Institutes
Refine
Year of publication
Document Type
- Article (374)
- Doctoral Thesis (261)
- Preprint (42)
- Book (14)
- Contribution to a Periodical (7)
- Review (4)
Has Fulltext
- yes (702)
Is part of the Bibliography
- no (702)
Keywords
- Podospora anserina (9)
- aging (8)
- Membrane Proteins (7)
- SARS-CoV-2 (7)
- Synechococcus (6)
- 14CO2 Fixation (5)
- Cyanobacteria (5)
- Ecology (5)
- Haloferax volcanii (5)
- Phylogeny (5)
Institute
- Biowissenschaften (702)
- Senckenbergische Naturforschende Gesellschaft (38)
- Biochemie, Chemie und Pharmazie (21)
- Medizin (21)
- Präsidium (21)
- Biodiversität und Klima Forschungszentrum (BiK-F) (16)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (15)
- Institut für Ökologie, Evolution und Diversität (13)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (13)
- MPI für Biophysik (10)
Predicting the combined effects of multiple stressors and stress adaptation in gammarus pulex
(2024)
Global change confronts organisms with multiple stressors causing nonadditive effects. Persistent stress, however, leads to adaptation and related trade-offs. The question arises: How can the resulting effects of these contradictory processes be predicted? Here we show that Gammarus pulex from agricultural streams were more tolerant to clothianidin (mean EC50 148 μg/L) than populations from reference streams (mean EC50 67 μg/L). We assume that this increased tolerance results from a combination of physiological acclimation, epigenetic effects, and genetic evolution, termed as adaptation. Further, joint exposure to pesticide mixture and temperature stress led to synergistic interactions of all three stressors. However, these combined effects were significantly stronger in adapted populations as shown by the model deviation ratio (MDR) of 4, compared to reference populations (MDR = 2.7). The pesticide adaptation reduced the General-Stress capacity of adapted individuals, and the related trade-off process increased vulnerability to combined stress. Overall, synergistic interactions were stronger with increasing total stress and could be well predicted by the stress addition model (SAM). In contrast, traditional models such as concentration addition (CA) and effect addition (EA) substantially underestimated the combined effects. We conclude that several, even very disparate stress factors, including population adaptations to stress, can act synergistically. The strong synergistic potential underscores the critical importance of correctly predicting multiple stresses for risk assessment.
The response of benthic habitats and organisms to bottom-contact fishing intensity is investigated in marine protected areas (MPAs) of the German EEZ in the North and Baltic Seas. We examined the current state of macrofauna biodiversity in 2020–2022. Comparative analysis for macrofauna (in- and epifauna) inhabiting nine Natura 2000 MPAs constitutes a baseline to assess the effects of bottom-contact fishing exclusion in the future. Aspects of spatial and temporal variability are briefly summarized and discussed. We provide a species list for each region, including 481 taxa, of which 79 were found in both regions, 183 only in the North Sea, and 219 only in the Baltic Sea. The Baltic Sea dataset surprisingly included higher numbers of taxa and revealed more Red List species. The share of major taxonomic groups (polychaetes, bivalves and amphipods) in species richness showed peculiar commonalities between the two regions. In the North Sea, multivariate analysis of community structure revealed significantly higher within-similarity and stronger separation between the considered MPAs compared to the Baltic MPAs. Salinity, temperature and sediment fractions of sand were responsible for over 60% of the variation in the North Sea macrofauna occurrence data. Salinity, mud fraction and bottom-contact fishing were the most important drivers in the Baltic Sea and, together with other considered environmental drivers, were responsible for 53% of the variation. This study identifies aspects of macrofauna occurrence that may be used to assess (causes of) future changes.
Within the realms of human and artificial intelligence, the concepts of consciousness and comprehension are fundamental distinctions. In the clinical sphere, patient awareness regarding medication and its physiological processes plays a crucial role in determining drug efficacy and outcomes. This article introduces a novel perspective on prescription practices termed “Ultra-Overt Therapy” (UOT). A review of current supporting evidence was conducted through a non-systematic search in PubMed and Google Scholar, focusing on concepts such as the “mind–body relationship,” “placebo response,” “neuroscience,” and “complementary medicine.” Our findings, rooted in the mechanisms of the “placebo effect,” the intricacies of “intersubjective therapy,” the potency of “interoceptive awareness,” and other domains of medical science, suggest that UOT holds theoretical promise. Future research endeavors focusing on these areas may elucidate the global impact of this method on medical treatment and patient care.
In the course of global climate change, Central Europe is experiencing more frequent and prolonged periods of drought. The drought years 2018 and 2019 affected European beeches (Fagus sylvatica L.) differently: even in the same stand, drought-damaged trees neighboured healthy trees, suggesting that the genotype rather than the environment was responsible for this conspicuous pattern. We used this natural experiment to study the genomic basis of drought resistance with Pool-GWAS. Contrasting the extreme phenotypes identified 106 significantly associated single-nucleotide polymorphisms (SNPs) throughout the genome. Most annotated genes with associated SNPs (>70%) were previously implicated in the drought reaction of plants. Non-synonymous substitutions led either to a functional amino acid exchange or premature termination. An SNP assay with 70 loci allowed predicting drought phenotype in 98.6% of a validation sample of 92 trees. Drought resistance in European beech is a moderately polygenic trait that should respond well to natural selection, selective management, and breeding.
A model of digestive tooth corrosion in lizards: experimental tests and taphonomic implications
(2021)
Corrosion patterns induced by gastric fluids on the skeleton of prey animals may depend on the nature of the corrosive agents (acid, enzymes) as well as on the composition of the hard parts and the soft tissues that surround them. We propose a framework for predicting and interpreting corrosion patterns on lizard teeth, our model system, drawing on the different digestive pathways of avian and non-avian vertebrate predators. We propose that high-acid, low-enzyme systems (embodied by mammalian carnivores) will lead to corrosion of the tooth crowns, whereas low-acid, high-enzyme systems (embodied by owls) will lead to corrosion of the tooth shafts. We test our model experimentally using artificial gastric fluids (with HCl and pepsin) and feeding experiments, and phenomenologically using wild-collected owl pellets with lizard remains. Finding an association between the predictions and the experimental results, we then examine corrosion patterns on nearly 900 fossil lizard jaws. Given an appropriate phylogenetic background, our focus on physiological rather than taxonomic classes of predators allows the extension of the approach into Deep Time.
In Morocco, there are two well-recognised honey bee (Apis mellifera L.) subspecies: A. m. intermissa in the north and A. m. sahariensis in the south-east. The latter subspecies is found in the arid and semiarid climates of the Sahara Desert. In this study, we used honey bees from four areas of south-eastern Morocco which are, to some degree, isolated by arid zones. We analysed the shape and size of the forewings, using the method of geometric morphometrics. The bees from the four areas of south-eastern Morocco differed significantly in terms of wing shape. Moreover, bees from traditional hives were smaller than those from modern hives. The bees from south-eastern Morocco were clearly different from the reference samples obtained from the Morphometric Bee Data Bank in Oberursel, Germany, representing most of the global variation in honey bees. Surprisingly, the bees were also different from A. m. sahariensis, which should occur in the study area, according to earlier studies. This difference could have been caused by introgression with non-native subspecies imported by beekeepers. The distinct honey bees from south-eastern Morocco deserve to be protected. We provide a method for identifying them, which can help protect them.
Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. Utilising a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and three new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.