Mathematik
Refine
Year of publication
Document Type
- Article (96)
- Doctoral Thesis (72)
- diplomthesis (46)
- Preprint (28)
- Book (25)
- Report (22)
- Conference Proceeding (18)
- Bachelor Thesis (8)
- Master's Thesis (7)
- Contribution to a Periodical (6)
Has Fulltext
- yes (334)
Is part of the Bibliography
- no (334)
Keywords
- Kongress (6)
- Kryptologie (5)
- Stochastik (5)
- Doku Mittelstufe (4)
- Doku Oberstufe (4)
- Mathematik (4)
- Online-Publikation (4)
- Statistik (4)
- Finanzmathematik (3)
- LLL-reduction (3)
Institute
- Mathematik (334)
- Informatik (54)
- Präsidium (20)
- Psychologie (6)
- Geschichtswissenschaften (5)
- Physik (5)
- Sportwissenschaften (5)
- Biochemie und Chemie (3)
- Biowissenschaften (3)
- Geographie (3)
In an earlier paper we proposed a recursive model for epidemics; in the present paper we generalize this model to include the asymptomatic or unrecorded symptomatic people, which we call dark people (dark sector). We call this the SEPARd-model. A delay differential equation version of the model is added; it allows a better comparison to other models. We carry this out by a comparison with the classical SIR model and indicate why we believe that the SEPARd model may work better for Covid-19 than other approaches.
In the second part of the paper we explain how to deal with the data provided by the JHU, in particular we explain how to derive central model parameters from the data. Other parameters, like the size of the dark sector, are less accessible and have to be estimated more roughly, at best by results of representative serological studies which are accessible, however, only for a few countries. We start our country studies with Switzerland where such data are available. Then we apply the model to a collection of other countries, three European ones (Germany, France, Sweden), the three most stricken countries from three other continents (USA, Brazil, India). Finally we show that even the aggregated world data can be well represented by our approach.
At the end of the paper we discuss the use of the model. Perhaps the most striking application is that it allows a quantitative analysis of the influence of the time until people are sent to quarantine or hospital. This suggests that imposing means to shorten this time is a powerful tool to flatten the curves.
Die Arbeit befasst sich mit einer Vereinfachung des von Devroye (1999) geprägten Begriffs der random split trees und verallgemeinert diesen im Sinne von Janson (2019) auf unbeschränkten Verzweigungsgrad. Diese Verallgemeinerung deckt auch preferential attachment trees mit linearen Gewichten ab, wofür ein Beweis von Janson (2019) aufbereitet wird. Zusätzlich bleiben die von Devroye (1999) nachgewiesenen Eigenschaften über die Tiefe der hinzugefügten Knoten erhalten.
Aus Sicht der Pädagogischen Psychologie ist Lernen ein Prozess, bei dem es zu überdauernden Änderungen im Verhaltenspotenzial als Folge von Erfahrungen kommt. Aus konstruktivistischer Perspektive lässt sich Lernen am besten als eine individuelle Konstruktion von Wissen infolge des Entdeckens, Transformierens und Interpretierens komplexer Informationen durch den Lernenden selbst beschreiben. Erkennt der Lernende den Sinn und übernimmt, erweitert oder verändert ihn für sich selbst, so ist der Grundstein für nachhaltiges Lernen gelegt.
Lernen ist ein sehr individueller Prozess. Schule muss also individuelles Lernen auch im Klassenverband ermöglichen und der Lehrende muss zum Lerncoach werden, da sonst kein individuelles und eigenaktives Lernen möglich ist. Das Unterrichtskonzept des forschend-entdeckenden Lernens bietet genau diese Möglichkeit. Es erlaubt die Erfüllung der drei Grundbedürfnisse eines Menschen nach Kompetenz, Autonomie und sozialer Eingebundenheit und ermöglicht damit Motivation, Leistung und Wohlbefinden (Ryan & Deci, 2004).
Forschend-entdeckendes Lernen im Mathematikunterricht ist schrittweise geprägt von folgenden Merkmalen:
- eine problemorientierte Organisation
- selbstständiges, eigenaktives und eigenverantwortliches Lernen der Schülerinnen und Schüler
- individuelle Lernwege und Lernprozesse
- Entwicklung eigener Fragestellungen und Vorgehensweisen der Lernenden
- eigenes Aufstellen von Hypothesen und Vermutungen; Überprüfung der Vermutungen; Dokumentation, Interpretation und Präsentation der Ergebnisse
- eine fördernde Atmosphäre, in der die Lernenden nach und nach forschende Arbeitstechniken vermitteln bekommen
- kooperative Lernformen und damit Förderung von Team- und Kommunikationsfähigkeit
- Unterrichtsinhalte mit hohem Realitäts- und Sinnbezug, gesellschaftlicher Relevanz, Möglichkeiten der Interdisziplinarität
- Stetige Angebote der Unterstützung
Das entdeckende Lernen kann als Vorstufe des forschenden Lernens gesehen werden, da hier der wissenschaftliche Fokus noch nicht so stark ausgeprägt ist. Um alle Phasen auf dem Weg zu annähernd wissenschaftlichen forschenden Lernens anzusprechen, verwenden wir den Begriff des forschend-entdeckenden Lernens.
Voraussetzung ist, dass die Lehrkräfte das forschende Lernen als aktiven, produktiven und selbstbestimmten Lernprozess selbst zuvor erlebt haben müssen. Unter anderem können die Lehrkräfte Unterrichtsprozesse danach besser planen und währenddessen unterstützen, da sie selbst forschend-entdeckendem Lernen „ausgesetzt“ waren und vergleichbare Prozesse durchlebt haben.
Hiermit wird deutlich, dass forschendes Lernen nicht bedeuten kann, dass die Schülerinnen und Schüler auf sich gestellt sind. Die gezielte Unterstützung der Lernenden beim Entdecken und Forschen durch die Lehrkraft ist für einen ertragreichen Lernerfolg unverzichtbar und muss Teil der Vorbereitung und des Prozesses sein.
Internationale Studien zeigen, dass forschend-entdeckende Unterrichtsansätze (inquiry-based learning IBL) im Mathematikunterricht bei geeigneter Umsetzung Lernen verbessern, Lernerfolg und Lernleistung steigern und Freude gegenüber Mathematikunterricht erhöhen können. Die Implementierung dieses Unterrichtsansatzes ist trotz der positiven Ergebnisse nicht alltäglich.
Um neue Unterrichtskonzepte in den Schulalltag zu bringen beziehungsweise um bestehende Unterrichtskonzepte neu in den Schulalltag zu bringen bedarf es Fortbildungen zur Professionalisierung von Lehrerinnen und Lehrern.
We deal with the shape reconstruction of inclusions in elastic bodies. For solving this inverse problem in practice, data fitting functionals are used. Those work better than the rigorous monotonicity methods from Eberle and Harrach (Inverse Probl 37(4):045006, 2021), but have no rigorously proven convergence theory. Therefore we show how the monotonicity methods can be converted into a regularization method for a data-fitting functional without losing the convergence properties of the monotonicity methods. This is a great advantage and a significant improvement over standard regularization techniques. In more detail, we introduce constraints on the minimization problem of the residual based on the monotonicity methods and prove the existence and uniqueness of a minimizer as well as the convergence of the method for noisy data. In addition, we compare numerical reconstructions of inclusions based on the monotonicity-based regularization with a standard approach (one-step linearization with Tikhonov-like regularization), which also shows the robustness of our method regarding noise in practice.
We deal with the reconstruction of inclusions in elastic bodies based on monotonicity methods and construct conditions under which a resolution for a given partition can be achieved. These conditions take into account the background error as well as the measurement noise. As a main result, this shows us that the resolution guarantees depend heavily on the Lamé parameter μ and only marginally on λ.
The Calderón problem with finitely many unknowns is equivalent to convex semidefinite optimization
(2023)
We consider the inverse boundary value problem of determining a coefficient function in an elliptic partial differential equation from knowledge of the associated Neumann-Dirichlet-operator. The unknown coefficient function is assumed to be piecewise constant with respect to a given pixel partition, and upper and lower bounds are assumed to be known a-priori.
We will show that this Calderón problem with finitely many unknowns can be equivalently formulated as a minimization problem for a linear cost functional with a convex non-linear semidefinite constraint. We also prove error estimates for noisy data, and extend the result to the practically relevant case of finitely many measurements, where the coefficient is to be reconstructed from a finite-dimensional Galerkin projection of the Neumann-Dirichlet-operator.
Our result is based on previous works on Loewner monotonicity and convexity of the Neumann-Dirichlet-operator, and the technique of localized potentials. It connects the emerging fields of inverse coefficient problems and semidefinite optimization.
Uniqueness and Lipschitz stability in electrical impedance tomography with finitely many electrodes
(2019)
For the linearized reconstruction problem in electrical impedance tomography with the complete electrode model, Lechleiter and Rieder (2008 Inverse Problems 24 065009) have shown that a piecewise polynomial conductivity on a fixed partition is uniquely determined if enough electrodes are being used. We extend their result to the full non-linear case and show that measurements on a sufficiently high number of electrodes uniquely determine a conductivity in any finite-dimensional subset of piecewise-analytic functions. We also prove Lipschitz stability, and derive analogue results for the continuum model, where finitely many measurements determine a finite-dimensional Galerkin projection of the Neumann-to-Dirichlet operator on a boundary part.
In this short note, we investigate simultaneous recovery inverse problems for semilinear elliptic equations with partial data. The main technique is based on higher order linearization and monotonicity approaches. With these methods at hand, we can determine the diffusion, cavity and coefficients simultaneously by knowing the corresponding localized Dirichlet-Neumann operators.
The purpose of the paper is to initiate the development of the theory of Newton Okounkov bodies of curve classes. Our denition is based on making a fundamental property of NewtonOkounkov bodies hold also in the curve case: the volume of the NewtonOkounkov body of a curve is a volume-type function of the original curve. This construction allows us to conjecture a new relation between NewtonOkounkov bodies, we prove it in certain cases.
Although everyone is familiar with using algorithms on a daily basis, formulating, understanding and analysing them rigorously has been (and will remain) a challenging task for decades. Therefore, one way of making steps towards their understanding is the formulation of models that are portraying reality, but also remain easy to analyse. In this thesis we take a step towards this way by analyzing one particular problem, the so-called group testing problem. R. Dorfman introduced the problem in 1943. We assume a large population and in this population we find a infected group of individuals. Instead of testing everybody individually, we can test group (for instance by mixing blood samples). In this thesis we look for the minimum number of tests needed such that we can say something meaningful about the infection status. Furthermore we assume various versions of this problem to analyze at what point and why this problem is hard, easy or impossible to solve.