Institutes
Refine
Year of publication
Document Type
- Doctoral Thesis (221)
- Article (189)
- Preprint (38)
- Book (8)
- Contribution to a Periodical (4)
- Review (3)
Has Fulltext
- yes (463)
Is part of the Bibliography
- no (463)
Keywords
- SARS-CoV-2 (6)
- Haloferax volcanii (5)
- Podospora anserina (5)
- bats (4)
- fungi (4)
- Acetogen (3)
- COVID19-NMR (3)
- Metabolic Engineering (3)
- Phylogeny (3)
- Saccharomyces cerevisiae (3)
Institute
- Biowissenschaften (463)
- Senckenbergische Naturforschende Gesellschaft (15)
- Biochemie, Chemie und Pharmazie (14)
- Biodiversität und Klima Forschungszentrum (BiK-F) (13)
- Institut für Ökologie, Evolution und Diversität (13)
- Präsidium (12)
- Medizin (11)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (9)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (8)
- Frankfurt Institute for Advanced Studies (FIAS) (4)
NAD is a coenzyme central to metabolism that was also found to serve as a 5’-terminal cap of bacterial and eukaryotic RNA species. The presence and functionality of NAD-capped RNAs (NAD-RNAs) in the archaeal domain remain to be characterized in detail. Here, by combining LC-MS and NAD captureSeq methodology, we quantified the total levels of NAD-RNAs and determined the identity of NAD-RNAs in the two model archaea, Sulfolobus acidocaldarius and Haloferax volcanii. A complementary differential RNA-Seq (dRNA-Seq) analysis revealed that NAD transcription start sites (NAD-TSS) correlate with well-defined promoter regions and often overlap with primary transcription start sites (pTSS). The population of NAD-RNAs in the two archaeal organisms shows clear differences, with S. acidocaldarius possessing more capped small non-coding RNAs (sncRNAs) and leader sequences. The NAD-cap did not prevent 5’→3’ exonucleolytic activity by the RNase Saci-aCPSF2. To investigate enzymes that facilitate the removal of the NAD-cap, four Nudix proteins of S. acidocaldarius were screened. None of the recombinant proteins showed NAD decapping activity. Instead, the Nudix protein Saci_NudT5 showed activity after incubating NAD-RNAs at elevated temperatures. Hyperthermophilic environments promote the thermal degradation of NAD into the toxic product ADPR. Incorporating NAD into RNAs and the regulation of ADPR-RNA decapping by Saci_NudT5 is proposed to provide additional layers of maintaining stable NAD levels in archaeal cells.
Importance: This study reports the first characterization of 5’-terminally modified RNA molecules in Archaea and establishes that NAD-RNA modifications, previously only identified in the other two domains of life, are also prevalent in the archaeal model organisms Sulfolobus acidocaldarius and Haloferax volcanii. We screened for NUDIX hydrolases that could remove the NAD-RNA cap and showed that none of these enzymes removed NAD modifications, but we discovered an enzyme that hydrolyzes ADPR-RNA. We propose that these activities influence the stabilization of NAD and its thermal degradation to potentially toxic ADPR products at elevated growth temperatures.
Sphingolipids are not only structural components of cell membranes but can also act as signalling molecules in different pathways. Sphingolipid precursors, Ceramides (Cer), are synthesized de novo by six different synthases (CerS1-6) which generate Cer of different chain lengths. Cer can be further synthesized to glycosphingolipids and sphingomyelin. Cell membrane parts that are enriched in glycosphingolipids are so-called lipid rafts and can function as signalling platforms for different receptors, such like the T cell receptor (TCR). CD4+ T cells play a crucial role in the development of ulcerative colitis, a chronic inflammatory disease of the colon. As CerS3 expression was increased in the white blood cells of human colitis patients, the role of CerS3 in the TCR signalling and colitis was investigated in this dissertation. By lenti-viral transduction of a CerS3-shRNA into a CD4+ Jurkat cell line, it was shown that CerS3 has an impact on activated T cells. A decrease of different sphingolipids after T cell activation via CD2/3/28 activation beads and IL2 treatment was observed that was accompanied by an inhibition of Zap70 phosphorylation, an important protein of the TCR signalling. The impaired TCR signalling led to a diminished NFAT1 translocation into the nucleus which subsequently led to a reduced NFAT1- dependent TNFα release. Downregulation of CerS3 in primary CD4+ T cells, obtained from the blood of healthy volunteers, also showed a reduced release of pro-inflammatory cytokines after activation. This dissertation demonstrates a pivotal role for CerS3 in T cell function and highlights CerS3 as potential new target for T cell driven colitis.
Subject of this thesis was the investigation of the actin-interacting and glucocorticoid-sensitive Protein DRR1 (or Fam107a) and its role in promoting stress resilience in the murine hippocampus.
We proposed the hypothesis that DRR1 through its actin-binding properties specifically modulates neuronal actin dynamics and promotes resilience through synaptic plasticity leading to subsequently improvement of cognitive performance and social behavior. The accompanied AMPA-receptor transport could create an efficient way regulating neural function and complex behavior during stress episodes.
By utilizing fluorescent immunohistochemistry, we showed basal expression of DRR1 primarily in the murine cerebellum and hippocampal CA3 and CA1 area. Co-staining with different cell marker proteins showed DRR1 expression in neurons, microglia and especially in astrocytic end-feet, which create contact to the brain vasculature.
To test whether DRR1 and AMPA receptor function correlate to modulate stress-associated consequences, primary hippocampal neuron cultures were transduced with adeno-associated virus (AAV) for overexpression or suppression of the protein. Western Blot analysis showed a positive correlation between the AMPA-receptor subunit GluR2 and DRR1 amounts. Further the application of the proximity ligation assay (PLA) in untreated neural cultures indicated interaction between DRR1 and the AMPA receptor subunit GluR2. To address whether DRR1 even affects AMPAR trafficking we performed the “newly inserted assay” after AAV-treatment of primary hippocampal neuron cultures. Suppression of DRR1 revealed less newly inserted GluR2 subunits as compared to controls. Inconclusive were the results upon DRR1 overexpression, however they point to no changes.
In the second part we correlated behavioral phenotypes originating from in vivo overexpression and suppression of DRR1 in the murine hippocampus with potential alterations in neuronal morphology. Therefore, in vitro analysis was performed utilizing AAV transduced primary hippocampal cultures overexpressing or suppressing DRR1. Synchronously the viral vector included a green fluorescent protein (GFP) being expressed throughout the complete neural cell. GFP staining was used to verify successful transfection and for reconstruction of dendritic arbors and dendritic stretches for spine classification. DRR1 suppression showed reduced total spine numbers especially evoked by reduced numbers of immature spine classes – namely long thin spines and filopodia. Whereas mature mushroom spines and stubby spines were unaffected. By overexpressing DRR1, tendencies inclined against higher total dendritic lengths, branch points and increased dendritic arbors in comparison to controls. In regard of spines, total numbers were unaffected. However, mature mushroom spines were significantly declined in numbers, but compensated by increased numbers of immature long thin spines and filopodia.
Chronic social defeat stress (CSDS) is widely used in mouse models to study the effects of stress and resilience. We exposed C57Bl/6J mice expressing GFP under the Thy1 promoter CSDS and categorized them into resilient (R+/-), susceptible (R-/-) and non-learning (R+/+) mice following a modified social interaction test (MSIT). We found alterations in CA1 spine compositions with resilient animals resembling the untreated phenotype. Stress susceptible and non-learning animals displayed reduced numbers in stubby spines with simultaneous increases in mature mushroom spines. In addition, we could detect a tendency towards more immature spines in susceptible animals and non-learners, mirroring our in vitro results.
Finally, we present a different investigative approach in this thesis. Sequenced acute stress was previously found to compromise cognition including spine loss.
We aimed to investigate the implication of acute stress on DRR1 levels and its occurrence in diverse cell types of the brain. We subjected one group of C57Bl/6J mice to acute stress and injected another group with the artificial glucocorticoid DEX. Six hours post stress, animals were perfused and brains were subsequently immunobiologically analyzed. We found DRR1 protein levels elevated in the hippocampus of stressed and DEX-treated animals compared to controls. Interestingly, DRR1 seemed was especially elevated in endothelial cells. This coincides with our investigations finding DRR1 present in astrocytic end-feet under basal conditions and might claim a participation of DRR1 in the blood-brain-barrier integrity.
Our results show DRR1 as actin-interacting and glucocorticoid-sensitive gene affecting structural plasticity of hippocampal spines. Moreover, DRR1 directly interacts with AMPA glutamate receptors and presumably is involved in AMPA trafficking to the postsynaptic membrane. In addition, this study could demonstrate that DRR1 is expressed by other cell types of the brain. Of special interest is DRR1’s occurrence in astrocytic end-feet and endothelial cells suggesting a role as integrator of cell-cell communication and to this end also acting as modifier of stress-induced consequences at the neurovascular unit.
In vivo data of chronically stressed mice displayed no phenotypic differences in hippocampal pyramidal neurons of resilient animals as compared to unstressed mice. Morphological alterations of spine structures were particularly visible in stress susceptible and non-learning animals. Integrating our findings with existing behavioral data, we can conclude that DRR1 plays a role in stress resilience whereby it needs to be expressed in a tightly managed homeostatic equilibrium.
Energy-conserving dimethyl sulfoxide reduction in the acetogenic bacterium Moorella thermoacetica
(2022)
Moorella thermoacetica is one of the well-studied thermophilic acetogenic bacteria. It grows by oxidation of organic substrates, CO or H2 coupled to CO2 reduction to acetate. Here, we describe that M. thermoacetica can also use dimethyl sulfoxide as terminal electron acceptor. Growth of M. thermoacetica on glucose or H2 + CO2 was stimulated by dimethyl sulfoxide (DMSO). Membranes showed a DMSO reductase activity, that was induced by growing cells in presence of DMSO. The enzyme used reduced anthraquinone-2,6-disulfonate, benzyl- and methyl viologen as electron donor, but not NAD(P)H. Activity was highest at pH 5 and 60°C, the Km for DMSO was 2.4 mM. Potential DMSO reductase subunits were identified by peptide mass fingerprinting; they are encoded in a genomic region that contains three potential dmsA genes, three dmsB genes and one dmsC gene. Transcriptome analysis revealed that two different dmsAB gene clusters were induced in the presence of DMSO. The function of these two and their predicted biochemical features are discussed. In addition, the data are in line with the hypothesis that M. thermoacetica can use DMSO alongside CO2 as electron acceptor and DMSO reduction is catalysed by an energy-conserving, membrane-bound electron transport chain with DMSO as final electron acceptor.
Thermoanaerobacter kivui is a thermophilic acetogen that can grow on carbon monoxide as sole carbon and energy source. To identify the gene(s) involved in CO oxidation, the genome sequence was analyzed. Two genes potentially encoding CO dehydrogenases were identified. One, cooS, potentially encodes a monofunctional CO dehydrogenase, whereas another, acsA, potentially encodes the CODH component of the CODH/ACS complex. Both genes were cloned, a His-tag encoding sequence was added, and the proteins were produced from a plasmid in T. kivui. His-AcsA copurified by affinity chromatography with AcsB, the acetyl-CoA synthase of the CO dehydrogenase/acetyl CoA synthase complex. His-CooS copurified with CooF1, a small iron-sulfur center containing protein likely involved in electron transport. Both protein complexes had CO:ferredoxin oxidoreductase as well as CO:methyl viologen oxidoreductase activity, but the activity of CooSF1 was 15-times and 231-times lower, respectively. To underline the importance of CooS, the gene was deleted in the CO-adapted strain. Interestingly, the ∆cooS deletion mutant did not grow on CO anymore. These experiments clearly demonstrated that CooS is essential for growth of T. kivui on CO. This is in line with the hypothesis that CooS is the CO-oxidizing enzyme in cells growing on CO.
Neuroligin-3 (Nlgn3), a neuronal adhesion protein implicated in autism spectrum disorder (ASD), is expressed at excitatory and inhibitory postsynapses and hence may regulate neuronal excitation/inhibition balance. To test this hypothesis, we recorded field excitatory postsynaptic potentials (fEPSPs) in the dentate gyrus of Nlgn3 knockout (KO) and wild-type mice. Synaptic transmission evoked by perforant path stimulation was reduced in KO mice, but coupling of the fEPSP to the population spike was increased, suggesting a compensatory change in granule cell excitability. These findings closely resemble those in neuroligin-1 (Nlgn1) KO mice and could be partially explained by the reduction in Nlgn1 levels we observed in hippocampal synaptosomes from Nlgn3 KO mice. However, unlike Nlgn1, Nlgn3 is not necessary for long-term potentiation. We conclude that while Nlgn1 and Nlgn3 have distinct functions, both are required for intact synaptic transmission in the mouse dentate gyrus. Our results indicate that interactions between neuroligins may play an important role in regulating synaptic transmission and that ASD-related neuroligin mutations may also affect the synaptic availability of other neuroligins.
Bei den meisten erwachsenen Säugetieren führt ein Herzinfarkt zu Fibrose und Verlust von funktionellem Herzgewebe. Einige Wirbeltiere, wie der Zebrabärbling, besitzen jedoch die bemerkenswerte Fähigkeit, nach einer Schädigung ihres Herzgewebes verlorenes Gewebe zu regenerieren und so schädliche Folgen zu verhindern. Die lokale Immunantwort auf eine Verletzung wird zunehmend als eine wichtige Determinante für das regenerative Potential eines Gewebes gesehen. Das Komplementsystem ist Teil des humoralen Immunsystems. Historisch ist es als eine Sammlung von Protein bekannt, den Komplementkomponenten, die in der Leber synthetisiert werden und im Blutkreislauf zirkulieren. Bei Exposition gegenüber einem Auslöser, wie z. B. einem Pathogen, wird eine Komplementkomponentproteinspaltungskaskade initiiert, die dazu führen kann, dass Immunzellen rekrutiert werden, und, dass die Phagozytose erleichtert, ggf. die Zielzelle lysiert wird. Studien legen nahe, dass das Komplementsystem an zellulären Prozessen beteiligt sei, die für Entwicklungs- und Krankheitsprozesse entscheidend sind, wie etwa Proliferation und Dedifferenzierung. Es gibt Hinweise, dass das Komplementsystem eine Rolle bei Krebserkrankungen und bei regenerativen Prozessen spielen könnte. In verschiedenen Arten wurde eine lokale verletzungsinduzierte Expression von komplementkomponentkodierenden Genen in regenerierendem Gewebe beobachtet.
Einzelne Studien legen nahe, dass Funktionsverlust einzelner Komplementkomponenten regenerative Prozesse beeinträchtigt.
Offene Fragen bleiben jedoch: Ist die lokale Expression von mehreren komplementkomponentkodierenden Genen ein Merkmal von regenerierendem Gewebe, das sie von Geweben unterscheidet, welchem die Fähigkeit zur Regeneration fehlt? Und welche Rolle könnte das Komplementsystem und seine Komponenten während des regenerativen Prozesses spielen? Um diesen Fragen nachzugehen, wurde eine Expressionsanalyse von Zebrabärblingsgewebe nach Verletzung mittels RT-qPCR und in situ Hybridisierung durchgeführt: kardiale Kryoverletzung, Larvenrumpfamputation und Schwanzflossenamputation. Ich beobachtete, dass mehrere komplementkomponentkodierende Gene in diesen Geweben nach Verletzung induziert wurden. Die Interpretation veröffentlichter single cell RNAseq Datensätze legt nahe, dass diese komplementkomponentenkodierenden Gene von verschiedenen Zelltypen exprimiert werden, darunter Immunzellen, Epikardzellen und Fibroblasten. Um transkriptionelle Unterschiede zwischen regenerierendem und nicht regenerierendem Gewebe zu identifizieren, verwendete ich ein nicht regeneratives Zebrabärblingmodell, die il11ra- Mutante. Dieser Mutante fehlt die Fähigkeit, verschiedene Organe zu regenerieren, das ist der Fall beim Herzen, dem larvalen Rumpf, und der Schwanzflosse. Ich stellte fest, dass die Mehrheit der verletzungsinduzierten komplementkomponentkodierenden Gene il11ra nachgeschaltet war. Darüber hinaus zeigten Experimente unter Verwendung chemischer Inhibitoren, dass speziell die Expression der komplementkomponentkodierenden Gene c3a.1,
c4b und c7a im Larvenrumpfamputationsmodell durch den Il11-Stat3-Signalweg moduliert wird.
Zur Klärung der Frage, ob das Komplementsystem und/ oder seine Komponenten eine Rolle während der Regeneration spielen, wurden verschiede Funktionsverlustmodelle generiert und im larvalen Rumpfamputationsmodell auf mögliche Aberrationen getestet. Zum einen generierte ich Überexpressionslinien von endogenen Inhibitoren der Komplementproteinspaltungskaskade. Überexpression eines etablierten Komplementsysteminhibitors rca2.1/ tecrem führte zu einer im Vergleich zu Wildtyp- Geschwistern verringerten Regeneration des larvalen Rumpfs. Zum anderen generierte ich Funktionsverlustmutanten von individuellen Komplementkomponenten durch CRISPR/Cas9 vermittelter Mutagenese, und zwar für masp1, masp2, cfd, c1s, c4b, c5 und c9. Die larvale Rumpfregeneration war in diesen Mutanten unauffällig. Allerdings zeigten c4b Mutanten eine verringerte Kardiomyozytenproliferation und eine differenzielle Expression von einigen Markergenen, einschließlich einer erhöhten Expression von inflammatorischen Zytokinen.
Meine Studien führten zu neuen Einblicken in das Komplementsystem im Kontext der Regeneration. Ich fand heraus, dass mehrere komplementkomponentenkodierenden Gene in regenerierendem Zebrabärblinggewebe exprimiert werden, und zwar im Herzgewebe, im larvalen Rumpf und in der adulten Flosse. Darüber hinaus zeige ich, dass die verletzungsinduzierte Expression von komplementkodierenden Genen in regenerierendem Gewebe dem Regenerationsmasterregulator il11ra nachgeschaltet ist. Speziell c3a.1, c4b und c7a wurden durch il11/ stat3 reguliert...