Institutes
Refine
Year of publication
Document Type
- Doctoral Thesis (98)
- Article (83)
- Bachelor Thesis (19)
- Book (16)
- Master's Thesis (10)
- Conference Proceeding (4)
- Contribution to a Periodical (4)
- Habilitation (2)
- Preprint (2)
- Diploma Thesis (1)
Has Fulltext
- yes (239)
Is part of the Bibliography
- no (239)
Keywords
- Machine Learning (5)
- NLP (5)
- large language models (5)
- mathematics education (4)
- ALICE (3)
- Annotation (3)
- FPGA (3)
- Machine learning (3)
- MathCityMap (3)
- Text2Scene (3)
Institute
This PhD thesis, divided in 4 chapters, sheds further light on the geometric and arithmetic properties of orthogonal Shimura varieties.
In the first chapter, we describe the cone C(X) generated by special cycles of codimension 2 on an orthogonal Shimura variety X. More precisely, we prove that the accumulation cone of C(X) is pointed, rational and polyhedral. The idea is to show analogous properties for the cones of Fourier coefficients of Siegel modular forms. We also compute the accumulation rays of C(X), proving that they are generated by combinations of Heegner divisors intersected with the Hodge class of X. Eventually, we conjecture the polyhedrality of C(X), translating it into properties of Fourier coefficients of Jacobi cusp forms.
We now describe the content of the second chapter.
Consider a sequence of pairwise different orthogonal Shimura subvarieties of fixed dimension r>2 in X. We prove that there exists a subsequence and an orthogonal Shimura subvariety Z of X, such that the subvarieties in the subsequence equidistribute in Z. We then compute the limits of the sequence of normalized cohomology classes. Eventually, we explain a strategy to compute the accumulation rays of the cones generated by special cycles on X via the previous results.
The goal of Chapter 3 is to unfold the defining integrals of the Kudla–Millson lift of genus 1, associated to even lattices of signature (b,2), where b>2. This enables us to compute the Fourier expansion of such defining integrals. As application, we prove the injectivity of the Kudla–Millson lift. Although this was already proved by Bruinier, our procedure has the advantage of paving the ground for a strategy that can work for the case of genus greater than 1.
In Chapter 4 we apply a similar strategy as in Chapter 3 to the genus 2 case. We unfold the defining integrals of the Kudla–Millson lift of genus 2, under the condition that the latter is associated to some even unimodular lattice of signature (b,2), where b>2. We explain why this unfolding is not enough to prove the injectivity of the lift, showing why an additional unfolding of integrals of Jacobi type seems necessary.
We define and parametrize so-called 𝔰𝔩(2)-type fibresof the 𝖲𝗉(2𝑛, ℂ)- and 𝖲𝖮(2𝑛 + 1, ℂ)-Hitchin system.These are (singular) Hitchin fibres, such that spectralcurve establishes a 2-sheeted covering of a second Rie-mann surface 𝑌. This identifies the 𝔰𝔩(2)-type Hitchinfibres with fibres of an 𝖲𝖫(2, ℂ)-Hitchin, respectively,𝖯𝖲𝖫(2, ℂ)-Hitchin map on 𝑌. Building on results of[Horn, Int. Math. Res. Not. IMRN 10 (2020)], we givea stratification of these singular spaces by semi-abelianspectral data, study their irreducible components andobtain a global description of the first degenerations.We will compare the semi-abelian spectral data of𝔰𝔩(2)-type Hitchin fibres for the two Langlands dualgroups. This extends the well-known Langlands dualityof regular Hitchin fibres to 𝔰𝔩(2)-type Hitchin fibres.Finally, we will construct solutions to the decoupledHitchin equation for 𝔰𝔩(2)-type fibres of the symplecticand odd orthogonal Hitchin system. We conjecturethese to be limiting configurations along rays to theends of the moduli space.
The paper describes a mathematical model of the molecular switches of cell survival, apoptosis, and necroptosis in cellular signaling pathways initiated by tumor necrosis factor 1. Based on experimental findings in the literature, we constructed a Petri net model based on detailed molecular reactions of the molecular players, protein complexes, post-translational modifications, and cross talk. The model comprises 118 biochemical entities, 130 reactions, and 299 edges. We verified the model by evaluating invariant properties of the system at steady state and by in silico knockout analysis. Applying Petri net analysis techniques, we found 279 pathways, which describe signal flows from receptor activation to cellular response, representing the combinatorial diversity of functional pathways.120 pathways steered the cell to survival, whereas 58 and 35 pathways led to apoptosis and necroptosis, respectively. For 65 pathways, the triggered response was not deterministic and led to multiple possible outcomes. We investigated the in silico knockout behavior and identified important checkpoints of the TNFR1 signaling pathway in terms of ubiquitination within complex I and the gene expression dependent on NF-κB, which controls the caspase activity in complex II and apoptosis induction. Despite not knowing enough kinetic data of sufficient quality, we estimated system’s dynamics using a discrete, semi-quantitative Petri net model.
Correction to: Masur-Veech volumes and intersection theory on moduli spaces of Abelian differentials
(2021)
Die Bedeutung und der Einfluss des Darmmikrobiomes für den menschlichen Körper rückt in den letzten Jahren immer mehr in den Fokus der Forschung. Studien zeigen Zusammenhänge zwischen Veränderungen im Mikrobiom und dem Lebensstil oder dem Vorhandensein von Krankheiten auf. Mikrobiomanalysen ermöglichen das Identifizieren von charakteristischen Profilen oder Markern. Diese können die Früherkennung unterstützen oder Ansätze für Therapien liefern. Diabetes mellitus Typ 2 ist eine der weltweit häufigsten Erkrankungen. Diese führt zu einer Vielzahl von Folgeerkrankungen, wie Schlaganfälle oder Nierenversagen. Die Volkskrankheit stellt somit eine große Herausforderung für das Gesundheitssystem dar. Zusätzlich wird Diabetes mellitus Typ 2 meist sehr spät diagnostiziert. Die Untersuchung der Zusammenhänge zwischen dem Darmmikrobiom und Diabetes mellitus Typ 2 führen zu einem besseren Verständnis der molekularen Wechselwirkungen und Mechanismen. Dies unterstützt eine erfolgreiche Behandlung und Entwicklung von Medikamenten, auch über Diabetes mellitus Typ 2 hinaus. Neben der Betrachtung von einzelnen Bakterien oder ganzen taxonomischen Ebenen ist die Einbeziehung der bakteriellen Pathways wichtig. Diese verknüpfen anhand ihrer biologischen Funktion einzelne Bakterien miteinander.
Ziel der vorliegenden Arbeit war statistisch signifikante Korrelationen zwischen der Zusammensetzung des Darmmikrobioms im Menschen und der Ausbildung von Diabetes mellitus Typ 2 mittels statistischer Methoden und Methoden des maschinellen Lernens zu finden und zu charakterisieren. Der erste Schritt bestand in der Detektion der vorhandenen Bakterien und der dazugehörige Pathways aus Stuhlproben durch Next Generation Sequencing von 16S rDNA. Diese wurden anschließend durch eine Analyse-Pipeline zu einem Mikrobiomprofil zusammengefasst. Die Zuordnung der beteiligten Pathways erfolgte anhand der identifizierten Genfamilien. Statistische Methoden, wie der Student t-Test oder Clusteranalysen, dienten der Ermittlung von signifikanten Unterschieden. Berücksichtigt wurden dabei nicht nur einzelne Bakterien, sondern auch das funktionelle Mikrobiom. Somit konnte ein umfassendes Profil erstellt werden.
Die Hauptkomponentenanalyse wurde verwendet, um die Variabilität in den mikrobiellen Daten zu reduzieren und wichtige Muster oder Gruppierungen zu identifizieren. Das k-means-Clustering ermöglichte die Identifikation von Clusterstrukturen innerhalb der Mikrobiomdaten, während t-distributed Stochastic Neighbor Embedding und Uniform Manifold Approximation and Projection die Visualisierung der multidimensionalen Daten in einem zweidimensionalen Raum ermöglichten. Zur Bestimmung der Diversität im Darmmikrobiom wurden verschiedene Metriken, wie der Shannon-Entropy und die inverse Simpson-Korrelation, verwendet. Diese erlaubten es, die Artenvielfalt und die gleichmäßige Verteilung der Mikroorganismen zu bewerten. Darüber hinaus wurden auch fortgeschrittene Methoden des maschinellen Lernens eingesetzt. Diese Methoden ermöglichten eine prädiktive Modellierung sowie die Identifikation von wichtigen Merkmalen im Zusammenhang mit dem Darmmikrobiom bei Diabetes mellitus Typ 2, aus komplexen, heterogenen Daten. Ein entwickeltes künstliches neuronales Netz bildete die Grundlage für weitergehende Untersuchungen. Die Identifikation von relevanten bakteriellen Pathways für die Klassifikation ermöglichte die Ermittlung von biologisch funktionalen Zusammenhängen. Dazu wurde eine Analyse zur Merkmalsbedeutung über einen spieltheoretischen Ansatz (SHapley Additive exPlanations) angewendet. Die zusätzliche Analyse von assoziierten Gesundheitsdaten unterstützten die Erkennung von Wechselwirkungen und Einflüssen. Dazu fanden ebenfalls sowohl klassische statistische Methoden als auch maschinelles Lernen Anwendung. Mittels des Chi-Square-Tests und kategorischer Boostingverfahren konnten wichtige Merkmale detektiert werden. Die Methoden wurden wegen ihrer Eignung, Zusammenhänge in kategorischen Merkmalen zu detektieren, ausgewählt.
Die Wahl der Methoden erfolgte aufgrund ihrer Eignung zur Analyse von komplexen mikrobiellen Datensätzen und ihrer Fähigkeit, Muster und Zusammenhänge in den Daten zu identifizieren. Die Kombination aus klassischen statistischen Methoden und Methoden des maschinellen Lernens ermöglichte eine umfassende Untersuchung des Darmmikrobioms im Zusammenhang mit Diabetes mellitus Typ 2.
Die zyklische Redundanzprüfung (CRC) ist ein Mechanismus zur Erkennung von Übertragungsfehlern, dessen Prüfsumme effizient mithilfe einer Polynomdivision berechnet wird. Ziel dieser Arbeit ist die Entwicklung einer FPGA-basierten Methode zur Berechnung der Prüfsumme für dynamische Blockgrößen. Dazu werden zwei Ansätze vorgestellt, getestet und verglichen. Die Möglichkeit, die Prüfsumme zurückzurechnen, reduziert den Ressourcenverbrauch, wie Analysen mit dem Xilinx Vivado Tool zeigen.
Das entwickelte CRC-Modul wird im CBM-Experiment an der FAIR-Anlage erfolgreich getestet und stellt die Integrität von Daten sicher, die mit einer Rate von bis zu 1 TB/s erfasst werden. Praxistests validieren die Übertragung von mehr als 2,8 PByte an Daten. Zusätzlich werden die Ansätze auf einem Intel MAX 10 FPGA verifiziert.
Die vorgestellten Methoden sind universell einsetzbar, unterstützen verschiedene Blockgrößen und Generatorpolynome und lassen sich auch auf kleineren FPGAs effektiv umsetzen. Dafür kommt eine Generator-Software zum Einsatz, die beliebige Generatorpolynome und Datengrößen unterstützt. Somit wird in dieser Bachelorarbeit ein Verfahren entwickelt, das sowohl für den spezifischen Anwendungsfall als auch für allgemeine Anwendungen geeignet ist.
In this dissertation a new model for the description of cell organelle movement is defined and a test and change point detection algorithm for changes in the model parameters is proposed.
The description of movement patterns can be important for the understanding of various biological processes on multiple scales. One of the primary goals is to understand the causes of change between movement patterns. On the micro scale, movement patterns of cell organelles and swimming micro-organisms such as cells are investigated. To learn more about the different movement types of cell organelles, as well as the changes between these types, we analyse the movement of two specific types of cell organelles in the root of the plant Arabidopsis thaliana, Plastids and Peroxisomes. Interestingly, while all tracks were recorded in three dimensions, over 90% of the tracks show more than 95% of their movement variability in only two dimensions. We therefore focus on the two-dimensional projection of the movements, allowing comparability to approaches for animal movement pattern analysis. In this data set of organelle movement we observe visually prominent, linear movement structures with seemingly piecewise constant movement direction and speed. Since the different sections of the movement could be associated with different movement mechanisms such as movement through cytoplasmic streaming or transport along intracellular filaments, it is of interest to detect the change points (CPs) in the direction and speed of the movement.
The most widely used time discrete models are variants of the random walk. Most often used, particularly in animal studies, are so-called correlated random walks, which are parametrised by a random turning angle relative to the previous direction. Correlated random walks are useful to model movement where the difference between highly directed and undirected movement is of interest. By fitting HMM models to the observed organelle movement we show that a biased random walk (BRW), parametrised via absolute directions, may be more appropriate to model sections of different but constant movement direction. The BRW is therefore used as a reference model. However, our findings indicate that a BRW shows a higher variability in the movement direction and may thus move less strictly along a linear structure than can be observed in many organelle tracks.
Therefore, we define a new model termed linear walk (LW) with less variability around an expected position. Both models, the BRW and LW, have the same process of expected positions, which is parametrised by two parameters, the movement direction and the step length, where the direction is the angle relative to the x-axis. The models differ in regard to the variability around the expected position. In the BRW, independent random increments are summed up, while in the LW an independent, random error is added to each expected position. Due to this definition the changes in movement direction and step length can be described independently. The expectation of the increments in both models can be parameterised by the movement direction and step length or alternatively by a two dimensional expectation. The maximum likelihood estimators of the model parameters in both models and proof of their strong consistency is provided. Note that for the expectation of the increments in the BRW the estimator is the classical mean, while in the LW the estimator is a weighted average.
In the context of the BRW model a known MOSUM approach for the bivariate detection of change points is easily adapted to our setting. In this approach a double window is shifted over the movement track. The difference of the bivariate expectation of increments in the left and right window half is estimated, leading to a process of differences that fluctuates around the origin, but shows systematic deviation in the neighborhood around a CP. Therefore the maximum deviation of the process of differences from the origin is used as a test statistic. The rejection threshold is obtained via simulation of a limit process. CPs are estimated successively by identifying local deviations of the process of differences from the origin.
In the LW model the MOSUM has inconvenient properties due to the dependency structure of the increments. Therefore a moving kernel approach is proposed where the maximum likelihood estimators for the expectation in the LW model are used instead of the classical mean. For this approach the proof of the weak convergence of the process of differences assuming the true variance is provided. For both approaches simulation studies concerning the test power and precision are provided.
Since the CPs in both approaches are detected within the expectation, we propose a graphical technique to classify the detected change points into CPs in movement direction and step length and apply this technique to the observed organelle movement.
In the first part of this thesis, we present a discrete time version of Kyle’s (1985) classic model of insider trading. The model has three kinds of traders: an insider, random noise traders, and a market maker. The insider aims to exploit her informational advantage and maximise expected profits while the market maker observes the total order flow and sets prices accordingly.
We show how the multi-period model with finitely many pure strategies can be reduced to a (static) social system in the sense of Debreu (1952) and prove the existence of a sequential Kyle equilibrium, following Kreps and Wilson (1982). This requires no probabilistic restrictions on the true value, the insider’s dynamic information, and the noise trader’s actions.
In the single-period model we establish bounds for the insider’s strategy in equilibrium. In addition, we prove the existence of an equilibrium for the game with a continuum of actions, by considering an approximating sequence of games with finitely many actions. Because of the lack of compactness of the set of measurable price functions, standard infinite-dimensional fixed point theorems are not applicable.
The second part of this thesis is concerned with the Binomial Kyle model, a discrete, simplified approach to the continuous model of Back (1992). The noise trader’s demand is given by a simple symmetric random walk and the true value has binomial probabilities. We study inconspicuous Kyle equilibria, a refinement of the Kyle equilibrium concept, in which the total demand of the insider and noise trader has the same distribution as the noise trader’s demand alone.
We explicitly construct an inconspicuous Kyle equilibrium in the case of a binary true value. The total demand process of the insider in equilibrium possesses a bridge structure similar to the one in the Poisson process model of Çetin and Xing (2013), and can be considered a purely discrete counterpart to the Markov bridges in Çetin and Danilova (2018). We show that there exists no inconspicuous trade equilibrium when the number of true values is maximal.
We determine the asymptotic normalized rank of a random matrix $\vA$ over an arbitrary field with prescribed numbers of non-zero entries in each row and column.
As an application we obtain a formula for the rate of low-density parity check codes.
This formula vindicates a conjecture of Lelarge (2013).
The proofs are based on coupling arguments and a novel random perturbation, applicable to any matrix, that diminishes the number of short linear relations.
We derive a sufficient condition for a sparse random matrix with given numbers of non-zero entries in the rows and columns having full row rank.
The result covers both matrices over finite fields with independent non-zero entries and $\{0,1\}$-matrices over the rationals.
The sufficient condition is generally necessary as well.
We provide a simplified proof of the random $k$-XORSAT satisfiability threshold theorem.
As an extension we also determine the full rank threshold for sparse random matrices over finite fields with precisely $k$ non-zero entries per row. This complements a result from [Ayre, Coja-Oghlan, Gao, Müller: Combinatorica 2020]. The proof combines physics-inspired message passing arguments with a surgical moment computation.