Biochemie und Chemie
Refine
Year of publication
Document Type
- Article (1116)
- Doctoral Thesis (729)
- Book (46)
- Preprint (35)
- Contribution to a Periodical (14)
- Conference Proceeding (11)
- Report (11)
- Review (9)
- diplomthesis (3)
- Part of a Book (2)
Has Fulltext
- yes (1982)
Is part of the Bibliography
- no (1982)
Keywords
- crystal structure (37)
- Crystal Structure (25)
- Synthesis (15)
- ESR Spectra (14)
- RNA (14)
- NMR-Spektroskopie (12)
- hydrogen bonding (11)
- IR Spectra (10)
- NMR spectroscopy (10)
- RNS (9)
Institute
- Biochemie und Chemie (1982)
- Medizin (83)
- Exzellenzcluster Makromolekulare Komplexe (68)
- Biowissenschaften (64)
- Präsidium (64)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (63)
- Pharmazie (52)
- MPI für Biophysik (50)
- Sonderforschungsbereiche / Forschungskollegs (48)
- Georg-Speyer-Haus (22)
A system of two coumarin-based caging groups is presented – one absorbing in the blue (400–450 nm) and the other absorbing in the green (480–550 nm) part of the visible spectrum. Together they form a pair, which allows to selectively photoactivate the one or the other in oligonucleotides. A numerical characterization defining the term “chromatic selectivity” was proposed, and it was shown how chromatically selective uncaging can literally be titrated in a kinetic reaction scheme.
The signaling lipid phosphatidylinositol-4,5-bisphosphate (PIP2) regulates many ion channels. It inhibits eukaryotic cyclic nucleotide-gated (CNG) channels while activating their relatives, the hyperpolarization-activated and cyclic nucleotide-modulated (HCN) channels. The prokaryotic SthK channel from Spirochaeta thermophila shares features with CNG and HCN channels and is an established model for this channel family. Here, we show SthK activity is inhibited by PIP2. A cryo-EM structure of SthK in nanodiscs reveals a PIP2-fitting density coordinated by arginine and lysine residues from the S4 helix and the C-linker, located between voltage-sensing and pore domains of adjacent subunits. Mutation of two arginine residues weakens PIP2 inhibition with the double mutant displaying insensitivity to PIP2. We propose that PIP2 inhibits SthK by gluing S4 and S6 together, stabilizing a resting channel conformation. The PIP2 binding site is partially conserved in CNG channels suggesting the possibility of a similar inhibition mechanism in the eukaryotic homologs.
To understand the function of cells such as neurons within an organism, it can be instrumental to inhibit cellular function, or to remove the cell (type) from the organism, and thus to observe the consequences on organismic and/or circuit function and animal behavior. A range of approaches and tools were developed and used over the past few decades that act either constitutively or acutely and reversibly, in systemic or local fashion. These approaches make use of either drugs or genetically encoded tools. Also, there are acutely acting inhibitory tools that require an exogenous trigger like light. Here, we give an overview of such methods developed and used in the nematode Caenorhabditis elegans.
Abstract
One of the most frequent applications of optogenetic tools is for depolarization and stimulation of excitable cells such as neurons and muscles. Equally important, but less frequently used, are inhibitory tools that suppress activity through cellular hyperpolarization. These tools often rely on chloride conductance. Yet, in vivo, re- and hyperpolarization is typically mediated by potassium. In recent years, light-gated ion channels with a high preference for potassium were identified (Kalium channelrhodopsins, KCRs), and their inhibitory potential described in different organisms. Here, we characterized HcKCR1 and WiChR, in cholinergic neurons and muscles of Caenorhabditis elegans. Hyperpolarization of these cell types both induces muscle relaxation and, consequently, an elongation of the animals. Thus, we analyzed body length before, during, and after illumination, to assess KCR effectiveness, and to benchmark stimulation parameters like light intensity and duration. For HcKCR1 in cholinergic neurons, continuous illumination at high light intensities (1-4.5 mW/mm2) evoked only a transient elongation, while stimulation at 0.1 mW/mm2 could maintain inhibition for the duration of the stimulus in some transgenic strains. For animals expressing WiChR in body wall muscle cells or cholinergic neurons, we again observed brief hyperpolarization during continuous illumination, however, still during the stimulus, this changed to body contraction, corresponding to depolarization. This effect was long lasting, and required dozens of seconds for reversion, but could be reduced by pulsed illumination and fully avoided by less efficient channel activation using green or orange light. Hence, KCRs can be applied to hyperpolarize C. elegans cells, but require optimized illumination parameters.
Article summary
To inhibit excitable cells, light-gated, potassium-selective channels (KCRs) can be used. This study explores whether stimulation of KCRs HcKCR1 and WiChR in cholinergic neurons and muscle cells of Caenorhabditis elegans can induce inhibition during illumination. While inhibition could be achieved, depending on light conditions, the authors unexpectedly also observed excitation. These effects may occur due to a combination of high conductivity of KCRs, and partial conductance of other cations. These findings highlight the need for specific experimental conditions in future studies utilizing these tools. The authors also present conditions that can partially or fully avoid the unwanted depolarizing effects.
Stimulated emission depletion (STED) microscopy is a super-resolution technique that surpasses the diffraction limit and has contributed to the study of dynamic processes in living cells. However, high laser intensities induce fluorophore photobleaching and sample phototoxicity, limiting the number of fluorescence images obtainable from a living cell. Here, we address these challenges by using ultra-low irradiation intensities and a neural network for image restoration, enabling extensive imaging of single living cells. The endoplasmic reticulum (ER) was chosen as the target structure due to its dynamic nature over short and long timescales. The reduced irradiation intensity combined with denoising permitted continuous ER dynamics observation in living cells for up to 7 hours with a temporal resolution of seconds. This allowed for quantitative analysis of ER structural features over short (seconds) and long (hours) timescales within the same cell, and enabled fast 3D live-cell STED microscopy. Overall, the combination of ultra-low irradiation with image restoration enables comprehensive analysis of organelle dynamics over extended periods in living cells.
Correlative dynamic imaging of cellular landmarks, such as nuclei and nucleoli, cell membranes, nuclear envelope and lipid droplets is critical for systems cell biology and drug discovery, but challenging to achieve with molecular labels. Virtual staining of label-free images with deep neural networks is an emerging solution for correlative dynamic imaging. Multiplexed imaging of cellular landmarks from scattered light and subsequent demultiplexing with virtual staining leaves the light spectrum for imaging additional molecular reporters, photomanipulation, or other tasks. Current approaches for virtual staining of landmark organelles are fragile in the presence of nuisance variations in imaging, culture conditions, and cell types. We report training protocols for virtual staining of nuclei and membranes robust to variations in imaging parameters, cell states, and cell types. We describe a flexible and scalable convolutional architecture, UNeXt2, for supervised training and self-supervised pre-training. The strategies we report here enable robust virtual staining of nuclei and cell membranes in multiple cell types, including human cell lines, neuromasts of zebrafish and stem cell (iPSC)-derived neurons, across a range of imaging conditions. We assess the models by comparing the intensity, segmentations, and application-specific measurements obtained from virtually stained and experimentally stained nuclei and cell membranes. The models rescue missing labels, non-uniform expression of labels, and photobleaching. We share three pre-trained models (VSCyto3D, VSNeuromast, and VSCyto2D) and a PyTorch-based pipeline (VisCy) for training, inference, and deployment that leverages current community standards for image data and metadata.
Cell-free (CF) synthesis with highly productive E. coli lysates is a convenient method to produce labeled proteins for NMR studies. Despite reduced metabolic activity in CF lysates, a certain scrambling of supplied isotope labels is still notable. Most problematic are conversions of 15N labels of the amino acids L-Asp, L-Asn, L-Gln, L-Glu and L-Ala, resulting in ambiguous NMR signals as well as in label dilution. Specific inhibitor cocktails suppress most undesired conversion reactions, while limited availability and potential side effects on CF system productivity need to be considered. As alternative route to address NMR label conversion in CF systems, we describe the generation of optimized E. coli lysates with reduced amino acid scrambling activity. Our strategy is based on the proteome blueprint of standardized CF S30 lysates of the E. coli strain A19. Identified lysate enzymes with suspected amino acid scrambling activity were eliminated by engineering corresponding single and cumulative chromosomal mutations in A19. CF lysates prepared from the mutants were analyzed for their CF protein synthesis efficiency and for residual scrambling activity. The A19 derivative “Stablelabel” containing the cumulative mutations asnA, ansA/B, glnA, aspC and ilvE yielded the most useful CF S30 lysates. We demonstrate the optimized NMR spectral complexity of selectively labeled proteins CF synthesized in “Stablelabel” lysates. By taking advantage of ilvE deletion in "Stablelabel", we further exemplify a new strategy for methyl group specific labeling of membrane proteins with the proton pump proteorhodopsin.
The archaeal ATP synthase is a multisubunit complex that consists of a catalytic A(1) part and a transmembrane, ion translocation domain A(0). The A(1)A(0) complex from the hyperthermophile Pyrococcus furiosus was isolated. Mass analysis of the complex by laser-induced liquid bead ion desorption (LILBID) indicated a size of 730 +/- 10 kDa. A three-dimensional map was generated by electron microscopy from negatively stained images. The map at a resolution of 2.3 nm shows the A(1) and A(0) domain, connected by a central stalk and two peripheral stalks, one of which is connected to A(0), and both connected to A(1) via prominent knobs. X-ray structures of subunits from related proteins were fitted to the map. On the basis of the fitting and the LILBID analysis, a structural model is presented with the stoichiometry A(3)B(3)CDE(2)FH(2)ac(10).
Inorganic phosphate is one of the most abundant and essential nutrients in living organisms. It plays an indispensable role in energy metabolism and serves as a building block for major cellular components such as the backbones of DNA and RNA, headgroups of phospholipids and in posttranslational modifcations of many proteins. Disturbances in cellular phosphate homeostasis have a detrimental effect on the viability of cells. There- fore, both the import and export of phosphate is strictly regulated in eukaryotic cells. In the eukaryotic model organism Saccharomyces cerevisiae, the uptake of phosphate is carried out either by transporters with high affinity or by transporters with low affinity, depending on the cytosolic phosphate concentration. While structures are available for homologues of the high-affinity transporters, no structures of low-affinity transporters have been solved so far. Interestingly, only the low-affinity transporters have a regulatory SPX domain, which is found in various proteins involved in phosphate homeostasis.
In this work, structures of Pho90 from Saccharomyces cerevisiae, a low-affinity phosphate transporter, were solved by cryo-EM, providing insights into its transport mechanism. The dimeric structure resembles the structures of proteins of the divalent anion symporter superfamily (DASS) and of mammalian transporters of the solute carrier 13 (SLC13) family. The transmembrane domain of each protomer consists of 13 helical elements and can be subdivided into scaffold and transport domains. The structure of ScPho90 in the presence of phosphate shows the phosphate binding site within the transporter domain in an outward-open conformation with a bound phosphate ion and two sodium ions. In the absence of phosphate, an asymmetric dimer structure was determined, with one protomer adopting an inward-open conformation. While the dimer contact and the scaffold domain are identical in both conformations, the transport domain is rotated by about 30° and shifted by 11 Å towards the cytoplasmic side, leading to the accessibility of the binding pocket from the cytoplasm. Based on these findings and by comparison with known structures, a phosphate transport mechanism is proposed in the present work that involves substrate binding on the extracellular side, conformational change by a rigid-body motion of the transport domain, in an "elevator-like" motion, and substrate release into the cytoplasm. The regulatory SPX domain is not well resolved in the ScPho90 structures, so that no direct conclusions were drawn about its regulatory mechanism. The findings provide new insights into the function and mechanism of eukaryotic low-affinity phosphate transporters.
While eukaryotic cells express various phosphate import proteins, most eukaryotes have only a single highly conserved and essential phosphate exporter. These exporters show no sequence homology to other transporters of known structure, but also possess a regulatory SPX domain. In this work, the structural basis for eukaryotic phosphate export is investigated by elucidating the structures of the homologous phosphate exporters Syg1 from Saccharomyces cerevisiae and Xpr1 from Homo sapiens, using cryo-EM. The structures of ScSyg1 and HsXpr1 show a conserved homodimeric structure and the transmembrane part of each protomer consists of 10 TM helices. Helix TM1 establishes the dimer contact by means of a glycine zipper motif, which is a known oligomerization motif. Helices TM2-5 form a hydrophobic pocket that has density for a lipid molecule. Whether the lipid binding into the hydrophobic pocket has an allosteric effect on the phosphate export activity or only serves protein stabilization is not known. Helices TM5-10 form a six-helix bundle, which constitutes a putative phosphate translocation pathway in its center. This bundle is formed by the protein sequence annotated as EXS domain.
The respective phosphate translocation pathways of ScSyg1 and HsXpr1 show structural differences. While the translocation pathway in HsXpr1 is accessible from the cytoplasm, in ScSyg1 it is closed by a large loop of the SPX domain. Interestingly, this loop is not conserved in higher eukaryotes and is therefore not present in HsXpr1. Another difference are distinct conformations of helix TM9. In ScSyg1, TM9 adopts a kinked conformation, which results in the translocation pathway being open to the extracellular side. In contrast, TM9 adopts a straight conformation in HsXpr1, resulting in the placement of a highly conserved tryptophane residue in the middle of the translocation pathway. As a result, the translocation pathway in HsXpr1 is closed to the extracellular side.
ABC transporters are found in all organisms and almost every cellular compartment. They mediate the transport of various solutes across membranes, energized by ATP binding and hydrolysis. Dysfunctions can result in severe diseases, such as cystic fibrosis or antibiotic resistance. In type IV ABC transporters, each of the two nucleotide-binding domains is connected to a transmembrane domain by two coupling helices, which are part of cytosolic loops. Although there are many structural snapshots of different conformations, the interdomain communication is still enigmatic. Therefore, we analyzed the function of three conserved, charged residues in the intra-cytosolic loop 1 of the human homodimeric, lysosomal peptide transporter TAPL. Substitution of D278 in coupling helix 1 by alanine interrupted peptide transport by impeding ATP hydrolysis. Alanine substitution of R288 and D292, both localized next to the coupling helix 1 extending to transmembrane helix 3, reduced peptide transport but increased basal ATPase activity. Surprisingly, the ATPase activity of the R288A variant dropped in a peptide-dependent manner while ATPase activity of wildtype and D292A was unaffected. Interestingly, R288A and D292A mutants did not differentiate between ATP and GTP in respect of hydrolysis. However, in contrast to wildtype TAPL, only ATP energized peptide transport. In sum, D278 seems to be involved in bidirectional interdomain communication mediated by network of polar interactions while the two residues in the cytosolic extension of TMH3 are involved in regulation of ATP hydrolysis, most likely by stabilization of the outward facing conformation.