510 Mathematik
Refine
Year of publication
Document Type
- Article (167)
- Doctoral Thesis (126)
- diplomthesis (40)
- Preprint (31)
- Report (21)
- Book (17)
- Master's Thesis (12)
- Conference Proceeding (11)
- Contribution to a Periodical (11)
- Bachelor Thesis (8)
Has Fulltext
- yes (460)
Is part of the Bibliography
- no (460)
Keywords
- Kongress (6)
- Kryptologie (5)
- Mathematik (5)
- Stochastik (5)
- Online-Publikation (4)
- Statistik (4)
- point process (4)
- Brownian motion (3)
- Finanzmathematik (3)
- LLL-reduction (3)
Institute
- Mathematik (295)
- Informatik und Mathematik (85)
- Informatik (54)
- Präsidium (12)
- Frankfurt Institute for Advanced Studies (FIAS) (6)
- Physik (6)
- Goethe-Zentrum für Wissenschaftliches Rechnen (G-CSC) (3)
- Medizin (3)
- Biochemie und Chemie (2)
- Erziehungswissenschaften (2)
Motivated by Gröbner basis theory for finite point configurations, we define and study the class of standard complexes associated to a matroid. Standard complexes are certain subcomplexes of the independence complex that are invariant under matroid duality. For the lexicographic term order, the standard complexes satisfy a deletion-contraction-type recurrence. We explicitly determine the lexicographic standard complexes for lattice path matroids using classical bijective combinatorics.
Mathematical arguments are central components of mathematics and play a role in certain types of modelling of potential mathematical giftedness. However, particular characteristics of arguments are interpreted differently in the context of mathematical giftedness. Some models of giftedness see no connection, whereas other models consider the formulation of complete and plausible arguments as a partial aspect of giftedness. Furthermore, longitudinal changes in argumentation characteristics remain open. This leads to the research focus of this article, which is to identify and describe the changes of argumentation products in potentially mathematically gifted children over a longer period. For this purpose, the argumentation products of children from third to sixth grade are collected throughout a longitudinal study and examined with respect to the use of examples and generalizations. The analysis of all products results in six different types of changes in the characteristics of the argumentation products identified over the survey period and case studies are used to illustrate student use of examples and generalizations of these types. This not only reveals the general importance of the use of examples in arguments. For one type, an increase in generalized arguments can be observed over the survey period. The article will conclude with a discussion of the role of argument characteristics in describing potential mathematical giftedness.
For an abeloid variety A over a complete algebraically closed field extension K of Qp, we construct a p-adic Corlette–Simpson correspondence, namely an equivalence between finite-dimensional continuous K-linear representations of the Tate module and a certain subcategory of the Higgs bundles on A. To do so, our central object of study is the category of vector bundles for the v-topology on the diamond associated to A. We prove that any pro-finite-étale v-vector bundle can be built from pro-finite-étale v-line bundles and unipotent v-bundles. To describe the latter, we extend the theory of universal vector extensions to the v-topology and use this to generalise a result of Brion by relating unipotent v-bundles on abeloids to representations of vector groups.
Through the glasses of didactic reduction, we consider a (periodic) tessellation Δ of either Euclidean or hyperbolic 𝑛-space 𝑀. By a piecewise isometric rearrangement of Δ we mean the process of cutting 𝑀 along corank-1 tile-faces into finitely many convex polyhedral pieces, and rearranging the pieces to a new tight covering of the tessellation Δ. Such a rearrangement defines a permutation of the (centers of the) tiles of Δ, and we are interested in the group of 𝑃𝐼(Δ) all piecewise isometric rearrangements of Δ. In this paper, we offer (a) an illustration of piecewise isometric rearrangements in the visually attractive hyperbolic plane, (b) an explanation on how this is related to Richard Thompson's groups, (c) a section on the structure of the group pei(ℤ𝑛) of all piecewise Euclidean rearrangements of the standard cubically tessellated ℝ𝑛, and (d) results on the finiteness properties of some subgroups of pei(ℤ𝑛).
Conditional Sums-of-AM/GM-Exponentials (conditional SAGE) is a decomposition method to prove nonnegativity of a signomial or polynomial over some subset X of real space. In this article, we undertake the first structural analysis of conditional SAGE signomials for convex sets X. We introduce the X-circuits of a finite subset A⊂Rn , which generalize the simplicial circuits of the affine-linear matroid induced by A to a constrained setting. The X-circuits serve as the main tool in our analysis and exhibit particularly rich combinatorial properties for polyhedral X, in which case the set of X-circuits is comprised of one-dimensional cones of suitable polyhedral fans. The framework of X-circuits transparently reveals when an X-nonnegative conditional AM/GM-exponential can in fact be further decomposed as a sum of simpler X-nonnegative signomials. We develop a duality theory for X-circuits with connections to geometry of sets that are convex according to the geometric mean. This theory provides an optimal power cone reconstruction of conditional SAGE signomials when X is polyhedral. In conjunction with a notion of reduced X-circuits, the duality theory facilitates a characterization of the extreme rays of conditional SAGE cones. Since signomials under logarithmic variable substitutions give polynomials, our results also have implications for nonnegative polynomials and polynomial optimization.
In this article, we prove the Hodge conjecture for a desingularization of the moduli space of rank 2, semi-stable, torsion-free sheaves with fixed odd degree determinant over a very general irreducible nodal curve of genus at least 2. We also compute the algebraic Poincaré polynomial of the associated cohomology ring.
Interactional niche in the development of geometrical and spatial thinking in the familial context
(2016)
In the analysis of mathematics education in early childhood it is necessary to consider the familial context, which has a significant influence on development in early childhood. Many reputable international research studies emphasize that the more children experience mathematical situations in their families, the more different emerging forms of participation occur for the children that enable them to learn mathematics in the early years. In this sense mathematical activities in the familial context are cornerstones of children’s mathematical development, which is also affected by the ethnic, cultural, educational and linguistic features of their families. Germany has a population of approximately 82 million, about 7.2 million of whom are immigrants (Statisches Bundesamt 2009, pp.28-32). Children in immigrant families grow up with multiculturalism and multilingualism, therefore these children are categorized as a risk group in Germany. “Early Steps in Mathematics Learning – Family Study” (erStMaL-FaSt) is the one of the first familial studies in Germany to deal with the impact of familial socialization on mathematics learning. The study enables us to observe children from different ethnic groups with their family members in different mathematical play situations. The family study (erStMaL-FaSt) is empirically performed within the framework of the erStMaL (Early Steps in Mathematics Learning) project, which relates to the investigation of longitudinal mathematical cognitive development in preschool and early primary-school ages from a socio-constructivist perspective. This study uses two selected mathematical domains, Geometry and Measurement, and four play situations within these two mathematical domains.
My PhD study is situated in erStMaL-FaSt. Therefore, in the beginning of this first chapter, I briefly touch upon IDeA Centre and the erStMaL project and then elaborate on erStMaL-FaSt. As parts of my research concepts, I specify two themes of erStMaL-FaSt: family and play. Thereafter I elaborate upon my research interest. The aim of my study is the research and development of theoretical insights in the functioning of familial interactions for the formation of geometrical (spatial) thinking and learning of children of Turkish ethnic background. Therefore, still in Chapter 1, I present some background on the Turkish people who live in Germany and the spatial development of the children.
This study is designed as a longitudinal study and constructed from interactionist and socio-constructivist perspectives. From a socio-constructivist perspective the cognitive development of an individual is constitutively bound to the participation of this individual in a variety of social interactions. In this regard the presence of each family member provides the child with some “learning opportunities” that are embedded in the interactive process of negotiation of meaning about mathematical play. During the interaction of such various mathematical learning situations, there occur different emerging forms of participation and support. For the purpose of analysing the spatial development of a child in interaction processes in play situations with family members, various statuses of participation are constructed and theoretically described in terms of the concept of the “interactional niche in the development of mathematical thinking in the familial context” (NMT-Family) (Acar & Krummheuer, 2011), which is adapted to the special needs of familial interaction processes. The concept of the “interactional niche in the development of mathematical thinking” (NMT) consists of the “learning offerings” provided by a group or society, which are specific to their culture and are categorized as aspects of “allocation”, and of the situationally emerging performance occurring in the process of meaning negotiation, both of which are subsumed under the aspect of the “situation”, and of the individual contribution of the particular child, which constitutes the aspect of “child’s contribution” (Krummheuer 2011a, 2011b, 2012, 2014; Krummheuer & Schütte 2014). Thereby NMT-Family is constructed as a subconcept of NMT, which offers the advantage of closer analyses and comparisons between familial mathematical learning occasions in early childhood and primary school ages.
Within the scope of NMT-Family, a “mathematics learning support system” (MLSS) is an interactional system which may emerge between the child and the family members in the course of the interaction process of concrete situations in play (Krummheuer & Acar Bayraktar, 2011). All these topics are addressed in Chapter 2 as theoretical approaches and in Chapter 3 as the research method of this study. In Chapter 4 the data collection and analysis is clarified in respect of these approaches...
We provide a Hopf boundary lemma for the regional fractional Laplacian (−Δ)sΩ, with Ω ⊂ RN a bounded open set. More precisely, given u a pointwise or weak super-solution of the equation (−Δ)s u = c(x)u in Ω, we show that the ratio u(x)∕(dist(x, 𝜕Ω))2s−1 is strictly Ω positive as x approaches the boundary 𝜕Ω of Ω. We also prove a strong maximum principle for distributional super-solutions.
Ein Kreis mit unendlich vielen Mittelpunkten : die erstaunliche Welt der p-adischen Geometrie
(2023)
Die Welt, die Annette Werner untersucht, erscheint uns fremd, fast schon absurd: Verschiedene Zahlen haben hier die gleiche Größe, und Kreise besitzen unendlich viele Mittelpunkte. Die Mathematikprofessorin forscht auf dem Gebiet der sogenannten p-adischen Geometrie – einem Bereich der modernen Algebra, der in den letzten Jahrzehnten einen stürmischen Fortschritt erlebt hat.
Antimicrobial resistant infections arise as a consequential response to evolutionary mechanisms within microbes which cause them to be protected from the effects of antimicrobials. The frequent occurrence of resistant infections poses a global public health threat as their control has become challenging despite many efforts. The dynamics of such infections are driven by processes at multiple levels. For a long time, mathematical models have proved valuable for unravelling complex mechanisms in the dynamics of infections. In this thesis, we focus on mathematical approaches to modelling the development and spread of resistant infections at between-host (population-wide) and within-host (individual) levels.
Within an individual host, switching between treatments has been identified as one of the methods that can be employed for the gradual eradication of resistant strains on the long term. With this as motivation, we study the problem using dynamical systems and notions from control theory. We present a model based on deterministic logistic differential equations which capture the general dynamics of microbial resistance inside an individual host. Fundamentally, this model describes the spread of resistant infections whilst accounting for evolutionary mutations observed in resistant pathogens and capturing them in mutation matrices. We extend this model to explore the implications of therapy switching from a control theoretic perspective by using switched systems and developing control strategies with the goal of reducing the appearance of drug resistant pathogens within the host.
At the between-host level, we use compartmental models to describe the transmission of infection between multiple individuals in a population. In particular, we make a case study of the evolution and spread of the novel coronavirus (SARS-CoV-2) pandemic. So far, vaccination remains a critical component in the eventual solution to this public health crisis. However, as with many other pathogens, vaccine resistant variants of the virus have been a major concern in control efforts by governments and all stakeholders. Using network theory, we investigate the spread and transmission of the disease on social networks by compartmentalising and studying the progression of the disease in each compartment, considering both the original virus strain and one of its highly transmissible vaccine-resistant mutant strains. We investigate these dynamics in the presence of vaccinations and other interventions. Although vaccinations are of absolute importance during viral outbreaks, resistant variants coupled with population hesitancy towards vaccination can lead to further spread of the virus.