Institutes
Refine
Year of publication
Document Type
- Doctoral Thesis (80)
- Article (36)
- Bachelor Thesis (16)
- Master's Thesis (9)
- Book (7)
- Conference Proceeding (4)
- Contribution to a Periodical (3)
- Habilitation (2)
- diplomthesis (1)
- Preprint (1)
Has Fulltext
- yes (159)
Is part of the Bibliography
- no (159)
Keywords
- NLP (4)
- ALICE (3)
- Annotation (3)
- Machine Learning (3)
- Text2Scene (3)
- TextAnnotator (3)
- Virtual Reality (3)
- CBM experiment (2)
- Cellular Automaton (2)
- FPGA (2)
Institute
Antimicrobial resistant infections arise as a consequential response to evolutionary mechanisms within microbes which cause them to be protected from the effects of antimicrobials. The frequent occurrence of resistant infections poses a global public health threat as their control has become challenging despite many efforts. The dynamics of such infections are driven by processes at multiple levels. For a long time, mathematical models have proved valuable for unravelling complex mechanisms in the dynamics of infections. In this thesis, we focus on mathematical approaches to modelling the development and spread of resistant infections at between-host (population-wide) and within-host (individual) levels.
Within an individual host, switching between treatments has been identified as one of the methods that can be employed for the gradual eradication of resistant strains on the long term. With this as motivation, we study the problem using dynamical systems and notions from control theory. We present a model based on deterministic logistic differential equations which capture the general dynamics of microbial resistance inside an individual host. Fundamentally, this model describes the spread of resistant infections whilst accounting for evolutionary mutations observed in resistant pathogens and capturing them in mutation matrices. We extend this model to explore the implications of therapy switching from a control theoretic perspective by using switched systems and developing control strategies with the goal of reducing the appearance of drug resistant pathogens within the host.
At the between-host level, we use compartmental models to describe the transmission of infection between multiple individuals in a population. In particular, we make a case study of the evolution and spread of the novel coronavirus (SARS-CoV-2) pandemic. So far, vaccination remains a critical component in the eventual solution to this public health crisis. However, as with many other pathogens, vaccine resistant variants of the virus have been a major concern in control efforts by governments and all stakeholders. Using network theory, we investigate the spread and transmission of the disease on social networks by compartmentalising and studying the progression of the disease in each compartment, considering both the original virus strain and one of its highly transmissible vaccine-resistant mutant strains. We investigate these dynamics in the presence of vaccinations and other interventions. Although vaccinations are of absolute importance during viral outbreaks, resistant variants coupled with population hesitancy towards vaccination can lead to further spread of the virus.
We give theorems about asymptotic normality of general additive functionals on patricia tries, derived from results on tries. These theorems are applied to show asymptotic normality of the distribution of random fringe trees in patricia tries. Formulas for asymptotic mean and variance are given. The proportion of fringe trees with 𝑘 keys is asymptotically, ignoring oscillations, given by (1−𝜌(𝑘))/(𝐻 +𝐽)𝑘(𝑘−1) with the source entropy 𝐻, an entropy-like constant 𝐽, that is 𝐻 in the binary case, and an exponentially decreasing function 𝜌(𝑘). Another application gives asymptotic normality of the independence number and the number of 𝑘-protected nodes.
We thoroughly study the properties of conically stable polynomials and imaginary projections. A multivariate complex polynomial is called stable if its nonzero whenever all coordinates of the respective argument have a positive imaginary part. In this dissertation we consider the generalized notion of K-stability. A multivariate complex polynomial is called K-stable if its non-zero whenever the imaginary part of the respective argument lies in the relative interior of the cone K. We study connections to various other objects, including imaginary projections as well as preservers and combinatorial criteria for conically stable polynomials.
In particle collider experiments, elementary particle interactions with large momentum transfer produce quarks and gluons (known as partons) whose evolution is governed by the strong force, as described by the theory of quantum chromodynamics (QCD)1. These partons subsequently emit further partons in a process that can be described as a parton shower2, which culminates in the formation of detectable hadrons. Studying the pattern of the parton shower is one of the key experimental tools for testing QCD. This pattern is expected to depend on the mass of the initiating parton, through a phenomenon known as the dead-cone effect, which predicts a suppression of the gluon spectrum emitted by a heavy quark of mass mQ and energy E, within a cone of angular size mQ/E around the emitter3. Previously, a direct observation of the dead-cone effect in QCD had not been possible, owing to the challenge of reconstructing the cascading quarks and gluons from the experimentally accessible hadrons. We report the direct observation of the QCD dead cone by using new iterative declustering techniques4,5 to reconstruct the parton shower of charm quarks. This result confirms a fundamental feature of QCD. Furthermore, the measurement of a dead-cone angle constitutes a direct experimental observation of the non-zero mass of the charm quark, which is a fundamental constant in the standard model of particle physics.
People can describe spatial scenes with language and, vice versa, create images based on linguistic descriptions. However, current systems do not even come close to matching the complexity of humans when it comes to reconstructing a scene from a given text. Even the ever-advancing development of better and better Transformer-based models has not been able to achieve this so far. This task, the automatic generation of a 3D scene based on an input text, is called text-to-3D scene generation. The key challenge, and focus of this dissertation, now relate to the following topics:
(a) Analyses of how well current language models understand spatial information, how static embeddings compare, and whether they can be improved by anaphora resolution.
(b) Automated resource generation for context expansion and grounding that can help in the creation of realistic scenes.
(c) Creation of a VR-based text-to-3D scene system that can be used as an annotation and active-learning environment, but can also be easily extended in a modular way with additional features to solve more contexts in the future.
(d) Analyze existing practices and tools for digital and virtual teaching, learning, and collaboration, as well as the conditions and strategies in the context of VR.
In the first part of this work, we could show that static word embeddings do not benefit significantly from pronoun substitution. We explain this result by the loss of contextual information, the reduction in the relative occurrence of rare words, and the absence of pronouns to be substituted. But we were able to we have shown that both static and contextualizing language models appear to encode object knowledge, but require a sophisticated apparatus to retrieve it. The models themselves in combination with the measures differ greatly in terms of the amount of knowledge they allow to extract.
Classifier-based variants perform significantly better than the unsupervised methods from bias research, but this is also due to overfitting. The resources generated for this evaluation are later also an important component of point three.
In the second part, we present AffordanceUPT, a modularization of UPT trained on the HICO-DET dataset, which we have extended with Gibsonien/telic annotations. We then show that AffordanceUPT can effectively make the Gibsonian/telic distinction and that the model learns other correlations in the data to make such distinctions (e.g., the presence of hands in the image) that have important implications for grounding images to language.
The third part first presents a VR project to support spatial annotation respectively IsoSpace. The direct spatial visualization and the immediate interaction with the 3D objects should make the labeling more intuitive and thus easier. The project will later be incorporated as part of the Semantic Scene Builder (SeSB). The project itself in turn relies on the Text2SceneVR presented here for generating spatial hypertext, which in turn is based on the VAnnotatoR. Finally, we introduce Semantic Scene Builder (SeSB), a VR-based text-to-3D scene framework using Semantic Annotation Framework (SemAF) as a scheme for annotating semantic relations. It integrates a wide range of tools and resources by utilizing SemAF and UIMA as a unified data structure to generate 3D scenes from textual descriptions and also supports annotations. When evaluating SeSB against another state-of-the-art tool, it was found that our approach not only performed better, but also allowed us to model a wider variety of scenes. The final part reviews existing practices and tools for digital and virtual teaching, learning, and collaboration, as well as the conditions and strategies needed to make the most of technological opportunities in the future.
The electrical and computational properties of neurons in our brains are determined by a rich repertoire of membrane-spanning ion channels and elaborate dendritic trees. However, the precise reason for this inherent complexity remains unknown. Here, we generated large stochastic populations of biophysically realistic hippocampal granule cell models comparing those with all 15 ion channels to their reduced but functional counterparts containing only 5 ion channels. Strikingly, valid parameter combinations in the full models were more frequent and more stable in the face of perturbations to channel expression levels. Scaling up the numbers of ion channels artificially in the reduced models recovered these advantages confirming the key contribution of the actual number of ion channel types. We conclude that the diversity of ion channels gives a neuron greater flexibility and robustness to achieve target excitability.
The 𝒮-cone provides a common framework for cones of polynomials or exponen- tial sums which establish non-negativity upon the arithmetic-geometric inequality, in particular for sums of non-negative circuit polynomials (SONC) or sums of arithmetic- geometric exponentials (SAGE). In this paper, we study the S-cone and its dual from the viewpoint of second-order representability. Extending results of Averkov and of Wang and Magron on the primal SONC cone, we provide explicit generalized second- order descriptions for rational S-cones and their duals.
In the human brain, the incoming light to the retina is transformed into meaningful representations that allow us to interact with the world. In a similar vein, the RGB pixel values are transformed by a deep neural network (DNN) into meaningful representations relevant to solving a computer vision task it was trained for. Therefore, in my research, I aim to reveal insights into the visual representations in the human visual cortex and DNNs solving vision tasks.
In the previous decade, DNNs have emerged as the state-of-the-art models for predicting neural responses in the human and monkey visual cortex. Research has shown that training on a task related to a brain region’s function leads to better predictivity than a randomly initialized network. Based on this observation, we proposed that we can use DNNs trained on different computer vision tasks to identify functional mapping of the human visual cortex.
To validate our proposed idea, we first investigate a brain region occipital place area (OPA) using DNNs trained on scene parsing task and scene classification task. From the previous investigations about OPA’s functions, we knew that it encodes navigational affordances that require spatial information about the scene. Therefore, we hypothesized that OPA’s representation should be closer to a scene parsing model than a scene classification model as the scene parsing task explicitly requires spatial information about the scene. Our results showed that scene parsing models had representation closer to OPA than scene classification models thus validating our approach.
We then selected multiple DNNs performing a wide range of computer vision tasks ranging from low-level tasks such as edge detection, 3D tasks such as surface normals, and semantic tasks such as semantic segmentation. We compared the representations of these DNNs with all the regions in the visual cortex, thus revealing the functional representations of different regions of the visual cortex. Our results highly converged with previous investigations of these brain regions validating the feasibility of the proposed approach in finding functional representations of the human brain. Our results also provided new insights into underinvestigated brain regions that can serve as starting hypotheses and promote further investigation into those brain regions.
We applied the same approach to find representational insights about the DNNs. A DNN usually consists of multiple layers with each layer performing a computation leading to the final layer that performs prediction for a given task. Training on different tasks could lead to very different representations. Therefore, we first investigate at which stage does the representation in DNNs trained on different tasks starts to differ. We further investigate if the DNNs trained on similar tasks lead to similar representations and on dissimilar tasks lead to more dissimilar representations. We selected the same set of DNNs used in the previous work that were trained on the Taskonomy dataset on a diverse range of 2D, 3D and semantic tasks. Then, given a DNN trained on a particular task, we compared the representation of multiple layers to corresponding layers in other DNNs. From this analysis, we aimed to reveal where in the network architecture task-specific representation is prominent. We found that task specificity increases as we go deeper into the DNN architecture and similar tasks start to cluster in groups. We found that the grouping we found using representational similarity was highly correlated with grouping based on transfer learning thus creating an interesting application of the approach to model selection in transfer learning.
During previous works, several new measures were introduced to compare DNN representations. So, we identified the commonalities in different measures and unified different measures into a single framework referred to as duality diagram similarity. This work opens up new possibilities for similarity measures to understand DNN representations. While demonstrating a much higher correlation with transfer learning than previous state-of-the-art measures we extend it to understanding layer-wise representations of models trained on the Imagenet and Places dataset using different tasks and demonstrate its applicability to layer selection for transfer learning.
In all the previous works, we used the task-specific DNN representations to understand the representations in the human visual cortex and other DNNs. We were able to interpret our findings in terms of computer vision tasks such as edge detection, semantic segmentation, depth estimation, etc. however we were not able to map the representations to human interpretable concepts. Therefore in our most recent work, we developed a new method that associates individual artificial neurons with human interpretable concepts.
Overall, the works in this thesis revealed new insights into the representation of the visual cortex and DNNs...
Polarization of Λ and ¯Λ hyperons along the beam direction in Pb-Pb collisions at √sNN=5.02 TeV
(2022)
The polarization of the Λ and ¯Λ hyperons along the beam (z) direction, Pz, has been measured in Pb-Pb collisions at √sNN=5.02 TeV recorded with ALICE at the Large Hadron Collider (LHC). The main contribution to Pz comes from elliptic flow-induced vorticity and can be characterized by the second Fourier sine coefficient Pz,s2=⟨Pzsin(2φ−2Ψ2)⟩, where φ is thhyperon azimuthal emission angle and Ψ2 is the elliptic flow plane angle. We report the measurement of Pz,s2 for different collision centralities and in the 30%–50% centrality interval as a function of the hyperon transverse momentum and rapidity. The Pz,s2 is positive similarly as measured by the STAR Collaboration in Au-Au collisions at √sNN=200 GeV, with somewhat smaller amplitude in the semicentral collisions. This is the first experimental evidence of a nonzero hyperon Pz in Pb-Pb collisions at the LHC. The comparison of the measured Pz,s2 with the hydrodynamic model calculations shows sensitivity to the competing contributions from thermal and the recently found shear-induced vorticity, as well as to whether the polarization is acquired at the quark-gluon plasma or the hadronic phase.
In this thesis, we cover two intimately related objects in combinatorics, namely random constraint satisfaction problems and random matrices. First we solve a classic constraint satisfaction problem, 2-SAT using the graph structure and a message passing algorithm called Belief Propagation. We also explore another message passing algorithm called Warning Propagation and prove a useful result that can be employed to analyze various type of random graphs. In particular, we use this Warning Propagation to study a Bernoulli sparse parity matrix and reveal a unique phase transition regarding replica symmetry. Lastly, we use variational methods and a version of local limit theorem to prove a sufficient condition for a general random matrix to be of full rank.