Biowissenschaften
Refine
Year of publication
Document Type
- Article (765)
- Doctoral Thesis (569)
- Book (48)
- Contribution to a Periodical (36)
- diplomthesis (13)
- Conference Proceeding (9)
- Review (4)
- Report (3)
- Bachelor Thesis (1)
- Diploma Thesis (1)
Has Fulltext
- yes (1449)
Is part of the Bibliography
- no (1449)
Keywords
- aging (9)
- Podospora anserina (8)
- Archaea (7)
- mitochondria (7)
- Westafrika (6)
- autophagy (6)
- heat stress (6)
- phylogeny (6)
- Cell biology (5)
- Mitochondria (5)
Institute
- Biowissenschaften (1449)
- Senckenbergische Naturforschende Gesellschaft (109)
- Präsidium (99)
- Biodiversität und Klima Forschungszentrum (BiK-F) (97)
- Institut für Ökologie, Evolution und Diversität (85)
- Medizin (80)
- Exzellenzcluster Makromolekulare Komplexe (64)
- Biochemie und Chemie (54)
- Pharmazie (24)
- Informatik (21)
Resistance to CD19-directed immunotherapies in lymphoblastic leukemia has been attributed, among other factors, to several aberrant CD19 pre-mRNA splicing events, including recently reported excision of a cryptic intron embedded within CD19 exon 2. While “exitrons” are known to exist in hundreds of human transcripts, we discovered, using reporter assays and direct long-read RNA sequencing (dRNA-seq), that the CD19 exitron is an artifact of reverse transcription. Extending our analysis to publicly available datasets, we identified dozens of questionable exitrons, dubbed “falsitrons,” that appear only in cDNA-seq, but never in dRNA-seq. Our results highlight the importance of dRNA-seq for transcript isoform validation.
Chemical pollution is one of the main contributors to the degradation of lotic ecosystems and their biodiversity. Among chemicals driving lotic biodiversity decline are anthropogenic organic micropollutants (AOM), which affect the survival and functioning of freshwater organisms. Continuous exposure of freshwater organisms to AOM leads to adverse effects that sometimes cannot be traced with standard toxicity methods such as standard toxicity testing or biodiversity indices. Among these effects of AOM are selective or mutagenic effects that cause impaired species genetic diversity. Thus, the correlation between different levels of AOM and genetic diversity of species is still poorly understood. However, it can be explored by applying population genetics screening.
In Chapter 1 of this thesis, background information on environmental pollution, genetic screening, and the detection of evolutionary-relevant AOM effects in freshwater organisms are described and the thesis goals are identified. The main goal of the thesis is to study whether AOM exposure occurring in European rivers causes a significant evolutionary footprint in freshwater species and leads to a selection of more tolerant geno-and phenotypes. Therefore, population genetics indices together with high-resolution chemical exposure screening of a widespread indicator invertebrate species, Gammarus pulex (Linnaeus, 1758), living in polluted and pristine European rivers were investigated.
In Chapter 2, the development of a genetic screening method for G. pulex (microsatellites) is described. Due to genetic differentiation and the presence of morphologically cryptic lineages, the available sets of target loci do not enable a reliable population genetic characterization of G. pulex from central Germany. Thus, a novel set of microsatellite loci for a high-precision assessment of population genetic diversity was here applied. Eleven loci were first identified and thereafter amplified in G. pulex from three rivers. The new loci reliably amplified and indicated polymorphisms in the studied amphipods. The amplification resulted in the successful identification of genetically distinct populations of G. pulex from the analyzed rivers. Moreover, the microsatellite loci were amplified in other genetic lineages of G. pulex and another Gammarus species, G. fossarum, promising a broader applicability of the loci in related amphipod species.
In Chapter 3, the effects of AOM on species genetic differentiation and sensitivity to toxic chemicals in a typical central European river with pristine and AOM-polluted sections was investigated. The river’s site-specific concentrations of AOM were assessed by chemical analysis of G. pulex tissue and water samples. To test, whether different levels of AOM in the river select for pollution-dependent genotypes, the genetic structure of G. pulex from the river was analyzed. Finally, the toxicokinetics of and sensitivity to the commonly used insecticide imidacloprid were determined for amphipods sampled at pristine and polluted sections to assess whether various levels of AOM in the river influence sensitivity of G. pulex to imidacloprid. The results indicated that different levels of AOM did not drive genetic divergence of G. pulex within the river but led to an increased sensitivity of exposed amphipods to imidacloprid. The amphipods living in polluted river sections were more sensitive to the insecticide due to chronic exposure to toxic levels of AOM.
In Chapter 4, the relationship between site-specific pollution levels of AOM and genetic diversity parameters of G. pulex was analyzed at the regional scale within six rivers in central Germany. The genetic structure of G. pulex in the studied area was tested for relatedness to the waterway distance between sites. Gammarus pulex genetic diversity parameters, including allelic richness and inbreeding rate, were tested against environmental pollution parameters using linear mixed-effect- and structural-equation models. According to the results, G. pulex genetic diversity parameters were significantly associated with the detected AOM levels. At sites with high concentrations of AOM and toxicity potential G. pulex showed reduced genetic diversity and increased rates of inbreeding. These results suggest that AOM play a major role in shaping the genetic diversity of G. pulex in rivers.
According to the findings presented here, the applied microsatellites can be used to successfully detect changes in genetic patterns in freshwater amphipods facing increased levels of AOM. The findings indicate that levels of AOM representative for European rivers do not lead to the separation of genotypes among G. pulex as the connectivity between sites majorly contributes to species’ genetic structure. However, the chronic exposure to increased levels of toxic AOM leads to a reduction of species genetic diversity and increases the sensitivity of G. pulex to the toxic chemical effects.
Prof. Karin Böhning-Gaese, seit 2010 Direktorin des Senckenberg Biodiversität und Klima Forschungszentrums in Frankfurt am Main und Professorin an der Goethe-Universität, wurde in den Rat für Nachhaltige Entwicklung berufen. Das 15-köpfige Gremium berät die Bundesregierung, erarbeitet Beiträge zur Fortentwicklung der Nachhaltigkeitsstrategie, veröffentlicht Stellungnahmen zu Einzelthemen und soll zur öffentlichen Bewusstseinsbildung und zur gesellschaftlichen Debatte über Nachhaltigkeit beitragen.
First-principle metabolic modelling holds potential for designing microbial chassis that are resilient against phenotype reversal due to adaptive mutations. Yet, the theory of model-based chassis design has rarely been put to rigorous experimental test. Here, we report the development of Saccharomyces cerevisiae chassis strains for dicarboxylic acid production using genome-scale metabolic modelling. The chassis strains, albeit geared for higher flux towards succinate, fumarate and malate, do not appreciably secrete these metabolites. As predicted by the model, introducing product-specific TCA cycle disruptions resulted in the secretion of the corresponding acid. Adaptive laboratory evolution further improved production of succinate and fumarate, demonstrating the evolutionary robustness of the engineered cells. In the case of malate, multi-omics analysis revealed a flux bypass at peroxisomal malate dehydrogenase that was missing in the yeast metabolic model. In all three cases, flux balance analysis integrating transcriptomics, proteomics and metabolomics data confirmed the flux re-routing predicted by the model. Taken together, our modelling and experimental results have implications for the computer-aided design of microbial cell factories.
Non-ribosomal peptide synthetases (NRPSs) are modular biosynthetic megaenzymes producing many important natural products and refer to a specific set of peptides in bacteria’s and fungi’s secondary metabolism. With the actual purpose of providing advantages within their respective ecological niche, the bioactivity of the structurally highly diverse products ranges from, e.g., antibiotic (e.g., vancomycin) to immunosuppressive (e.g., cyclosporin A) to cytostatic (e.g., echinomycin or thiocoralin) activity.
An NRPS module consists of at least three core domains that are essential for the incorporation of specific substrates with the 'multiple carrier thiotemplate mechanism' into a growing peptide chain: an adenylation (A) domain selects and activates a cognate amino acid; a thiolation (T) domain shuffles the activated amino acid and the growing peptide chain, which are attached at its post-translationally 4ʹ-phosphopantetheine (4'-PPant) group, between the active sites; a condensation (C) domain links the upstream and downstream substrates. NRPS synthesis is finished with the transfer of the assembled peptide to the C-terminal chain-terminating domain. Accordingly, the intermediate is either released by hydrolysis as a linear peptide chain or by an intramolecular nucleophilic attack as a cyclic peptide.
The NRPS’s modular character seems to imply straightforward engineering to take advantage of their features but appears to be more challenging. Since the pioneering NRPS engineering approaches focused on the reprogramming and replacement of A domains, several working groups developed advanced methods to perform a complete replacement of subdomains or single or multiple catalytic domains.
The first part of this work focusses parts of the publication with the title 'De novo design and engineering of non-ribosomal peptide synthetases', which follows up assembly line engineering with the development of a new guideline. Thereby, the pseudodimeric V-shaped structure of the C domain is exploited to separate the N-terminal (CDSub) and C-terminal (CASub) subdomains alongside a four-AA-long linker. This results in the creation of self-contained, catalytically active CASub-A-T-CDSub (XUC) building blocks. As an advantage over the previous XU concept, the characteristics (substrate- and stereoselectivity) assigned to the C domain subunits are likewise exchanged, and thus, no longer represent a barrier. Furthermore, with the XUC concept, no important interdomain interfaces are disrupted during the catalytic cycle of NRPS, allow to expect much higher production titers. Moreover, the XUC concept shows a more flexible application within its genus origin of building blocks to create peptide libraries. Additionally, with this concept only 80 different XUC building blocks are needed to cover the entire proteinogenic amino acid spectrum.
The second part of this work addresses the influence of the C domain on activity and specificity of A domains. In a comprehensive analysis, a clear influence of different C domains on the in vitro activation rate and the in vivo substrate spectrum could be observed. Further in situ and in silico characterizations indicate that these influences are neither the result of the respective A domains promiscuity nor the C domain’s proofreading, but due to an 'extended gatekeeping' function of the C domain. This novel term of an 'extended gatekeeping' function describes the very nature of interfaces that C domains can form with an A domain of interest. Therefore, the C-A interface is assumed to have a more significant contribution to a selectivity filter function.
The third part of this work combines the NRPS engineering with phylogenetic/evolutionary perspectives. At first, the C-A interface could be precisely defined and further identified to encode equivalent information corresponding to the complete C-A didomain. Moreover, the comparison of NRPSs topology reveals hints for a co-evolutionary relatedness of the C-A didomain and could be shown to reassemble even after separation. In this regard, based on a designed CAopt.py algorithm, the reassembling-compatibility of hybrid interfaces could be determined by scoring of the co-expressed NRPS hybrids. This algorithm also enables the randomization of the interface sequences, thus, leading to the identification of more functional interface variant, which cause significantly higher peptide production and could even be applied to other native and hybrid interfaces.
Die Vorläuferform der eukaryotischen mRNA (prä-mRNA) durchläuft, eine Reihe von Prozessierungs-Schritte, die schließlich zu der Synthese einer „reifen“ und Exportkompetenten mRNA führt. prä-mRNA Spleißen ist ein essentieller Teilschritt dieser Reifung bei der intragene Sequenzen, sogenannte Introns, von der prä-mRNA entfernt werden, während Exons legiert werden. Das prä-mRNA Spleißen wird durch das Spleißosom katalysiert. Dieser Mega-Dalton Komplex, besteht aus fünf Sub-Komplexen, die sich wiederum aus katalytisch aktiven „kleinen nukleären Ribonukleinsäuren“ (snRNAs) und einer Vielzahl von proteinogenen Faktoren zusammensetzen. Diese Subkomplexe, bezeichnet als snRNPs (small nuclear Ribonucleoprotein Particles), binden die prä-mRNA an charakteristischen Sequenzen und richten die prä-mRNA durch eine Reihe von Konformations-Änderungen so aus, dass benachbarte Exons in Kontakt treten und über eine biochemische Ligations-Reaktion verbunden werden können.
Die Exon- bzw Intronerkennung der snRNPs wird durch zahlreiche Spleißfaktoren reguliert. Eine Proteinfamilie, die essentiell für die Regulierung des Spleißens ist, sind Serin/Arginin-reiche Proteine (SR-Proteine). Diese binden vorzugsweise an das 3‘ oder 5’ Ende von Exons, rekrutieren snRNPs und stimulieren dadurch die Exon-Inklusion. Durch diese Stimulierung können Spleiß-Events reguliert und gezielt spezifische Exons ausgeschlossen oder eingeschlossen werden. Dieser Prozess, der als alternatives Spleißen (AS) bezeichnet wird, tritt in 95% des menschlichen Transkriptoms auf und erweitert die Diversität eines Organismus, da verschiedene Transkripte von demselben Gen erzeugt werden können und folglich die Translation unterschiedlicher Proteine mit distinkten Funktionen ermöglicht wird.
Darüber hinaus verfügt die Zelle durch das AS über eine weitere posttranskriptionale Genregulationsebene, die insbesondere unter zellulären Stressbedingungen zur Expression von alternativen Protein-Isoformen von der Zelle genutzt wird. Eine in medizinischer Hinsicht besonders relevante Stressbedingung ist die sogenannte Hypoxie, die eine Sauerstoff-Unterversorgung von Zellen oder Gewebebereichen beschreibt. Hypoxie bzw. hypoxische Bereiche finden sich in Krebszellen und treten in 90% aller soliden Tumoren auf. Als Teil der Hypoxie Stress-Antwort, verfügt die Zelle über einen Adaptations-Mechanismus, der durch Hypoxieinduzierbare Faktoren (HIF) vermittelt wird. Diese Faktoren induzieren die Transkription zahlreicher Gene und stimulieren die Expression von Stressfaktoren, die an der zellulären Adaption der Hypoxie beteiligt sind. Einer dieser Faktoren ist der vaskuläre endotheliale Wachstumsfaktor A (VEGFA), welcher unter hypoxischen Bedingungen sekretiert wird und dadurch die Proliferation von Endothelzellen, die Neubildung von Blutgefäßen und damit die Vaskularisation des hypoxischen Bereichs stimuliert.
Die zelluläre Anpassung ist jedoch nicht nur auf die transkriptionelle Regulation des HIF-vermittelten Hypoxie Signalwegs beschränkt, sondern wird auf multiplen Genexpressions-Ebenen reguliert. Obwohl bekannt ist, dass tausende Transkripte unter hypoxischen Bedingungen alternativ gespleißt werden, sind die Faktoren, die die zelluläre Stress-Antwort durch AS regulieren, sowie deren molekularer Mechanismus jedoch weitestgehend unbekannt.
Diese Arbeit umfasst die Identifizierung und Charakterisierung von AS Events, sowie den Einfluss und die Regulation von Spleißfaktoren auf AS unter hypoxischen Bedingungen. Hierzu führten wir globale Genexpressions- und AS-Analysen in HeLaKarzinomzelllinien unter Normoxie (21% O2) und Hypoxie (0.2% O2) durch und zeigen, dass 7962 Gene nach 24h Hypoxie unterschiedlich exprimiert werden. Über AS-Analysen konnten 4434 Transkripte identifiziert werden, die bei Hypoxie über AS reguliert sind. Dabei trat „Exon-Skipping“ als das am häufigsten auftretende AS-Events auf. Über PCR basierte Validierungs-Experimente konnten 5 regulierte Transkripte nachgewiesen werden. Dabei weisen Exon 3 und 4 in BORA, Exon 6 in MDM4 und Exon 4-5 in CSSP1 Exon-Skipping Events auf, während Exon-Inklusionen in CEP192 Exon 28 und in der 3’UTR von EIF4A2 validiert werden konnten.
Darüber hinaus wurde im Rahmen der AS-Analyse die Regulation des sogenannten „backsplicings“ bei Hypoxie untersucht. Im Gegensatz zum linearen Spleißens, wird beim backsplicing das 5’Ende und das 3’Ende von Exons verbunden, was die Bildung von sogenannten zirkulären RNAs (circRNAs) zufolge hat. Obwohl nur wenige Funktionen dieser RNA-Klasse bekannt sind, wurde die Regulation von circRNAs während der Zell-Differenzierung sowie in diversen Krebszellen beschrieben. Dabei können circRNAs als microRNA- oder Protein-Schwämme fungieren oder dienen als Protein-Interaktion Plattform und regulieren dabei die Genexpression.
Im Rahmen dieser Arbeit wurden verschiedene metabolische Anpassungsmechanismen des humanpathogenen Bakteriums Acinetobacter baumannii an seinen Wirt untersucht. Im ersten Teil wurde die Rolle von verschiedenen Trimethylammoniumverbindungen (Cholin, Glycinbetain und Carnitin) und den zugehörigen Aufnahmesystemen, sowie ihren Stoffwechselwegen während dieses Prozesses analysiert. Für die Analyse der Transportsysteme wurde eine markerlose Vierfachmutante (Δbcct) von A. baumannii generiert, sodass alle bekannten Transportsysteme für die genannten Verbindungen deletiert vorlagen. Wachstumsversuche mit dieser Mutante zeigten, dass es in A. baumannii keine weiteren Transporter für die Aufnahme von Cholin gibt, jedoch weitere primär aktive oder sekundär aktive Transporter für die Aufnahme von Glycinbetain. Weiterhin konnten innerhalb dieser Arbeit die KM-Werte der Transporter bestimmt werden. Verschiedene Virulenz- und Infektionsanalysen führten zu dem Schluss, dass die Transporter keine Rolle bei der Virulenz von A. baumannii spielen. In Genomanalysen konnten die Gene, die für die Enzyme des Oxidationsweges von Cholin zu Glycinbetain kodieren identifiziert werden (Cholin-Dehydrogenase (betA), GlycinbetainAldehyd-Dehydrogenase (betB) und ein potenzieller Regulator (betI)). Es wurden Deletionsmutanten innerhalb dieses Genclusters generiert, mit dessen Hilfe gezeigt werden konnte, dass Cholin unter Salzstress ausschließlich als Vorläufer für das kompatible Solut Glycinbetain fungiert und nicht als kompatibles Solut von A. baumannii genutzt werden kann. Virulenz- und Infektionsstudien mit den Deletionsmutanten zeigten, dass der Cholin-Oxidationsweg keine Rolle bei der Virulenz von A. baumannii spielt.
Die Cholin-Dehydrogenase BetA wurde zusätzlich in E. coli produziert und anschließend mittels NiNTA-Affinitätschromatographie aufgereinigt. Die biochemische Charakterisierung des Enzyms zeigte, dass BetA membranständig ist und die höchste Aktivität bei einem pH-Wert von 9,0 hat. Salze wie NaCl oder KCl hatten keinen Effekt auf die Aktivität des Enzyms, während Glutamat die Aktivität stimulierte.
Weiterhin konnte FAD als Cofaktor identifiziert werden und der KM-Wert ermittelt werden. Zudem konnte gezeigt werden, dass die Oxidation von Cholin zu Glycinbetain unter isoosmotischen Bedingungen zu einem Anstieg der ATP-Konzentration in A. baumannii-Zellsuspensionen führt und damit, dass Cholin als alternative Energiequelle genutzt wird. Das Phospholipid Phosphatidylcholin konnte als natürliche Cholinquelle identifiziert werden. Eine Rolle der Phospholipasen D bei der Abspaltung der Cholin-Kopfgruppe des Phosphatidylcholins konnte ausgeschlossen werden. Die Gene für die Oxidation von Cholin zu Glycinbetain werden ausschließlich in Anwesenheit von Cholin exprimiert, jedoch unabhängig von der extrazellulären Salzkonzentration. Diese Studien zeigten, dass der Cholin-Oxidationsweg eine Rolle in der metabolischen Adaptation von A. baumannii an den Wirt spielt. Phosphatidylcholin kann hier als natürliche Cholinquelle im Wirt genutzt werden, da die Wirtsmembranen aus bis zu 70 % Phosphatidylcholin bestehen. Transportstudien mit Carnitin führten zu dem Schluss, dass der Transporter Aci01347 aus A. baumannii neben Cholin ebenfalls Carnitin transportiert. Wachstumsversuche mit einer aci01347-Mutante bestätigen, dass Aci01347 essenziell für die Aufnahme und anschließende Verwertung von Carnitin als Kohlenstoffquelle ist. Es konnte weiterhin gezeigt werden, dass das Transportergen mit essenziellen Genen für den Carnitin-Abbau in einem Operon liegt. Für die Analyse des Abbauweges von Carnitin wurden markerlose Deletionsmutanten innerhalb des Operons generiert. In Wachstumsstudien mit diesen Mutanten konnte der Abbauweg aufgeklärt werden und der Regulator des Operons identifiziert werden. Carnitin wird hier über Trimethylamin und Malat-Semialdehyd zu D-Malat umgewandelt und anschließend über Pyruvat in den TCA-Zyklus eingespeist. Der Regulator wurde zusätzlich in E. coli produziert und mittels Ni-NTA-Affinitätschromatographie aufgereinigt. Mithilfe von EMSA-Studien konnte die Bindestelle des Regulators auf eine 634 Bp lange DNA-Sequenz stromaufwärts des CarnitinOperons eingegrenzt werden. Durch Transkriptomanalysen konnte gezeigt werden, dass bei Wachstum mit Acetylcarnitin, Carnitin und D-Malat die Expression des Carnitin-Operons induziert wurde. Darüber hinaus wurden die Gene konservierter Aromatenabbauwege wie z. B. des Homogentisatweges, des Phenylacetatweges und des Protocatechuat-Abbaus, verstärkt exprimiert. In G. mellonellaVirulenzstudien konnte eine Rolle des Abbaus von Carnitin bei der Virulenz von A. baumannii nachgewiesen werden. Zusätzlich konnte dieser Effekt dem entstehenden Trimethylamin zugesprochen werden...
The Southern Ocean (SO) is one of the most pristine regions of our Planet, characterised by high levels of biodiversity (5% of the global diversity) (David and Saucède 2015) and hosting a unique fauna (up to 90% of SO species are endemic) (De Broyer and Danis 2011; Chown et al. 2015). Yet, the knowledge on SO biodiversity is still far from being completed. In addition, the knowledge on the impact that changing environments have on SO species-richness is very little and for some groups, it is still totally unknown. For instance, most of studies generally focus on one single species such as Antarctic krill (Kawaguchi et al. 2011), Clio pyramidata Linnaeus, 1767 (Orr et al. 2005), Globigerina bulloides d'Orbigny, 1826 (Moy et al. 2009), or only on a high taxonomic level (e.g. phylum, class): Echinodermata, Crustacea, Mollusca, Porifera, Bryozoa, Brachiopoda, Hydrozoa, Ascidiacea, Holoturoidea
(Barnes 1999; Rowden et al. 2015; Post et al. 2017; Gutt et al. 2019; Vause et al. 2019; Pineda-Metz et al. 2020). Ultimately, the influence of sea-ice coverage on benthic species diversity was totally unknown prior to this study. In light of this, the objectives of the thesis are:
1. To expand the knowledge on shelf and deep-sea peracarid assemblage structure and abundance on a small regional (Weddell Sea) and on a large regional (Atlantic sector of the SO and South Atlantic Ocean) geographic scale.
2. To assess the environmental variables driving peracarid assemblage structure and abundance from the above mentioned areas.
3. To investigate SO benthic isopod species diversity from the Atlantic sector of the SO and assess the influence of environmental variables on their species-richness and composition.
4. To describe new possible peracarid species by means of integrative taxonomy, using morphological descriptions and whole genome sequencing analyses to support the species identification.
Objective outcomes: The present thesis provides new information on the abundance and assemblage structure based on 64766 peracarid crustaceans from different 28 locations within the Atlantic sector of the SO continental shelf and deep sea (Chapters I-II). These locations are characterised by different environmental conditions, for instance different sea-ice concentrations. Results from Chapters I-II confirmed the dominance of peracarid assemblages in the benthos, with amphipods being the most abundant group, followed by isopods. Sea ice was identified as the main driver shaping benthic peracarid assemblage structure (Chapter I). On a larger geographic scale and wider bathymetric range (e.g. including sampling locations from previous studies performed in the South Atlantic Ocean
and at a depth range from 160 to ~6000 m), depth was the main physical variable driving peracarid assemblage structure (Chapter III). In addition, 16157 isopod specimens from the Atlantic sector of the SO were identified to species level at a smaller scale (Chapter IV). In this case, sea ice was identified as the main physical driver affecting isopod diversity and composition among sampling locations (Chapter IV). Reduced concentration of sea ice
causes a decrease in isopod biodiversity, thus climate change was identified as a huge threat for this taxon and for SO benthos in general. During the identification process, two new isopod species were discovered (Chapter V). The two new species (Notopais sp.1 n. sp. and Notopais sp.2 n. sp.) were accurately described and identified by means of integrative taxonomy. This provided the first whole genome sequencing of benthic isopods from the SO and the first complete mitochondrial genome of the genus Notopais (Chapter V). Thanks to the collaboration with the University of Genoa (Dipartimento di Scienze della Terra dell'Ambiente e della Vita, DISTAV, Italy) and the National Antarctic Museum (MNA) in Genoa, two new SO species of the suborder Valvifera G. O. Sars, 1883 were described by means of classical taxonomy. In this case, a molecular approach could not be used because both new species were represented by a single specimen, therefore it was important to preserve the integrity of the holotypes (Chapters VI-VII).
Im Rahmen dieser Dissertation wurden unterschiedliche Aspekte der Verbreitung der Vertreter des Pseudoterranova decipiens Komplexes betrachtet und Fragestellungen zur Ökologie und Humanpathogenität der Parasiten bearbeitet. Sie basiert auf drei (ISI-) Fachartikeln, in denen die Nutzung von Fischparasitengemeinschaften als ökologische Indikatoren für entlegene Ökosysteme des Südpolarmeeres (I), die Modellierung geeigneter Verbreitungsgebiete für Arten mit geringen Vorkommensdaten am Beispiel des P. decipiens Komplexes (II) und das Vorkommen potentiell humanpathogener P. bulbosa in unterschiedlichen Mikrohabitaten in Atlantischem Kabeljau (III) thematisiert wurde.
Die Parasitengemeinschaften der in Studie I untersuchten, nahverwandten Antarktisdorsche (Nototheniinae) Nototheniops larseni (n=40), N. nudifrons (n=40) und Lepidonotothen squamifrons (n=49) unterschieden sich hauptsächlich hinsichtlich seltener Parasitenarten. Pseudoterranova decipiens E zählte zu den häufigsten Parasiten der drei betrachteten Wirtsarten. Die Analyse der Wirtsspektren der auf Artebene bestimmten Parasiten zeigte eine geringe Spezifität antarktischer Fischparasiten im Larven- (z.B. Pseudoterranova decipiens E) und Adultstadium (z.B. Elytrophalloides oatesi). Für eine Nutzung als Bioindikatoren ergibt sich die Empfehlung, nicht auf einzelne Parasitenarten, sondern die Zusammensetzung von Parasitenfaunen zurückzugreifen und Parameter wie Abundanz oder Intensität zu berücksichtigen. Vergleiche mit Literaturdaten legten nahe, dass ein Studiendesign, das den periodischen Vergleich der Parasitierungsmuster von Nototheniinae ermöglichen soll, Standorteffekte berücksichtigen sollte. Da es sich bei der Probennahme demersaler Fische um ein aufwändiges und einschneidendes Verfahren handelt, sollten alternative Samplingmethoden vorangetrieben und eine Datenbasis dafür geschaffen werden.
Um die Belastung von Speisefischen mit potentiell humanpathogenen Parasiten in bestimmten Fanggebieten abzuschätzen, kann anhand von Vorkommens- und Umweltdaten mittels statistischer Modelle die Habitateignung für den Parasiten bestimmt werden. Eine Voraussetzung für eine verlässliche Modellierung bilden die Wahl eines geeigneten Algorithmus und die Qualität der Eingangsdaten. Für die Modellierung geeigneter Verbreitungsgebiete für die sechs Arten des P. decipiens Komplexes wurde im Rahmen von Studie II erstmalig ein biotischer Deskriptor herangezogen. Dem Ansatz lag die Annahme zugrunde, dass das Vorkommen geeigneter Endwirte der entscheidende, limitierende Faktor für die Verbreitung eines Parasiten ist, da nur so der Lebenszyklus geschlossen werden kann. Als Hypothesentest dienten Vergleiche der ökologischen Nischen von Parasiten und ihren spezifischen Endwirten im Nischenraum. Anhand der Endwirtdistanz wurde eine Verbesserung der Modellierungsergebnisse mit MaxEnt, gegenüber der ausschließlich auf abiotischen Prädiktoren basierenden Modellierung, für alle Pseudoterranova Arten, insbesondere jene mit einer geringen Anzahl Fundpunkte, erzielt. Grundsätzlich ist der Ansatz auf marine Parasitenarten, deren spezifische Endwirte verlässliche Vorkommensdaten aufweisen, übertragbar. Die Methode stellt jedoch keinen Ersatz für die Erhebung von Vorkommensdaten dar, weshalb die genetische Bestimmung schwer zu identifizierender Taxa sowie die Angabe von Metadaten in jeder parasitologischen Studie obligatorisch sein sollten.
Die Verteilung potentiell humanpathogener Parasitenstadien in für den menschlichen Verzehr vorgesehenen Fischen kann ein entscheidender Faktor für die Übertragung sein. Im Rahmen von Studie III wurde mit dem Referenztranskriptom von P. bulbosa das erste Transkriptom für eine Art den P. decipiens Komplexes erstellt. Anhand einer differentiellen Genexpressionsanalyse wurde untersucht, was die Verteilung der Parasiten auf unterschiedliche Mikrohabitate beeinflusst haben könnte. Dabei wurden siebzig differentiell exprimierte Gene identifiziert, die in aus Leber (32 Gene) und Viscera (38 Gene) von Atlantischem Kabeljau (Gadus morhua) isolierten Proben von P. bulbosa hochreguliert waren. Eine Erklärung für diesen subtilen Unterschied könnte ein Dauerstadium der P. bulbosa Larven zum Zeitpunkt der Probennahmen sein. Ob sich bestimmte Mikrohabitate innerhalb des Wirtes begünstigend auf den Parasiten auswirken, muss mit Hilfe experimenteller Studien gezeigt werden. Erste in Studie III erhobene Daten zum allergenen Potential von P. bulbosa sollten in serologischen Studien getestet werden. Als Grundlage für die Bewertung des pathogenen Potentials von P. bulbosa, sowie der weiteren Arten des P. decipiens Komplexes, sollten in experimentellen Studien NGS-Daten erhoben werden.
Im Rahmen dieser Dissertation wurde in drei methodisch unterschiedlichen Studien ein Bedarf besserer Referenzdaten aufgezeigt. Bestreben diese Datenlücken zu schließen, um das Potential der Methoden besser ausschöpfen zu können, müssen zukünftig noch weiter verstärkt werden.
Until quite recently, stem cell technology mainly focused on pure populations of embryonic stem cells (ES) derived from the inner cell mass of the blastocyst and induced pluripotent stem cells (iPS). Using organoids, a newly established culture technique, it is now possible to culture also organ and patient-specific adult stem (AS) and induced pluripotent stem (IPS) cells in vitro. Furthermore, it has been shown that adult stem cells, grown as organoids, are genetically stable, proliferate and maintain their multi-potency (often a bi-potency) for months. This is possible by providing conditions that recapitulate the stem cell niche of the corresponding organ. Particularly, defined growth factors and a physiological scaffold, which is provided by an extracellular matrix (ECM). Because of increasing research activities, organoids became influential in the recent years. Wide-ranging interest also led to a clearer definition: organoids must contain multiple organ-specific cell types, must be able to recapitulate some organ specific functions, and the cells must be spatially organized in a way similar to the organ they are derived from. The excitement about organoids is based on their high potential as a model to understand wound healing, cellular behaviour and differentiation processes in organogenesis. Furthermore, high potential in the drug development and in personalized stem cell therapeutic approaches has been shown. Specifically, for personalized stem cell therapy, one potential application is for chronic autoimmune diseases such as Diabetes type 1 (T1D). T1D is characterized by the immune-mediated destruction of ß-cells in the Pancreas that leads to absolute insulin deficiency. In T1D the first-line therapeutic approach is exogenous insulin replacement therapy, which always implicates the risk of high fluctuations in blood-sugar levels and therefore the risk of hypoglycaemia. Another therapeutic approach is the xenotransplantation of islets from human donors. A successful islet transplantation allows patients a years-long insulin independence. However, the therapeutic value of islet transplantation is highly limited by the availability of organ donors and by the need for chronic administration of immune suppressive medication. The use of pancreas organoids offers a promising alternative as a personalized cell therapeutic approach to treat T1D without the hypoglycaemia risks of the established therapies. In 2013 Meritxell Huch and colleagues established for the first-time organoids from the exocrine, ductal part of the pancreas. These pancreas organoids are characterized by a monolayered, spherical cell epithelium which comprises a liquid filled lumen. In addition, they showed that after transplantation of these cells into immunodeficient mice, they differentiate into ß-cells and cure T1D. However, basic knowledge of the culture growth behaviour is still lacking: to date, no growth parameters are defined and reliable and robust investigation approaches are still missing. Furthermore, basic knowledge about the organoid development and biochemical/biophysical mechanisms that generate the phenotypic structure are not identified. For a clinical approach these parameters are fundamental and therefore must be defined pre-clinically.
The aim of this study is the preclinical characterization of the hPOs...