Psychologie
Refine
Year of publication
Document Type
- Article (263)
- Doctoral Thesis (97)
- Book (37)
- Preprint (21)
- Contribution to a Periodical (17)
- Part of Periodical (14)
- Part of a Book (11)
- Conference Proceeding (8)
- diplomthesis (3)
- Report (3)
Is part of the Bibliography
- no (482)
Keywords
- working memory (9)
- fMRI (8)
- confirmatory factor analysis (7)
- EEG (6)
- Behavior (5)
- ADHD (4)
- Depression (4)
- Language (4)
- Motivation (4)
- validity (4)
Institute
- Psychologie (482)
- Präsidium (51)
- Deutsches Institut für Internationale Pädagogische Forschung (DIPF) (37)
- Medizin (32)
- Sportwissenschaften (25)
- Erziehungswissenschaften (23)
- MPI für Hirnforschung (22)
- Gesellschaftswissenschaften (21)
- MPI für empirische Ästhetik (19)
- Starker Start ins Studium: Qualitätspakt Lehre (9)
Electroencephalography (EEG) has been used for decades to identify neurocognitive processes related to intelligence. Evidence is accumulating for associations with neural markers of higher-order cognitive processes (e.g., working memory); however, whether associations are specific to complex processes or also relate to earlier processing stages remains unclear. Addressing these issues has implications for improving our understanding of intelligence and its neural correlates. The mismatch negativity (MMN) is an event-related brain potential (ERP) that is elicited when, within a series of frequent standard stimuli, rare deviant stimuli are presented. As stimuli are typically presented outside the focus of attention, the MMN is suggested to capture automatic pre-attentive discrimination processes. However, the MMN and its relation to intelligence has largely only been studied in the auditory domain, thus preventing conclusions about the involvement of automatic discrimination processes in humans’ dominant sensory modality vision. Electroencephalography was recorded from 50 healthy participants during a passive visual oddball task that presented simple sequence violations as well as deviations within a more complex hidden pattern. Signed area amplitudes and fractional area latencies of the visual mismatch negativity (vMMN) were calculated with and without Laplacian transformation. Correlations between vMMN and intelligence (Raven’s Advanced Progressive Matrices) were of negligible to small effect sizes, differed critically between measurement approaches, and Bayes Factors provided anecdotal to substantial evidence for the absence of an association. We discuss differences between the auditory and visual MMN, the implications of different measurement approaches, and offer recommendations for further research in this evolving field.
How much data do we need? Lower bounds of brain activation states to predict human cognitive ability
(2022)
Human functional brain connectivity can be temporally decomposed into states of high and low cofluctuation, defined as coactivation of brain regions over time. Despite their low frequency of occurrence, states of particularly high cofluctuation have been shown to reflect fundamentals of intrinsic functional network architecture (derived from resting-state fMRI) and to be highly subject-specific. However, it is currently unclear whether such network-defining states of high cofluctuation also contribute to individual variations in cognitive abilities – which strongly rely on the interactions among distributed brain regions. By introducing CMEP, an eigenvector-based prediction framework, we show that functional connectivity estimates from as few as 20 temporally separated time frames (< 3% of a 10 min resting-state fMRI scan) are significantly predictive of individual differences in intelligence (N = 281, p < .001). In contrast and against previous expectations, individual’s network-defining time frames of particularly high cofluctuation do not achieve significant prediction of intelligence. Multiple functional brain networks contribute to the prediction, and all results replicate in an independent sample (N = 831). Our results suggest that although fundamentals of person-specific functional connectomes can be derived from few time frames of highest brain connectivity, temporally distributed information is necessary to extract information about cognitive abilities from functional connectivity time series. This information, however, is not restricted to specific connectivity states, like network-defining high-cofluctuation states, but rather reflected across the entire length of the brain connectivity time series.
Probing the association between resting state brain network dynamics and psychological resilience
(2021)
Abstract
This study aimed at replicating a previously reported negative correlation between node flexibility and psychological resilience, i.e., the ability to retain mental health in the face of stress and adversity. To this end, we used multiband resting-state BOLD fMRI (TR = .675 sec) from 52 participants who had filled out three psychological questionnaires assessing resilience. Time-resolved functional connectivity was calculated by performing a sliding window approach on averaged time series parcellated according to different established atlases. Multilayer modularity detection was performed to track network reconfigurations over time and node flexibility was calculated as the number of times a node changes community assignment. In addition, node promiscuity (the fraction of communities a node participates in) and node degree (as proxy for time-varying connectivity) were calculated to extend previous work. We found no substantial correlations between resilience and node flexibility. We observed a small number of correlations between the two other brain measures and resilience scores, that were however very inconsistently distributed across brain measures, differences in temporal sampling, and parcellation schemes. This heterogeneity calls into question the existence of previously postulated associations between resilience and brain network flexibility and highlights how results may be influenced by specific analysis choices.
Author Summary We tested the replicability and generalizability of a previously proposed negative association between dynamic brain network reconfigurations derived from multilayer modularity detection (node flexibility) and psychological resilience. Using multiband resting-state BOLD fMRI data and exploring several parcellation schemes, sliding window approaches, and temporal resolutions of the data, we could not replicate previously reported findings regarding the association between node flexibility and resilience. By extending this work to other measures of brain dynamics (node promiscuity, degree) we observe a rather inconsistent pattern of correlations with resilience, that strongly varies across analysis choices. We conclude that further research is needed to understand the network neuroscience basis of mental health and discuss several reasons that may account for the variability in results.
Probing the association between resting-state brain network dynamics and psychological resilience
(2022)
Abstract
This study aimed at replicating a previously reported negative correlation between node flexibility and psychological resilience, that is, the ability to retain mental health in the face of stress and adversity. To this end, we used multiband resting-state BOLD fMRI (TR = .675 sec) from 52 participants who had filled out three psychological questionnaires assessing resilience. Time-resolved functional connectivity was calculated by performing a sliding window approach on averaged time series parcellated according to different established atlases. Multilayer modularity detection was performed to track network reconfigurations over time, and node flexibility was calculated as the number of times a node changes community assignment. In addition, node promiscuity (the fraction of communities a node participates in) and node degree (as proxy for time-varying connectivity) were calculated to extend previous work. We found no substantial correlations between resilience and node flexibility. We observed a small number of correlations between the two other brain measures and resilience scores that were, however, very inconsistently distributed across brain measures, differences in temporal sampling, and parcellation schemes. This heterogeneity calls into question the existence of previously postulated associations between resilience and brain network flexibility and highlights how results may be influenced by specific analysis choices.
Author Summary
We tested the replicability and generalizability of a previously proposed negative association between dynamic brain network reconfigurations derived from multilayer modularity detection (node flexibility) and psychological resilience. Using multiband resting-state BOLD fMRI data and exploring several parcellation schemes, sliding window approaches, and temporal resolutions of the data, we could not replicate previously reported findings regarding the association between node flexibility and resilience. By extending this work to other measures of brain dynamics (node promiscuity, degree) we observe a rather inconsistent pattern of correlations with resilience that strongly varies across analysis choices. We conclude that further research is needed to understand the network neuroscience basis of mental health and discuss several reasons that may account for the variability in results.
Word familiarity and predictive context facilitate visual word processing, leading to faster recognition times and reduced neuronal responses. Previously, models with and without top-down connections, including lexical-semantic, pre-lexical (e.g., orthographic/ phonological), and visual processing levels were successful in accounting for these facilitation effects. Here we systematically assessed context-based facilitation with a repetition priming task and explicitly dissociated pre-lexical and lexical processing levels using a pseudoword familiarization procedure. Experiment 1 investigated the temporal dynamics of neuronal facilitation effects with magnetoencephalography (MEG; N=38 human participants) while Experiment 2 assessed behavioral facilitation effects (N=24 human participants). Across all stimulus conditions, MEG demonstrated context-based facilitation across multiple time windows starting at 100 ms, in occipital brain areas. This finding indicates context based-facilitation at an early visual processing level. In both experiments, we furthermore found an interaction of context and lexical familiarity, such that stimuli with associated meaning showed the strongest context-dependent facilitation in brain activation and behavior. Using MEG, this facilitation effect could be localized to the left anterior temporal lobe at around 400 ms, indicating within-level (i.e., exclusively lexical-semantic) facilitation but no top-down effects on earlier processing stages. Increased pre-lexical familiarity (in pseudowords familiarized utilizing training) did not enhance or reduce context effects significantly. We conclude that context based-facilitation is achieved within visual and lexical processing levels. Finally, by testing alternative hypotheses derived from mechanistic accounts of repetition suppression, we suggest that the facilitatory context effects found here are implemented using a predictive coding mechanism.
To characterize the left-ventral occipito-temporal cortex (lvOT) role during reading in a quantitatively explicit and testable manner, we propose the lexical categorization model (LCM). The LCM assumes that lvOT optimizes linguistic processing by allowing fast meaning access when words are familiar and filter out orthographic strings without meaning. The LCM successfully simulates benchmark results from functional brain imaging. Empirically, using functional magnetic resonance imaging, we demonstrate that quantitative LCM simulations predict lvOT activation across three studies better than alternative models. Besides, we found that word-likeness, which is assumed as input to LCM, is represented posterior to lvOT. In contrast, a dichotomous word/non-word contrast, which is assumed as the LCM’s output, could be localized to upstream frontal brain regions. Finally, we found that training lexical categorization results in more efficient reading. Thus, we propose a ventral-visual-stream processing framework for reading involving word-likeness extraction followed by lexical categorization, before meaning extraction.
To a crucial extent, the efficiency of reading results from the fact that visual word recognition is faster in predictive contexts. Predictive coding models suggest that this facilitation results from pre-activation of predictable stimulus features across multiple representational levels before stimulus onset. Still, it is not sufficiently understood which aspects of the rich set of linguistic representations that are activated during reading—visual, orthographic, phonological, and/or lexical-semantic—contribute to context-dependent facilitation. To investigate in detail which linguistic representations are pre-activated in a predictive context and how they affect subsequent stimulus processing, we combined a well-controlled repetition priming paradigm, including words and pseudowords (i.e., pronounceable nonwords), with behavioral and magnetoencephalography measurements. For statistical analysis, we used linear mixed modeling, which we found had a higher statistical power compared to conventional multivariate pattern decoding analysis. Behavioral data from 49 participants indicate that word predictability (i.e., context present vs. absent) facilitated orthographic and lexical-semantic, but not visual or phonological processes. Magnetoencephalography data from 38 participants show sustained activation of orthographic and lexical-semantic representations in the interval before processing the predicted stimulus, suggesting selective pre-activation at multiple levels of linguistic representation as proposed by predictive coding. However, we found more robust lexical-semantic representations when processing predictable in contrast to unpredictable letter strings, and pre-activation effects mainly resembled brain responses elicited when processing the expected letter string. This finding suggests that pre-activation did not result in “explaining away” predictable stimulus features, but rather in a “sharpening” of brain responses involved in word processing.
To a crucial extent, the efficiency of reading results from the fact that visual word recognition is faster in predictive contexts. Predictive coding models suggest that this facilitation results from pre-activation of predictable stimulus features across multiple representational levels before stimulus onset. Still, it is not sufficiently understood which aspects of the rich set of linguistic representations that are activated during reading – visual, orthographic, phonological, and/or lexical-semantic – contribute to context-dependent facilitation. To investigate in detail which linguistic representations are pre-activated in a predictive context and how they affect subsequent stimulus processing, we combined a well-controlled repetition priming paradigm, including words and pseudowords (i.e., pronounceable nonwords), with behavioral and magnetoencephalography measurements. For statistical analysis, we used linear mixed modeling, which we found had a higher statistical power compared to conventional multivariate pattern decoding analysis. Behavioral data from 49 participants indicate that word predictability (i.e., context present vs. absent) facilitated orthographic and lexical-semantic, but not visual or phonological processes. Magnetoencephalography data from 38 participants show sustained activation of orthographic and lexical-semantic representations in the interval before processing the predicted stimulus, suggesting selective pre-activation at multiple levels of linguistic representation as proposed by predictive coding. However, we found more robust lexical-semantic representations when processing predictable in contrast to unpredictable letter strings, and pre-activation effects mainly resembled brain responses elicited when processing the expected letter string. This finding suggests that pre-activation did not result in ‘explaining away’ predictable stimulus features, but rather in a ‘sharpening’ of brain responses involved in word processing.
Word familiarity and predictive context facilitate visual word processing, leading to faster recognition times and reduced neuronal responses. Previously, models with and without top-down connections, including lexical-semantic, pre-lexical (e.g., orthographic/phonological), and visual processing levels were successful in accounting for these facilitation effects. Here we systematically assessed context-based facilitation with a repetition priming task and explicitly dissociated pre-lexical and lexical processing levels using a pseudoword (PW) familiarization procedure. Experiment 1 investigated the temporal dynamics of neuronal facilitation effects with magnetoencephalography (MEG; N = 38 human participants), while experiment 2 assessed behavioral facilitation effects (N = 24 human participants). Across all stimulus conditions, MEG demonstrated context-based facilitation across multiple time windows starting at 100 ms, in occipital brain areas. This finding indicates context-based facilitation at an early visual processing level. In both experiments, we furthermore found an interaction of context and lexical familiarity, such that stimuli with associated meaning showed the strongest context-dependent facilitation in brain activation and behavior. Using MEG, this facilitation effect could be localized to the left anterior temporal lobe at around 400 ms, indicating within-level (i.e., exclusively lexical-semantic) facilitation but no top-down effects on earlier processing stages. Increased pre-lexical familiarity (in PWs familiarized utilizing training) did not enhance or reduce context effects significantly. We conclude that context-based facilitation is achieved within visual and lexical processing levels. Finally, by testing alternative hypotheses derived from mechanistic accounts of repetition suppression, we suggest that the facilitatory context effects found here are implemented using a predictive coding mechanism.
Abstract
To characterize the functional role of the left-ventral occipito-temporal cortex (lvOT) during reading in a quantitatively explicit and testable manner, we propose the lexical categorization model (LCM). The LCM assumes that lvOT optimizes linguistic processing by allowing fast meaning access when words are familiar and filtering out orthographic strings without meaning. The LCM successfully simulates benchmark results from functional brain imaging described in the literature. In a second evaluation, we empirically demonstrate that quantitative LCM simulations predict lvOT activation better than alternative models across three functional magnetic resonance imaging studies. We found that word-likeness, assumed as input into a lexical categorization process, is represented posteriorly to lvOT, whereas a dichotomous word/non-word output of the LCM could be localized to the downstream frontal brain regions. Finally, training the process of lexical categorization resulted in more efficient reading. In sum, we propose that word recognition in the ventral visual stream involves word-likeness extraction followed by lexical categorization before one can access word meaning.
Author summary
Visual word recognition is a critical process for reading and relies on the human brain’s left ventral occipito-temporal (lvOT) regions. However, the lvOTs specific function in visual word recognition is not yet clear. We propose that these occipito-temporal brain systems are critical for lexical categorization, i.e., the process of determining whether an orthographic percept is a known word or not, so that further lexical and semantic processing can be restricted to those percepts that are part of our "mental lexicon". We demonstrate that a computational model implementing this process, the lexical categorization model, can explain seemingly contradictory benchmark results from the published literature. We further use functional magnetic resonance imaging to show that the lexical categorization model successfully predicts brain activation in the left ventral occipito-temporal cortex elicited during a word recognition task. It does so better than alternative models proposed so far. Finally, we provide causal evidence supporting this model by empirically demonstrating that training the process of lexical categorization improves reading performance.