biowissenschaften (23)
- MPI für Biophysik (15)
- Physik (12)
- Zentrum für Arzneimittelforschung, Entwicklung und Sicherheit (ZAFES) (5)
- Geowissenschaften / Geographie (4)
Manipulation of neuronal or muscular activity by optogenetics or other stimuli can be directly linked to the analysis of Caenorhabditis elegans (C. elegans) body length. Thus, WormRuler was developed as an open-source video analysis toolbox that offers video processing and data analysis in one application. Utilizing this novel tool, the super red-shifted channelrhodopsin variant, ChrimsonSA, was characterized in C. elegans. Expression and activation of ChrimsonSA in GABAergic motor neurons results in their depolarization and therefore elongation of body length, the extent of which providing information about the strength of neuronal transmission.
Biological drug substance (DS) is typically stored frozen to increase stability. However, freezing and thawing (F/T) of DS can impact product quality and therefore F/T processes need to be controlled. Because active F/T systems for DS bottles are lacking, freezing is often performed uncontrolled in conventional freezers, and thawing at ambient temperature or using water baths.
In this study, we evaluated a novel device for F/T of DS in bottles, which can be operated in conventional freezers, generating a directed air stream around bottles. We characterized the F/T geometry and process performance in comparison to passive F/T using temperature mapping and analysis of concentration gradients. The device was able to better control the F/T process by inducing directional bottom-up F/T. As a result, it reduced cryo-concentration during freezing as well as ice mound formation. However, freezing with the device was dependent on freezer performance, i.e. prolonged process times in a highly loaded freezer were accompanied by increased cryo-concentrations. Thawing was faster compared to without the device, but had no impact on concentration gradients and was slower compared to thawing in a water bath.
High-performance freezers might be required to fully exploit the potential of directional freezing with this device and allow F/T process harmonization and scaling across sites.
Die sekretorischen Phospholipasen A2 (sPLA2) sind eine Familie von Enzymen, die von Glycerophospholipiden spezifisch Fettsäuren abspalten. Bis zum gegenwärtigen Zeitpunkt wurden im Menschen neun verschiedene sPLA2-Subtypen identifiziert, die in zahlreiche physiologische und pathophysiologische Prozesse involviert sind. So sind sPLA2s in der humanen Epidermis maßgeblich am Aufbau der Permeabilitätsbarriere beteiligt. Darüber hinaus kontrollieren sie die Freisetzung von Arachidonsäure für die Produktion von Eicosanoiden, die sowohl für die Proliferation der Keratinozyten als auch für inflammatorische Prozesse und die Entstehung von Tumoren in der Haut von entscheidender Bedeutung sind.
Da bislang weder das detaillierte Expressionsmuster der einzelnen sPLA2-Enzyme noch deren spezifische Funktion in humaner Epidermis bekannt war, wurde in der vorliegenden Arbeit eine umfassende Analyse an Biopsien gesunder und erkrankter humaner Haut durchgeführt. Zusätzlich zum Nachweis der sPLA2-Expression in vivo wurden humane primäre Keratinozyten in vitro verwendet, um die Auswirkungen der Differenzierung der Keratinozyten auf die Expression der verschiedenen sPLA2-Enzyme zu untersuchen. Die Ergebnisse zeigen sowohl in gesunder Haut als auch in primären Keratinozyten eine starke Expression der sPLA2-IB, -IIF und -X in differenzierten Zellen, während die der sPLA2-IID und -V auf proliferierende Zellen beschränkt war. Die sPLA2-IIA hingegen wurde in gesunder Haut vor allem in der äußersten, verhornten Schicht der Epidermis nachgewiesen. Die Analyse der Haut von Patienten mit Psoriasis oder Atopischer Dermatitis, beides Erkrankungen, die mit einer Störung der Permeabilitätsbarriere assoziiert sind, zeigte im Vergleich zu gesunder Haut ein deutlich verändertes Expressionsmuster. So konnte in Biopsien kranker Haut eine verstärkte Expression der sPLA2-IIA und -IID nachgewiesen werden, während die sPLA2-V nicht detektiert werden konnte. Besonders auffallend war das Verteilungsmuster der sPLA2-X, die, im Gegensatz zu gesunder Haut, in der Epidermis erkrankter Haut nicht zu detektieren war. Dagegen konnte hier eine starke Färbung der Dermis nachgewiesen werden. Die Abwesenheit der sPLA2-X in der Epidermis unter entzündlichen Bedingungen könnte durch die Sekretion des Enzyms erklärt werden. So führte die Behandlung von HaCaT-Zellen, die als in vitro Modellsystem dienten, mit Psoriasistypischen TH-1-Zytokinen wie TNF a und IFN g zur Freisetzung der sPLA2-X ins Kulturmedium. Zudem induzierte die exogene Stimulation der Zellen mit rekombinanter sPLA2-X die Synthese des Eicosanoids Prostaglandin E2 (PGE2), das zu Entzündungsreaktionen in der Haut entscheidend beiträgt. Die weitere Analyse des Signaltransduktionsweges zeigte, dass der Effekt der exogenen sPLA2-X sowohl durch den Einsatz des sPLA2-spezifischen Inhibitors Methyl-Indoxam als auch durch die Hemmung der katalytischen Aktivität der zytosolischen PLA2 a (cPLA2 a) blockiert werden konnte. Da zudem Hydrolyse-Produkte der PLA2s, wie freie Fettsäuren und deren Metabolite, endogene Aktivatoren der Transkriptionsfaktoren PeroxisomProliferator-aktivierte Rezeptoren (PPAR) darstellen, wurde auch deren Rolle bei der PGE2-Produktion untersucht. Experimente mit dem PPAR g Antagonisten GW 9662 und dem PPAR g Aktivator Ciglitazon und die Untersuchung des Bindungsverhaltens der PPARs an ihre DNA-Konsensus-Sequenz nach Stimulation mit exogener sPLA2-X zeigten, dass insbesondere PPAR g (PPAR g) an der Signalweiterleitung beteiligt ist. Zudem hatte die Herunterregulation der sPLA2-X mittels RNA-Interferenz die Suppression von differenzierungsassoziierten Proteinen wie Involucrin und PPAR g zur Folge.
Die unterschiedliche Lokalisation der untersuchten sPLA2-Enzyme in gesunder und erkrankter Haut lässt darauf schließen, dass die einzelnen Subtypen in der humanen Epidermis unterschiedliche Funktionen wahrnehmen. So ist einerseits die sPLA2-IIA mit inflammatorischen Prozessen der Haut verbunden, andererseits korreliert insbesondere der Verlust der sPLA2-X in der Epidermis mit einer Störung der epidermalen Permeabilitätsbarriere, so dass dieses Enzym offenbar zum Aufbau der Permeabilitätsbarriere beiträgt. Unter entzündlichen Bedingungen kommt es allerdings, induziert durch Zytokine, zur Sekretion der sPLA2-X. In großen, nicht-physiologischen Mengen freigesetzt, ist das Enzym in der Lage, die Synthese von Eicosanoiden wie PGE2 zu steigern, und unterstützt dadurch die Entzündungsreaktionen in der Haut.
Four different structural models, which all fit the same X-ray powder pattern, were obtained in the structure determination of 4,11-difluoroquinacridone (C20H10N2O2F2) from unindexed X-ray powder data by a global fit. The models differ in their lattice parameters, space groups, Z, Z′, molecular packing and hydrogen bond patterns. The molecules form a criss-cross pattern in models A and B, a layer structure built from chains in model C and a criss-cross arrangement of dimers in model D. Nevertheless, all models give a good Rietveld fit to the experimental powder pattern with acceptable R-values. All molecular geometries are reliable, except for model D, which is slightly distorted. All structures are crystallochemically plausible, concerning density, hydrogen bonds, intermolecular distances etc. All models passed the checkCIF test without major problems; only in model A a missed symmetry was detected. All structures could have probably been published, although 3 of the 4 structures were wrong. The investigation, which of the four structures is actually the correct one, was challenging. Six methods were used: (1) Rietveld refinements, (2) fit of the crystal structures to the pair distribution function (PDF) including the refinement of lattice parameters and atomic coordinates, (3) evaluation of the colour, (4) lattice-energy minimizations with force fields, (5) lattice-energy minimizations by two dispersion-corrected density functional theory methods, and (6) multinuclear CPMAS solid-state NMR spectroscopy (1H, 13C, 19F) including the comparison of calculated and experimental chemical shifts. All in all, model B (perhaps with some disorder) can probably be considered to be the correct one. This work shows that a structure determination from limited-quality powder data may result in totally different structural models, which all may be correct or wrong, even if they are chemically sensible and give a good Rietveld refinement. Additionally, the work is an excellent example that the refinement of an organic crystal structure can be successfully performed by a fit to the PDF, and the combination of computed and experimental solid-state NMR chemical shifts can provide further information for the selection of the most reliable structure among several possibilities.
The evolution of cell-free protein synthesis (CFPS) over recent decades has made it a widely used system for expressing membrane proteins (MPs). Unlike traditional methods, CFPS allows direct and translocon-independent expression of MPs within lipid membranes, such as liposomes or nanodiscs (NDs), without the need for detergent solubilization. This open nature of CF systems enables customization of the experimental environment, including expression conditions, choice of nanoparticles (NPs), lipid composition, and addition of stabilizing molecules.
Membrane scaffold protein (MSP)-based NDs emerged as a gold standard for cotranslational solubilization of MPs using the CF-system. This approach allowed not only biochemical characterization, but also structural studies of MPs and even GPCRs. However, to solubilize MPs inside nanoparticles via the traditional reconstitution route, apart from MSPs other scaffolds were successfully implemented, e.g. the saposin A (commercially known as Salipro) scaffold system or the synthetic styrene maleic acid lipid particles (SMALPs). In this study the potential of saposin A-based nanoparticles (SapNPs) was explored for cotranslational MP solubilization.
Three strategies for applying SapNPs in CF systems were investigated: preassembly, (i) coassembly (ii), and coexpression (iii). (i) Preassembly involved forming SapNPs before CF expression and adding them to the CF reaction. In coassembly mode SapA and lipids were mixed in the CF reaction for spontaneous assembly with the synthesized MP. In coexpression mode lipids were added to the CF reaction while coexpressing SapA with the MP target. Proteorhodopsin (PR) served as a model protein to evaluate these strategies due to its ability to oligomerize and straightforward quantification using the cofactor retinal. Preassembled SapNPs provided homogeneous, aggregate-free particles yielding up to 200 µM solubilized PR inside in the CF reaction. Coassembly was also successfully applied to produce PR/SapNP complexes at slightly lower yields, however the system was prone to produce soluble aggregates at too high PR template concentrations and overall needed more adjustments. Coexpression resulted in PR yields below 20 µM and was not considered viable for MP production. Finally, the preassembled SapNPs were used to produce functional G-protein coupled receptor probes. Despite lower overall performance compared to MSP-based systems, SapNPs showed potential as an alternative in CF systems for specific MPs.
The second optimization approach was directed at the CF lysate itself. CF synthesis for NMR analysis benefits from selective labeling schemes enabled by truncated amino acid (AA) metabolic pathways in lysates, reducing spectral ambiguity. However, residual enzymatic AA conversions persist, leading to label dilution and ambiguous NMR spectra. This study aimed to eliminate these residual activities in the E. coli A19 strain, generating optimized CF lysates for NMR applications.
The approach involved cumulative gene deletions of the most problematic scrambling enzymes. The new strain, “Stablelabel,” included deletions and modifications in genes asnA, ansA, ansB, glnA, aspC, and ilvE, effectively eliminating background activities of L-Asn, L-Asp, and conversions of L-Glu to L-Asp and L-Gln. However, residual conversion of L-Gln to L-Glu persisted due to glutaminase activity of several glutaminases using the inhibitor 6 diazo-5-oxo-L-norleucine (DON). Stablelabel showed a slightly slower growth than A19, and an overall good performance with 2.7 mg/mL GFP expressed in the reaction mixture (RM) compared to the parental A19 strain with 3.5 mg/mL. Furthermore, the strain was successfully applied to demonstrate methyl group labeling of MPs using preconverted L-val and L-leu from their respective precursors 2-ketoisovalerate and 4-methyl-2-oxovalerate.
In this study, lipid nanoparticle particle-and strain engineering vividly demonstrated the potential of CFPS systems and their versatility. While the SapNP system requires further engineering to potentially reach the efficiency of the well-studied MSP NDs, this study provides an example of nanoparticle characterization allowing new insights into NP behavior in CF systems. Furthermore, it was shown that strain engineering is a straightforward solution to tailor CF lysates to the individual requirements. After this thesis was submitted, Stablelabel in fact was successfully applied for backbone assignment of casein kinase 1, thereby demonstrating its suitability to express complex targets for NMR studies.
Human 5-lipoxygenase (5-LO) is the key enzyme of leukotriene biosynthesis, mostly expressed in leukocytes and thus a crucial component of the innate immune system.
In this study, we show that 5-LO, besides its canonical function as an arachidonic acid metabolizing enzyme, is a regulator of gene expression associated with euchromatin. By Crispr-Cas9-mediated 5-LO knockout (KO) in MonoMac6 (MM6) cells and subsequent RNA-Seq analysis, we identified 5-LO regulated genes which could be clustered to immune/defense response, cell adhesion, transcription and growth/developmental processes. Analysis of differentially expressed genes identified cyclooxygenase-2 (COX2, PTGS2) and kynureninase (KYNU) as strongly regulated 5-LO target genes. 5-LO knockout affected MM6 cell adhesion and tryptophan metabolism via inhibition of the degradation of the immunoregulator kynurenine. By subsequent FAIRE-Seq and 5-LO ChIP-Seq analyses, we found an association of 5-LO with euchromatin, with prominent 5-LO binding to promoter regions in actively transcribed genes. By enrichment analysis of the ChIP-Seq results, we identified potential 5-LO interaction partners. Furthermore, 5-LO ChIP-Seq peaks resemble patterns of H3K27ac histone marks, suggesting that 5-LO recruitment mainly takes place at acetylated histones.>
In summary, we demonstrate a noncanonical function of 5-LO as transcriptional regulator in monocytic cells.
The hepatitis B virus is one of the most common causes of virus-related chronic liver disease and remains a major global health problem affecting 296 million people worldwide. Despite an available and highly effective vaccination, hepatitis B infections lead to an annual mortality rate of approximately 0.8 million people. The global prevalence is heterogeneously distributed and reflects a high infections and chronicity, particularly in low-income countries, due to a lack of vaccination strategies, underdiagnosis and low treatment rates. A complete cure remains undiscovered to this day. Based on their genetic makeup, the virus is categorized into nine genotypes with a genetic difference of more than 8% within the sequence. In addition to their geographical distribution, hepatitis B virus genotypes also differ in terms of their clinical outcome, pathogenesis and treatment response.
The viral protein HBx is known to interact with several cellular signaling pathways and is thereby accounted as the driving force in the development of hepatitis B virus-associated pathogenesis and progression of hepatocellular carcinoma. In particular, HBx interacts with mitochondria and induces profound alterations in the mitochondrial morphology and function with a severe impact on the liver’s physiology and with an emerging role in liver-related disease progression.
This study aims to investigate the genotype-related impact of HBx with regard to their interaction with cellular signaling pathways. A particular focus was placed on mitochondria-dependent interactions and signaling pathways in order to broaden the understanding of the genetic diversity of the genotypes.
Differences between genotypes of HBx were examined and compared through in vitro experiments based on a cell culture-based system. Plasmid DNA encoding the HBx protein of the different genotypes was transiently transfected into Huh7 or HepG2 cells and examined for molecular and protein-biochemical effects on the host cell, usually 72 hours after transfection. This study focused on the most common genotypes A, B, C, D, E and G worldwide.
Based on initial kinome profiling analyses, it was found that HBx differs greatly within their genetic variants and suggests different effects on overall cell function and in particular on mitochondrial kinases. Furthermore, confocal laser scanning microscopy reveals profound HBx-mediated changes in the mitochondrial network structure, however with major differences among the different genotypes. In particular, HBx of genotypes A and G causes enormous fragmentation of mitochondrial structures, accompanied by emergent changes in mitochondrial function. Due to an increased interaction with the voltage-dependent anion channel 3, a significant loss of mitochondrial membrane potential was also observed, together with an increased radial oxygen stress level and an induction of central mitochondria-dependent inflammatory mediators. In contrast, the contribution of HBx-genotype B and E reveals only moderate effects in these regards. Using a pH-sensitive reporter system, HBx genotypes which previously indicated a strong distribution in the mitochondrial morphology and function, also showed an elevated mitophagy through the PINK1/Parkin-mediated pathway. This study provides direct evidence that HBx-mediated changes in host cell signaling pathways, especially in mitochondrial-associated pathways, fundamentally dependent on the different genotypes. In addition, the results also indicate an important role of HBx in the process of genotype-dependent liver pathogenesis and provide insight into the underlying cellular mechanisms and signaling pathways.
Molecular concepts for pandemic viruses : membrane fusion assays and targeting of reservoir cells
(2024)
In den letzten Jahren haben verschiedene pandemische Viren zu beträchtlichen Krankheits- und Todesfällen geführt. Um dieser ständigen Bedrohung entgegenzuwirken, ist es wichtig diagnostische Testsysteme und Therapien anzupassen oder neu zu etablieren. Diese Arbeit konzentriert sich auf die pandemischen Viren SARS-CoV-2 und HIV.
Der Zelleintritt von SARS-CoV-2 wird durch das Spike-Protein (S) ausgelöst, welches die Fusion der Virushülle mit der zellulären Membran bewirkt. Erste Studien haben gezeigt, dass das S-Protein eine hohe Fusionsaktivität aufweist. Aus diesem Grund sollten in dieser Arbeit neue Fusionstests etabliert werden, um potenzielle Inhibitoren der Zellfusion zu evaluieren. Im ersten Teil dieser Thesis wird die Etablierung von quantitativen Tests zur Evaluierung der Zell-Zell und Partikel-Zell Fusionsaktivität, welche durch S bewirkt wird, demonstriert.
Trotz jahrelanger Forschung können HIV-Patienten nicht geheilt werden und Virusinfektionen treten weiterhin weltweit auf. Das größte Problem bei der Entwicklung eines Heilmittels ist die frühe Bildung von Reservoirzellen während einer Infektion. Um diese Reservoirzellen zu identifizieren, wurde der Oberflächenmarker CD32a vorgeschlagen. Die Nutzung von Cas9-Nukleasen zur Inaktivierung von HIV ist in vitro erfolgreich, aber der effiziente Transfer in Reservoirzellen bleibt weiterhin herausfordernd. Im zweiten Teil dieser Thesis werden Rezeptor-gerichtete Adeno-assoziierte Vektoren (AAVs) für die HIV-Gentherapie präsentiert, die CD4 und CD32a für den Zelleintritt nutzen.
Zur Charakterisierung der Fusionsaktivität von SARS-CoV-2 wurden drei quantitative Fusionstests etabliert, welche Partikel- und Zell-Zell Fusionen berücksichtigen. Für den Partikel-Zell Fusionstest wurden lentivirale Vektoren (LV) verwendet, welche das S-Protein auf ihrer Oberfläche präsentierten. Die Transduktionseffizienz von S-LV erreichte auf Zellen, die den SARS-CoV-2 Rezeptor ACE2 exprimieren, ein Signal-zu-Hintergrund Verhältnis von über 2000. Durch die Präsentation von S auf leeren LV-Partikeln konnte die Fusion von benachbarten Zellen detektiert und quantifiziert werden („fusion-from-without“ (FFWO)). Für die Quantifizierung wurde ein Reporter-Komplementationstest etabliert. Hierbei wurden die Alpha- und Omega-Fragmente der β-Galaktosidase getrennt in zwei Zielzellpopulationen exprimiert, die beide ACE2 exprimierten. Durch die Zugabe von S-Partikeln kam es zur Fusion der Zielzellen und zur Komplementation der Alpha- und Omega-Fragmente. Die resultierende β-Galaktosidase-Aktivität konnte anschließend quantifiziert werden. Unter optimalen Versuchsbedingungen erreichte dieser Assay ein Signal-zu-Hintergrund Verhältnis von 2,7 Größenordnungen. Anschließend wurde der Komplementationstest für die Messung der Zell-Zell Fusion verwendet. In diesem Test exprimierten Effektorzellen S und das Alpha-Fragment, Zielzellen ACE2 und das Omega-Fragment. Obwohl die S-Expression auf den Effektorzellen sehr gering war, konnte dennoch eine signifikante Fusion nachgewiesen werden. Auch hier konnte unter optimalen Versuchsbedingungen ein hohes Signal-zu-Hintergrund Verhältnis von 2,9 Größenordnungen festgestellt werden. Nach der Etablierung der Testsysteme wurden S-spezifische Inhibitoren verwendet. Im Gegensatz zu Partikel-Zell-Fusionen wurde die Fusionsaktivität von S auf Zellen nur mäßig inhibiert. Dies deutet daraufhin, dass das Eindringen von Partikeln in Zellen wirksamer verhindert werden kann als die Ausbreitung durch Zell-Zell Fusionen.
Um AAVs spezifisch an HIV-Reservoirzellen zu binden, wurden CD4- und CD32a-spezifische DARPins („designed ankyrin repeat proteins“) in Rezeptor-verblindete AAVs eingebaut. Ebenso wurden beide DARPins gleichzeitig auf dem Kapsid präsentiert, um eine höhere Spezifität für doppelt-positive Zellen zu erreichen. Wenn diese Partikel einer Zellmischung aus CD4-, CD32a- und CD4/CD32a-exprimierenden Zellen zugesetzt wurden, transduzierten die bispezifischen Vektoren vorzugsweise doppelt-positive Zellen. Diese Präferenz war am höchsten in Zellkulturen, die stark unterrepräsentierte CD4/CD32a-exprimierende Zellen enthielten. Unter diesen Voraussetzungen erreichten bispezifische Vektoren eine bis zu 66-fach höhere Transduktionseffizienz auf CD4/CD32a-positive Zellen im Vergleich zu CD32a-exprimierenden Zellen. Darüber hinaus zeigten bispezifische AAV eine präferentielle Bindung und Transduktion von isolierten Primärzellen und Zellen in Vollblut. Selbst nach systemischer Injektion in humanisierte Mäuse wurden doppelt-positive Zellen effizienter von bispezifischen als von monospezifischen AAVs transduziert. Schließlich zeigten die generierten Vektoren, welche die Cas9 Nuklease transferierten, eine effiziente Inhibition der HIV-Replikation.
Autophagy is an important degradation pathway mediating the engulfment of cellular material (cargo) into autophagosomes followed by degradation in autophagosomes.
Different stress stimuli, e.g. nutrient deprivation, oxidative stress or organelle damage, engage autophagy to maintain cellular homeostasis, recycle nutrients or remove damaged cell organelles. Autophagy not only degrades bulk cytoplasmic material but also selective autophagic cargo, for example lysosomes (lysophagy), mitochondria (mitophagy), ER (ER-phagy), lipid droplets (lipophagy), protein aggregates (aggrephagy) or pathogens (xenophagy). Selective autophagy pathways are regulated by selective autophagy receptors which bind to ubiquitinated cargo proteins and link them to LC3 on the autophagosomal membrane.
Ubiquitination is an essential post-translational modification controlling different cellular processes such as proteasomal and lysosomal degradation or innate immune signaling.
M1-linked (linear) poly-Ubiquitin (poly-Ub) chains are exclusively assembled by the E3 ligase linear ubiquitin chain assembly complex (LUBAC) and removed by the M1 poly-Ub-specific OTU domain-containing deubiquitinase with linear linkage specificity (OTULIN). In addition to key functions in innate immune signaling and nuclear factor-κB (NF-κB) activation, M1 ubiquitination is also implicated in the regulation of autophagy.
LUBAC and OTULIN control autophagy initiation and maturation and the autophagic clearance of invading bacteria via xenophagy. However, additional functions of LUBAC- and OTULIN-regulated M1 ubiquitination in autophagy are largely unknown and it also remains unexplored if LUBAC and OTULIN control other selective autophagy pathways in addition to xenophagy. This study aimed to unravel the role of LUBAC- and OTULIN-controlled M1 ubiquitination in bulk and selective autophagy in more detail.
In this study, characterization of OTULIN-depleted MZ-54 glioblastoma (GBM) cells revealed that OTULIN deficiency results in enhanced LC3 lipidation in response to autophagy induction and upon blockade of late stage autophagy with Bafilomycin A1 (BafA1). Furthermore, electron microscopy analysis showed that OTULIN-deficient cells have an increased number of degradative compartments (DGCs), confirming enhanced autophagy activity upon loss of OTULIN. APEX2-based autophagosome content profiling identified various OTULIN-dependent autophagy cargo proteins. Among these were the autophagy receptor TAX1BP1 which regulates different forms of selective autophagy (e.g. lysophagy, aggrephagy) and the glycan-binding protein galectin-3 which serves key functions in lysophagy, suggesting a role of OTULIN and M1 poly-Ub in the regulation of aggrephagy and lysophagy.
Abstract 2
To study aggrephagy, protein aggregation was induced with puromycin which causes premature termination of translation and accumulation of defective ribosomal products (DRiPs). Loss of OTULIN increased the number of M1 poly-Ub-positive foci and insoluble proteins and reduced the levels of soluble TAX1BP1 and p62 in response to puromycin-induced proteotoxic stress.
Intriguingly, upon induction of lysosomal membrane permeabilization (LMP) with the lysosomotropic drug L-Leucyl-L-Leucine methyl ester (LLOMe), M1 poly-Ub strongly accumulated at damaged lysosomes and colocalized with TAX1BP1- and galectin-3-positive puncta. M1 poly-Ub-modified lysosomes formed a platform for NF-κB essential modulator (NEMO) and inhibitor of κB (IκB) kinase (IKK) complex recruitment and local NF-κB activation in a K63 poly-Ub- and OTULIN-dependent manner. Furthermore, inhibition of lysosomal degradation enhanced LLOMe-induced cell death, suggesting pro-survival functions of lysophagy following LMP. Enrichment of M1 poly-Ub at damaged lysosomes was also observed in human dopaminergic neurons and in primary mouse embryonic cortical neurons, confirming the importance of M1 poly-Ub in the response to lysosomal damage.
Together, these results identify OTULIN as a negative regulator of autophagy induction and the autophagic flux and reveal OTULIN-dependent autophagy cargo proteins.
Furthermore, this study uncovers novel and important roles of M1 poly-Ub in the response to lysosomal damage and local NF-κB activation at damaged lysosomes.