333.7 Natürliche Ressourcen, Energie und Umwelt
Refine
Year of publication
Document Type
- Part of Periodical (54)
- Article (38)
- Working Paper (18)
- Contribution to a Periodical (9)
- Book (6)
- Doctoral Thesis (4)
- Preprint (4)
- Part of a Book (1)
- Periodical (1)
- Review (1)
Is part of the Bibliography
- no (136)
Keywords
- Chemicals of emerging concern (2)
- Climate change (2)
- Microplastics (2)
- Oxidative stress (2)
- Risk assessment (2)
- Western Kenya (2)
- drought (2)
- 2030 Agenda (1)
- ATR-FTIR (1)
- Abundance (1)
Institute
- Institut für sozial-ökologische Forschung (ISOE) (31)
- Biowissenschaften (30)
- Institut für Ökologie, Evolution und Diversität (11)
- Präsidium (11)
- Senckenbergische Naturforschende Gesellschaft (7)
- Biodiversität und Klima Forschungszentrum (BiK-F) (6)
- Geowissenschaften / Geographie (5)
- Geowissenschaften (3)
- Gesellschaftswissenschaften (2)
- Exzellenzcluster Die Herausbildung normativer Ordnungen (1)
Biodiversity post-2020: Closing the gap between global targets and national-level implementation
(2021)
National and local governments need to step up efforts to effectively implement the post-2020 global biodiversity framework of the Convention on Biological Diversity to halt and reverse worsening biodiversity trends. Drawing on recent advances in interdisciplinary biodiversity science, we propose a framework for improved implementation by national and subnational governments. First, the identification of actions and the promotion of ownership across stakeholders need to recognize the multiple values of biodiversity and account for remote responsibility. Second, cross-sectorial implementation and mainstreaming should adopt scalable and multifunctional ecosystem restoration approaches and target positive futures for nature and people. Third, assessment of progress and adaptive management can be informed by novel biodiversity monitoring and modeling approaches handling the multidimensionality of biodiversity change.
Highlights
• Extreme weather events (floods, droughts, extreme heat) impact freshwater ecosystems.
• Effects of extreme events are site-specific, varying by organism traits and site hydrography.
• Cumulative impact of events is more significant than single events' magnitude.
• Temporal dynamics and biological characteristics are crucial for evaluating impacts.
• Freshwater ecosystem resilience depends on complex factors, not just event severity.
Abstract
Understanding the impacts of extreme weather events on freshwater ecosystems is imperative during a time when a multitude of challenges compromises these environments' health. Exploring how such events affect macroinvertebrate communities in rivers sheds light on the resilience of freshwater ecosystems, which is essential for human well-being and biodiversity conservation. In this study, long-term time series of benthic macroinvertebrate communities from four sites along three freshwater streams within the Rhine-Main-Observatory Long-Term Ecological Research site in Germany were analyzed. Each of them was sampled annually over a span of ~20 years to assess the impacts of extreme weather events (floods, droughts, and extreme heat) on macroinvertebrate communities. The findings reveal that the effects of extreme events are site-specific, suggesting that the impacts of an extreme event can vary based on several potential factors, including the life history traits of the organisms within the community and, among others, the hydrography of the site. Moreover, the analysis highlights that the cumulative impact of these events over time is more significant than the impact of a single event's magnitude, while following distinct temporal dynamics. This underscores the importance of considering both the temporal dynamics and the biological characteristics of communities when evaluating the consequences of extreme weather events on biodiversity, illustrating that the resilience of freshwater ecosystems and their biodiversity under such conditions depends on a complex interplay of factors rather than the severity of individual events.
Highlights
• Determination of styrene-butadiene rubber as tire constituent using TED-GC/MS.
• Determination of zinc content as tire constituent using ICP-OES.
• Representative sampling strategy with large-volume mixed samples.
• Tire wear content is decreasing with increasing sampling depth and distance to road.
• Deposited tire wear particles are mainly present in soil fraction <100 μm.
Abstract
Tire wear (TW) constitutes a significant source of microplastic in terrestrial ecosystems. It is known that particles emitted by roads can have an effect up to 100 m into adjacent areas. Here, we apply for the first-time thermal extraction desorption gas chromatography-mass spectrometry (TED-GC/MS) to determine TW in soil samples by detection of thermal decomposition products of styrene-butadiene rubber (SBR), without additional enrichment. Additionally, zinc contents were determined as an elemental marker for TW. Mixed soil samples were taken along three transects along a German motorway in 0.3, 2.0, and 5.0 m distance from the road. Sampling depths were 0–2, 2–5, 5–10, and 10–20 cm. Four fine fractions, 1 000–500, 500–100, 100–50, and <50 μm, were analyzed.
TW contents based on SBR ranged from 155 to 15 898 mg kg−1. TW contents based on zinc were between 413 and 44 812 mg kg−1. Comparison of individual values of SBR and zinc reveals SBR as a more specific marker. Results confirm that most TW ends up in the topsoil within a 2 m distance.
The sampling strategy resulted in representative data for a larger area. Standard deviations of quadruple TED-GC/MS determination of SBR were <10% for all grain size fractions. TED-GC/MS is a suitable analytical tool for determining TW in soil samples without the use of toxic chemicals, enrichment, or special sample preparation.
Microplastics are small plastic fragments that are widely distributed in marine and terrestrial environments. While the soil ecosystem represents a large reservoir for plastic, research so far has focused mainly on the impact on aquatic ecosystems and there is a lack of information on the potentially adverse effects of microplastics on soil biota. Earthworms are key organisms of the soil ecosystem and are due to their crucial role in soil quality and fertility a suitable and popular model organism in soil ecotoxicology.
Therefore, the aim of this study was to gain insight into the effects of environmentally relevant concentrations of microplastics on the earthworm Eisenia andrei on multiple levels of biological organization after different exposure periods. Earthworms were exposed to two types of microplastics: (1) polystyrene-HBCD and (2) car tire abrasion in natural soil for 2, 7, 14 and 28 d. Acute and chronic toxicity and all subcellular investigations were conducted for all exposure times, avoidance behavior assessed after 48 h and reproduction after 28 d. Subcellular endpoints included enzymatic biomarker responses, namely, carboxylesterase, glutathione peroxidase, acetylcholinesterase, glutathione reductase, glutathione S-transferase and catalase activities, as well as fluorescence-based measurements of oxidative stress-related markers and multixenobiotic resistance activity. Multiple biomarkers showed significant changes in activity, but a recovery of most enzymatic activities could be observed after 28 d. Overall, only minor effects could be observed on a subcellular level, showing that in this exposure scenario with environmentally relevant concentrations based on German pollution levels the threat to soil biota is minimal. However, in areas with higher concentrations of microplastics in the environment, these results can be interpreted as an early warning signal for more adverse effects. In conclusion, these findings provide new insights regarding the ecotoxicological effects of environmentally relevant concentrations of microplastics on soil organisms.
Highlights
• We propose a framework to address landscape effects on ecosystem services.
• We expect ecosystem service flows to be modulated by the amount and configuration of supply and demand areas.
• We stress the role of neutral areas in facilitating or hindering ecosystem service flows.
• Supply/demand ratios, spatial overlap, and ES characteristics need to be accounted for when assessing flows.
• We propose a research agenda with challenges to couple the effects of landscape configuration on ES flow.
Abstract
Despite advances in understanding the effects of landscape structure on ecosystem services (ES), many challenges related to these complex spatial interactions remain. In particular, the integration of landscape effects on different components of the service provision chain (supply, demand, and flow) remains poorly understood and conceptualized. Here we propose a theoretical framework to further explore how the spatial flow of ES can vary according to landscape structure (i.e. composition and configuration) emphasizing the role played by the configuration of supply, demand, and neutral areas, as well as individual characteristics of ES (e.g., service rivalry). For this, we expand the discussion on how landscape changes can affect ES flows and propose a theoretical representation of ES flows variation led by different supply-demand ratios. Additionally, we expand this discussion by integrating the potential effects of neutral areas in the landscape as well as of supply/demand spatial overlap. This novel approach links the spatial arrangement (e.g. fragmentation, network complexity, matrix resistance) usually captured by landscape metrics, and ratios of ES supply and demand areas to potential effects on spatial flows of ES. We discuss the application of this model using widely studied ES, such as pollination, pest control by natural enemies, and microclimate regulation. Finally, we propose a research agenda to connect the presented ideas with other prominent research topics that must be further developed to support landscape management targeting ES provision. The prominence of ES science calls for contributions such as this to give the scientific community the opportunity to reflect on the underlying mechanisms of ES and avoid oversimplified spatial assessments.
Highlights
• BaP exposure increases the mutation rate of C. riparius.
• BaP exposure is detrimental for the fitness and the population dynamics of C. riparius.
• Multi-generational studies are essential to assess evolutionary implications of anthropogenic substances on biodiversity.
Abstract
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment is posing a threat to ecosystems and human health. Benzo(a)pyrene (BaP) is considered a biomarker of PAH exposure and is classified as a Group 1 carcinogen. However, it was not known whether BaP is mutagenic, i.e. induces inherited germline mutations. In this study, we used a recently established method, which combines short-term mutation accumulation lines (MAL) with whole genome sequencing (WGS) to assess mutagenicity in the non-biting midge Chironomus riparius. The mutagenicity analysis was supplemented by an evaluation of the development of population fitness in three successive generations in the case of chronic exposure to BaP at a high concentration (100 μg/L). In addition, the level of ROS-induced oxidative stress was examined in vivo. Exposure to the higher BaP concentration led to an increase in germline mutations relative to the control, while the lower concentration showed no mentionable effect. Against expectations, BaP exposure decreased ROS-level compared to the control and is thus probably not responsible for the increased mutation rate. Likewise, the higher BaP concentration decreased fitness measured as population growth rate per day (PGR) significantly over all generations, without signs of rapid evolutionary adaptations. Our results thus highlighted that high BaP exposure may influence the evolutionary trajectory of organisms.
Chemical pollution caused by synthetic organic chemicals at low concentrations in the environment poses a growing threat to the ecological status of aquatic ecosystems. These chemicals are regularly released into surface waters through both treated and untreated effluents from wastewater treatment plants (WWTPs), agricultural runoff, and industrial discharges. Consequently, they accumulate in surface waters, distribute amongst environmental compartments according to their physicochemical properties, and cause adverse effects on aquatic organisms. Unfortunately, there is a lack of data regarding the occurrence of synthetic organic chemicals, henceforth micropollutants, in South American freshwater ecosystems, especially in Chile.
To address this research gap, we present a comprehensive dataset comprising concentrations of 153 emerging chemicals, including pesticides, pharmaceutical and personal care products (PPCPs), surfactants, and industrial chemicals. These chemicals were found to co-occur in surface waters within Central Chile, specifically in the River Aconcagua Basin. Our sampling strategy involved collecting surface water samples from streams and rivers with diverse land uses, such as agriculture, urban areas, and natural reserves. For sample extraction, we employed an on-site large-volume solid phase extraction (LVSPE) device. The resulting environmental extracts were then subjected to wide-scope chemical target screening using gas chromatography and liquid chromatography high-resolution mass spectrometry (GC- and LCsingle bondHRMS).
The dataset we present holds significant value in assessing the chemical status of water bodies. It enables comparative analysis of pollution fingerprints associated with emerging chemicals across different freshwater systems. Moreover, the data can be reused for environmental risk assessment studies. Its utilisation will contribute to a better understanding of the impact and extent of chemical pollution in aquatic ecosystems, facilitating the development of effective mitigation strategies.
Highlights
• 153 chemicals of emerging concern detected in complex multi-component mixtures.
• 108 possible mixture risk assessment scenarios were investigated.
• Non-detects, QSARs, and experimental ecotoxicological data were integrated for risk assessment.
• 8 chemicals were the main risk drivers in at least one site across the River Aconcagua basin.
Abstract
Environmental risk assessments strategies that account for the complexity of exposures are needed in order to evaluate the toxic pressure of emerging chemicals, which also provide suggestions for risk mitigation and management, if necessary. Currently, most studies on the co-occurrence and environmental impacts of chemicals of emerging concern (CECs) are conducted in countries of the Global North, leaving massive knowledge gaps in countries of the Global South.
In this study, we implement a multi-scenario risk assessment strategy to improve the assessment of both the exposure and hazard components in the chemical risk assessment process. Our strategy incorporates a systematic consideration and weighting of CECs that were not detected, as well as an evaluation of the uncertainties associated with Quantitative Structure-Activity Relationships (QSARs) predictions for chronic ecotoxicity. Furthermore, we present a novel approach to identifying mixture risk drivers. To expand our knowledge beyond well-studied aquatic ecosystems, we applied this multi-scenario strategy to the River Aconcagua basin of Central Chile. The analysis revealed that the concentrations of CECs exceeded acceptable risk thresholds for selected organism groups and the most vulnerable taxonomic groups. Streams flowing through agricultural areas and sites near the river mouth exhibited the highest risks. Notably, the eight risk drivers among the 153 co-occurring chemicals accounted for 66–92 % of the observed risks in the river basin. Six of them are pesticides and pharmaceuticals, chemical classes known for their high biological activity in specific target organisms.
Highlights
• PUR, PVC and PLA microplastics affect life-history parameters of Daphnia magna.
• Natural kaolin particles are less toxic than microplastics.
• Microplastic toxicity is material-specific, e.g. PVC is most toxic on reproduction.
• In case of PVC, plastic chemicals are the main driver of microplastic toxicity.
• PLA bioplastics are similarly toxic as conventional plastics.
Abstract
Given the ubiquitous presence of microplastics in aquatic environments, an evaluation of their toxicity is essential. Microplastics are a heterogeneous set of materials that differ not only in particle properties, like size and shape, but also in chemical composition, including polymers, additives and side products. Thus far, it remains unknown whether the plastic chemicals or the particle itself are the driving factor for microplastic toxicity. To address this question, we exposed Daphnia magna for 21 days to irregular polyvinyl chloride (PVC), polyurethane (PUR) and polylactic acid (PLA) microplastics as well as to natural kaolin particles in high concentrations (10, 50, 100, 500 mg/L, ≤ 59 μm) and different exposure scenarios, including microplastics and microplastics without extractable chemicals as well as the extracted and migrating chemicals alone. All three microplastic types negatively affected the life-history of D. magna. However, this toxicity depended on the endpoint and the material. While PVC had the largest effect on reproduction, PLA reduced survival most effectively. The latter indicates that bio-based and biodegradable plastics can be as toxic as their conventional counterparts. The natural particle kaolin was less toxic than microplastics when comparing numerical concentrations. Importantly, the contribution of plastic chemicals to the toxicity was also plastic type-specific. While we can attribute effects of PVC to the chemicals used in the material, effects of PUR and PLA plastics were induced by the mere particle. Our study demonstrates that plastic chemicals can drive microplastic toxicity. This highlights the importance of considering the individual chemical composition of plastics when assessing their environmental risks. Our results suggest that less studied polymer types, like PVC and PUR, as well as bioplastics are of particular toxicological relevance and should get a higher priority in ecotoxicological studies.
Due to massive energetic investments in woody support structures, trees are subject to unique physiological, mechanical, and ecological pressures not experienced by herbaceous plants. Despite a wealth of studies exploring trait relationships across the entire plant kingdom, the dominant traits underpinning these unique aspects of tree form and function remain unclear. Here, by considering 18 functional traits, encompassing leaf, seed, bark, wood, crown, and root characteristics, we quantify the multidimensional relationships in tree trait expression. We find that nearly half of trait variation is captured by two axes: one reflecting leaf economics, the other reflecting tree size and competition for light. Yet these orthogonal axes reveal strong environmental convergence, exhibiting correlated responses to temperature, moisture, and elevation. By subsequently exploring multidimensional trait relationships, we show that the full dimensionality of trait space is captured by eight distinct clusters, each reflecting a unique aspect of tree form and function. Collectively, this work identifies a core set of traits needed to quantify global patterns in functional biodiversity, and it contributes to our fundamental understanding of the functioning of forests worldwide.