Institutes
Refine
Year of publication
Document Type
- Doctoral Thesis (207)
- Article (143)
- Preprint (9)
- Contribution to a Periodical (2)
- Book (1)
Has Fulltext
- yes (362)
Is part of the Bibliography
- no (362)
Keywords
- Haloferax volcanii (5)
- Podospora anserina (5)
- SARS-CoV-2 (5)
- fungi (4)
- Metabolic Engineering (3)
- Phylogeny (3)
- Saccharomyces cerevisiae (3)
- aging (3)
- bats (3)
- biodiversity (3)
Institute
- Biowissenschaften (362)
- Institut für Ökologie, Evolution und Diversität (10)
- Senckenbergische Naturforschende Gesellschaft (9)
- Biodiversität und Klima Forschungszentrum (BiK-F) (7)
- Biochemie, Chemie und Pharmazie (6)
- Buchmann Institut für Molekulare Lebenswissenschaften (BMLS) (6)
- Zentrum für Biomolekulare Magnetische Resonanz (BMRZ) (6)
- Medizin (4)
- Frankfurt Institute for Advanced Studies (FIAS) (3)
- Präsidium (3)
This work characterizes the post-PKS modifications of AQ-256. Additionally, the second part describes the establishment of an AQ production platform for electrolyte generation that can be utilized in redox-flow-batteries. Lastly, a silent BGC that encodes the genes for terpenoid biosynthesis was described and characterized with regards to product formation and putative ecological function.
Background: Understanding the processes that lead to hybridization of wolves and dogs is of scientific and management importance, particularly over large geographical scales, as wolves can disperse great distances. However, a method to efficiently detect hybrids in routine wolf monitoring is lacking. Microsatellites offer only limited resolution due to the low number of markers showing distinctive allele frequencies between wolves and dogs. Moreover, calibration across laboratories is time-consuming and costly. In this study, we selected a panel of 96 ancestry informative markers for wolves and dogs, derived from the Illumina CanineHD Whole-Genome BeadChip (174 K). We designed very short amplicons for genotyping on a microfluidic array, thus making the method suitable also for non-invasively collected samples.
Results: Genotypes based on 93 SNPs from wolves sampled throughout Europe, purebred and non-pedigree dogs, and suspected hybrids showed that the new panel accurately identifies parental individuals, first-generation hybrids and first-generation backcrosses to wolves, while second- and third-generation backcrosses to wolves were identified as advanced hybrids in almost all cases. Our results support the hybrid identity of suspect individuals and the non-hybrid status of individuals regarded as wolves. We also show the adequacy of these markers to assess hybridization at a European-wide scale and the importance of including samples from reference populations.
Conclusions: We showed that the proposed SNP panel is an efficient tool for detecting hybrids up to the third-generation backcrosses to wolves across Europe. Notably, the proposed genotyping method is suitable for a variety of samples, including non-invasive and museum samples, making this panel useful for wolf-dog hybrid assessments and wolf monitoring at both continental and different temporal scales.
Using walls to navigate the room: egocentric representations of borders for spatial navigation
(2021)
Spatial navigation forms one of the core components of an animal’s behavioural repertoire. Good navigational skills boost survival by allowing one to avoid predators, to search successfully for food in an unpredictable world, and to be able to find a mating partner. As a consequence, the brain has dedicated many of its resources to the processing of spatial information. Decades of seminal work has revealed how the brain is able to form detailed representations of one’s current position, and use an internal cognitive map of the environment to traverse the local space. However, what is much less understood is how neural computations of position depend on distance information of salient external locations such as landmarks, and how these distal places are encoded in the brain.
The work in this thesis explores the role of one brain region in particular, the retrosplenial cortex (RSC), as a key area to implement distance computations in relation to distal landmarks. Previous research has shown that damage to the RSC results in losses of spatial memory and navigation ability, but its exact role in spatial cognition remains unclear. Initial electrophysiological recordings of single cells in the RSC during free exploration behaviour of the animal resulted in the discovery of a new population of neurons that robustly encode distance information towards nearby walls throughout the environment. Activity of these border cells was characterized by high firing rates near all boundaries of the arena that were available to the animal, and sensory manipulation experiments revealed that this activity persisted in the absence of direct visual or somatosensory detection of the wall.
It quickly became apparent that border cell activity was not only modulated by the distance to walls, but was contingent on the direction the animal was facing relative to the boundary. Approximately 40% of neurons displayed significant selectivity to the direction of walls, mostly in the hemifield contra-lateral to the recorded hemisphere, such that a neuron in left RSC is active whenever a wall occupies proximal space on the right side of the animal. Using a cue-rotation paradigm, experiments initially showed that this egocentric direction information was invariant to the physical rotation of the arena. Yet this rotation elicited a corresponding shift in the preferred direction of local head-direction cells, as well as a rotation in the firing fields of spatially-tuned cells in RSC. As a consequence, position and direction encoding in RSC must be bound together, rotating in unison during the environmental manipulations, as information about allocentric boundary locations is integrated with head-direction signals to form egocentric border representations.
It is known that the RSC forms many anatomical connections with other parts of the brain that encode spatial information, like the hippocampus and para-hippocampal areas. The next step was to establish the circuit mechanisms in place for RSC neurons to generate their activity in respect to the distance and direction of walls. A series of inactivation experiments revealed how RSC activity is inter-dependent with one of its communication partners, the medial entorhinal cortex (MEC). Together they form a wider functional network that encodes precise spatial information of borders, with information flowing from the MEC to RSC but not vice versa. While the conjunction between distance and heading direction relative to the outer walls was the main driver of neural activity in RSC, border cells displayed further behavioural correlates related to movement trajectories. Spiking activity in either hemisphere tended to precede turning behaviour on a short time-scale in a way that border cells in the right RSC anticipated right-way turns ~300 ms into the future.
The interpretation of these results is that the RSC’s primary role in spatial cognition is not necessarily on the early sensory processing stage as suggested by previous studies. Instead, it is involved in computations related to the generation of motion plans, using spatial information that is processed in other brain areas to plan and execute future actions. One potential function of the RSC’s role in this process could be to act correctly in relation to the nearby perimeter, such that border cells in one hemisphere are involved in the encoding of walls in the contralateral hemifield, after which the animal makes an ipsilateral turn to avoid collision. Together this supports the idea that the MEC→RSC pathway links the encoding of space and position in the hippocampal system with the brain’s motor action systems, allowing animals to use walls as prominent landmarks to navigate the room.
The main aim of this thesis work was to elucidate the catalytic mechanism of several enzyme complexes on the basis of their three-dimensional structure. All investigated enzyme complexes occur in the anaerobic energy metabolism and have an essential function by the challenging degradation of aromatic compounds and the flavin-based electron bifurcation (FBEB)/confurcation, an energy-coupling mechanism. More specifically, I studied the phthaloyl-CoA decarboxylase of Thauera chlorobenzoica (Pcd) involved in phthalate ester decomposition, the FBEB protein complexes lactate dehydrogenase/electron-transfer flavoprotein (Ldh/EtfAB) of Acetobacterium woodii, the heterodisulfide-related subunit HdrA of the sulfur- oxidizing bacteria Hyphomicrobium denitrificans (sHdrA). In addition, I contributed to the structure determination of the caffeyl-CoA reductase- EtfAB complex of A. woodii and the naphthoyl-CoA reductase of the sulfate-respiring enrichment culture N47 (mentioned in the Appendix E and F).
Background: In times of global warming there is an urgent need to replace fossil fuel-based energy vectors by less carbon dioxide (CO2)-emitting alternatives. One attractive option is the use of molecular hydrogen (H2) since its combustion emits water (H2O) and not CO2. Therefore, H2 is regarded as a non-polluting fuel. The ways to produce H2 can be diverse, but steam reformation of conventional fossil fuel sources is still the main producer of H2 gas up to date. Biohydrogen production via microbes could be an alternative, environmentally friendly and renewable way of future H2 production, especially when the flexible and inexpensive C1 compound formate is used as substrate.
Results: In this study, the versatile compound formate was used as substrate to drive H2 production by whole cells of the thermophilic acetogenic bacterium Thermoanaerobacter kivui which harbors a highly active hydrogen-dependent CO2 reductase (HDCR) to oxidize formate to H2 and CO2 and vice versa. Under optimized reaction conditions, T. kivui cells demonstrated the highest H2 production rates (qH2 = 685 mmol g−1 h−1) which were so far reported in the literature for wild-type organisms. Additionally, high yields (Y(H2/formate)) of 0.86 mol mol−1 and a hydrogen evolution rate (HER) of 999 mmol L−1 h−1 were observed. Finally, stirred-tank bioreactor experiments demonstrated the upscaling feasibility of the applied whole cell system and indicated the importance of pH control for the reaction of formate-driven H2 production.
Conclusions: The thermophilic acetogenic bacterium T. kivui is an efficient biocatalyst for the oxidation of formate to H2 (and CO2). The existing genetic tool box of acetogenic bacteria bears further potential to optimize biohydrogen production in future and to contribute to a future sustainable formate/H2 bio-economy.
Microbial production of chemicals is a sustainable alternative to conventional industrial processes. However, the implementation of exogenous metabolic pathways is hampered by slow diffusion rates, competing pathways, or secretion of intermediates. Pre-existing organelles have been harnessed to overcome these problems, but these approaches suffer from interference with endogenous pathways. We have developed a new concept for the compartmentalization of enzymatic pathways in ER-derived vesicles.
This work addresses the investigation of the biosynthesis mechanisms of type II polyketide synthase (PKS) and fatty acid synthase (FAS) derived specialized metabolites (SMs) from Photorhabdus laumondii.
The elucidation of the biosynthetic pathway of the bacterial 3,5-dihydroxy-4-isopropyl-trans-stilbene (IPS) was one of the major topics of this thesis. IPS exhibits several bioactive characteristics as it inhibits the phenoloxidase of insects, acts antibacterial, but also influences the soluble epoxide hydrolase which is involved in inflammatory reactions. It was recently approved as a treatment against psoriasis by the FDA and is the first Photorhabdus derived drug.
The stilbene generation in Photorhabdus requires the formation of the two acyl-carrier-protein (ACP) bound 5-phenyl-2,4-pentadienoyl- and isovaleryl-β-ketoacyl-moieties. The ketosynthase (KS)/cyclase StlD catalyzes a ring formation via a Michael-addition between the two intermediates which is then further processed by an aromatase. The formation of 5-phenyl-2,4-pentadienoyl-ACP was shown via in vitro assays with purified proteins by proving the influence of the KS FabH, ketoreductase FabG and dehydratase FabA or FabZ of the fatty acid metabolism. While E. coli was able to complement most of these enzymes in attempts to produce IPS in the heterologous host, the Photorhabdus derived FabH was not replaceable despite 73 % sequence identity with the E. coli based isoenzyme, acting as a gatekeeper enzyme for cinnamic acid (CA) moieties. Furthermore, the ability to incorporate meta-substituted halogenated CA-derivatives was shown in order to produce 3-chloro- and 3-bromo-IPS. While studying the stilbene biosynthesis, the ability of Photorhabdus and Xenorhabdus to produce hydrazines was also discovered.
The second investigated biosynthesis was the formation of benzylideneacetone (BZA). BZA is produced by Photorhabdus and Xenorhabdus strains acting as a suppressor for the immune cascade of insects and has also antibiotic activities towards Gram-negative bacteria. Due to its structural similarity towards CA and the intermediates during the stilbene formation, a shared mechanism for Photorhabdus and Xenorhabdus budapestensis was proposed due to their ability to produce CA. The production of BZA was also dependent on the stilbene related CoA-ligase, the ACP and FabH. It was verified in vitro and in vivo in E. coli yielding a 150-fold increase of the BZA production compared to the Photorhabdus and Xenorhabdus wildtype (WT) strains.
The second part of this work deals with the optimization of P. laumondii strains regarding the production titers of IPS. Therefore, several deletions of other SM related genes as well as promoter exchanges in front of stilbene related genes were carried out. These approaches were combined with the upregulation of the phenylalanine by heterologous plasmid expression, since it is the precursor of CA. Another approach applied in parallel was the optimization of the cultivation conditions with different media and supplementation with XAD-resins. It was proved that media rich on fatty acids or peptides led to higher optical densities of the cultures and thus to higher titers of stilbenes. Since IPS is inhibiting the phenoloxidase, an enzyme important for the insect immunity, it was hypothesized that cultivation in media containing insects might enhance the output of this SM. Starting from 23 mg/l of IPS in the P. laumondii WT strain, it was possible to increase the production levels to more than 860 mg/l by utilizing the mentioned approaches.
The last topic of this thesis focuses on the production of epoxidated IPS (EPS) and its derivatives. Under laboratory conditions, only a low titer of EPS was observed for the wildtype strain. However, the optimized IPS strains and IPS-production conditions could also be applied for EPS which led to higher productions and also to the detection of many new derivatives. Most of the EPS derivatives were amino acid or peptide derived acting as nucleophiles to open the epoxide ring and yielding β-amino-alcohols. However, purification and chemical synthesis attempts to obtain EPS failed due to its poor stability. Epoxides were utilized in in vitro assays with amino acids, peptides and proteins to get insights whether epoxidations might act as posttranslational modification in Photorhabdus. The reactions were performed with styrene oxide and stilbene oxide replacing EPS based on their structural similarity. The modifications were executed successfully although proteomics approaches with in vivo data are required to confirm these findings. During the purification attempts of EPS, further derivatives were detected. The structures of dimerized stilbenes, a cis-isomer of IPS and another derivative that might incorporate an amino-group in the resveratrol ring were proposed on the basis of the HPLC-MS data.
Combinatorial CRISPR-Cas screens have advanced the mapping of genetic interactions, but their experimental scale limits the number of targetable gene combinations. Here, we describe 3Cs multiplexing, a rapid and scalable method to generate highly diverse and uniformly distributed combinatorial CRISPR libraries. We demonstrate that the library distribution skew is the critical determinant of its required screening coverage. By circumventing iterative cloning of PCR-amplified oligonucleotides, 3Cs multiplexing facilitates the generation of combinatorial CRISPR libraries with low distribution skews. We show that combinatorial 3Cs libraries can be screened with minimal coverages, reducing associated efforts and costs at least 10-fold. We apply a 3Cs multiplexing library targeting 12,736 autophagy gene combinations with 247,032 paired gRNAs in viability and reporter-based enrichment screens. In the viability screen, we identify, among others, the synthetic lethal WDR45B-PIK3R4 and the proliferation-enhancing ATG7-KEAP1 genetic interactions. In the reporter-based screen, we identify over 1,570 essential genetic interactions for autophagy flux, including interactions among paralogous genes, namely ATG2A-ATG2B, GABARAP-MAP1LC3B and GABARAP-GABARAPL2. However, we only observe few genetic interactions within paralogous gene families of more than two members, indicating functional compensation between them. This work establishes 3Cs multiplexing as a platform for genetic interaction screens at scale.
To fight the global problems of humanity, the United Nations has adopted 17 Sustainable Development Goals (SDGs). To achieve these goals, it is necessary that future decision-makers and stakeholders in society consider these goals to be important. Therefore, in this study, we examined how important students in 41 countries directly related to the environmental sector rated each of the 17 SDGs. Based on the analysis of these ratings, it was possible to categorize the SDGs into three higher-level factors that reflect the three pillars of sustainability (social, economic, environmental). These three pillars are considered to be of varying importance in different countries. We also correlated the ratings of these higher-level factors with country-specific indicators, such as the Human Development Index. The correlations between the indicators and the higher-level factors revealed that in countries with higher indices, the SDGs are rated as less important compared to in countries with lower indices. These results provide stakeholders with important guidance on how the SDGs should be promoted in their country.
The mammalian frontal and auditory cortices are important for vocal behavior. Here, using local-field potential recordings, we demonstrate that the timing and spatial patterns of oscillations in the fronto-auditory network of vocalizing bats (Carollia perspicillata) predict the purpose of vocalization: echolocation or communication. Transfer entropy analyses revealed predominant top-down (frontal-to-auditory cortex) information flow during spontaneous activity and pre-vocal periods. The dynamics of information flow depend on the behavioral role of the vocalization and on the timing relative to vocal onset. We observed the emergence of predominant bottom-up (auditory-to-frontal) information transfer during the post-vocal period specific to echolocation pulse emission, leading to self-directed acoustic feedback. Electrical stimulation of frontal areas selectively enhanced responses to sounds in auditory cortex. These results reveal unique changes in information flow across sensory and frontal cortices, potentially driven by the purpose of the vocalization in a highly vocal mammalian model.