## 510 Mathematik

### Refine

#### Year of publication

#### Document Type

- Article (188)
- Doctoral Thesis (129)
- Preprint (44)
- diplomthesis (38)
- Report (21)
- Book (17)
- Contribution to a Periodical (12)
- Master's Thesis (12)
- Conference Proceeding (11)
- Diploma Thesis (10)

#### Has Fulltext

- yes (499)

#### Is part of the Bibliography

- no (499)

#### Keywords

- Kongress (6)
- Kryptologie (5)
- Mathematik (5)
- Stochastik (5)
- Online-Publikation (4)
- Statistik (4)
- point process (4)
- Brownian motion (3)
- Finanzmathematik (3)
- LLL-reduction (3)

#### Institute

- Mathematik (320)
- Informatik und Mathematik (94)
- Informatik (54)
- Präsidium (13)
- Frankfurt Institute for Advanced Studies (FIAS) (9)
- Physik (9)
- Medizin (4)
- Goethe-Zentrum für Wissenschaftliches Rechnen (G-CSC) (3)
- Wirtschaftswissenschaften (3)
- Biochemie und Chemie (2)

We consider a linear ill-posed equation in the Hilbert space setting. Multiple independent unbiased measurements of the right-hand side are available. A natural approach is to take the average of the measurements as an approximation of the right-hand side and to estimate the data error as the inverse of the square root of the number of measurements. We calculate the optimal convergence rate (as the number of measurements tends to infinity) under classical source conditions and introduce a modified discrepancy principle, which asymptotically attains this rate.

Muller's ratchet, in its prototype version, models a haploid, asexual population whose size~N is constant over the generations. Slightly deleterious mutations are acquired along the lineages at a constant rate, and individuals carrying less mutations have a selective advantage. The classical variant considers {\it fitness proportional} selection, but other fitness schemes are conceivable as well. Inspired by the work of Etheridge et al. ([EPW09]) we propose a parameter scaling which fits well to the ``near-critical'' regime that was in the focus of [EPW09] (and in which the mutation-selection ratio diverges logarithmically as N→∞). Using a Moran model, we investigate the``rule of thumb'' given in [EPW09] for the click rate of the ``classical ratchet'' by putting it into the context of new results on the long-time evolution of the size of the best class of the ratchet with (binary) tournament selection, which (other than that of the classical ratchet) follows an autonomous dynamics up to the time of its extinction. In [GSW23] it was discovered that the tournament ratchet has a hierarchy of dual processes which can be constructed on top of an Ancestral Selection graph with a Poisson decoration. For a regime in which the mutation/selection-ratio remains bounded away from 1, this was used in [GSW23] to reveal the asymptotics of the click rates as well as that of the type frequency profile between clicks. We will describe how these ideas can be extended to the near-critical regime in which the mutation-selection ratio of the tournament ratchet converges to 1 as N→∞.

Motivated by the question of the impact of selective advantage in populations with skewed reproduction mechanims, we study a Moran model with selection. We assume that there are two types of individuals, where the reproductive success of one type is larger than the other. The higher reproductive success may stem from either more frequent reproduction, or from larger numbers of offspring, and is encoded in a measure Λ for each of the two types. Our approach consists of constructing a Λ-asymmetric Moran model in which individuals of the two populations compete, rather than considering a Moran model for each population. Under certain conditions, that we call the "partial order of adaptation", we can couple these measures. This allows us to construct the central object of this paper, the Λ−asymmetric ancestral selection graph, leading to a pathwise duality of the forward in time Λ-asymmetric Moran model with its ancestral process. Interestingly, the construction also provides a connection to the theory of optimal transport. We apply the ancestral selection graph in order to obtain scaling limits of the forward and backward processes, and note that the frequency process converges to the solution of an SDE with discontinous paths. Finally, we derive a Griffiths representation for the generator of the SDE and use it to find a semi-explicit formula for the probability of fixation of the less beneficial of the two types.

Motivated by the question of the impact of selective advantage in populations with skewed reproduction mechanims, we study a Moran model with selection. We assume that there are two types of individuals, where the reproductive success of one type is larger than the other. The higher reproductive success may stem from either more frequent reproduction, or from larger numbers of offspring, and is encoded in a measure Λ for each of the two types. Our approach consists of constructing a Λ-asymmetric Moran model in which individuals of the two populations compete, rather than considering a Moran model for each population. Under certain conditions, that we call the ``partial order of adaptation'', we can couple these measures. This allows us to construct the central object of this paper, the Λ−asymmetric ancestral selection graph, leading to a pathwise duality of the forward in time Λ-asymmetric Moran model with its ancestral process. Interestingly, the construction also provides a connection to the theory of optimal transport. We apply the ancestral selection graph in order to obtain scaling limits of the forward and backward processes, and note that the frequency process converges to the solution of an SDE with discontinous paths. Finally, we derive a Griffiths representation for the generator of the SDE and use it to find a semi-explicit formula for the probability of fixation of the less beneficial of the two types.

Motivated by the question of the impact of selective advantage in populations with skewed reproduction mechanisms, we study a Moran model with selection. We assume that there are two types of individuals, where the reproductive success of one type is larger than the other. The higher reproductive success may stem from either more frequent reproduction, or from larger numbers of offspring, and is encoded in a measure Λ for each of the two types. Λ-reproduction here means that a whole fraction of the population is replaced at a reproductive event. Our approach consists of constructing a Λ-asymmetric Moran model in which individuals of the two populations compete, rather than considering a Moran model for each population. Provided the measure are ordered stochastically, we can couple them. This allows us to construct the central object of this paper, the Λ−asymmetric ancestral selection graph, leading to a pathwise duality of the forward in time Λ-asymmetric Moran model with its ancestral process. We apply the ancestral selection graph in order to obtain scaling limits of the forward and backward processes, and note that the frequency process converges to the solution of an SDE with discontinuous paths. Finally, we derive a Griffiths representation for the generator of the SDE and use it to find a semi-explicit formula for the probability of fixation of the less beneficial of the two types.

We show explicit formulas for the evaluation of (possibly higher-order) fractional Laplacians (-△)ˢ of some functions supported on ellipsoids. In particular, we derive the explicit expression of the torsion function and give examples of s-harmonic functions. As an application, we infer that the weak maximum principle fails in eccentric ellipsoids for s ∈ (1; √3 + 3/2) in any dimension n ≥ 2. We build a counterexample in terms of the torsion function times a polynomial of degree 2. Using point inversion transformations, it follows that a variety of bounded and unbounded domains do not satisfy positivity preserving properties either and we give some examples.

Therapy evasion – and subsequent disease progression – is a major challenge in current oncology. An important role in this context seems to be played by various forms of cancer cell dormancy. For example, therapy-induced dormancy, over short timescales, can create serious obstacles to aggressive treatment approaches such as chemotherapy, and long-term dormancy may lead to relapses and metastases even many years after an initially successful treatment. The underlying dormancy-related mechanisms are complex and highly diverse, so that the analysis even of basic patterns of the population-level consequences of dormancy requires abstraction and idealization, as well as the identification of the relevant specific scenarios.
In this paper, we focus on a situation in which individual cancer cells may switch into and out of a dormant state both spontaneously as well as in response to treatment, and over relatively short time-spans. We introduce a mathematical ‘toy model’, based on stochastic agent-based interactions, for the dynamics of cancer cell populations involving individual short-term dormancy, and allow for a range of (multi-drug) therapy protocols. Our analysis shows that in our idealized model, even a small initial population of dormant cells can lead to therapy failure under classical (and in the absence of dormancy successful) single-drug treatments. We further investigate the effectiveness of several multidrug regimes (manipulating dormant cancer cells in specific ways) and provide some basic rules for the design of (multi-)drug treatment protocols depending on the types and parameters of dormancy mechanisms present in the population.

Highlights
• We study dormancy in the ‘rare mutation’ regime of stochastic adaptive dynamics.
• We first derive the polymorphic evolution sequence, based on prior work.
• Our evolutionary branching criterion extends a result by Champagnat and Méléard.
• In a classical model dormancy can favour evolutionary branching.
• Dormancy also affects several more population characteristics.
Abstract
In this paper, we investigate the consequences of dormancy in the ‘rare mutation’ and ‘large population’ regime of stochastic adaptive dynamics. Starting from an individual-based micro-model, we first derive the Polymorphic Evolution Sequence of the population, based on a previous work by Baar and Bovier (2018). After passing to a second ‘small mutations’ limit, we arrive at the Canonical Equation of Adaptive Dynamics, and state a corresponding criterion for evolutionary branching, extending a previous result of Champagnat and Méléard (2011).
The criterion allows a quantitative and qualitative analysis of the effects of dormancy in the well-known model of Dieckmann and Doebeli (1999) for sympatric speciation. In fact, quite an intuitive picture emerges: Dormancy enlarges the parameter range for evolutionary branching, increases the carrying capacity and niche width of the post-branching sub-populations, and, depending on the model parameters, can either increase or decrease the ‘speed of adaptation’ of populations. Finally, dormancy increases diversity by increasing the genetic distance between subpopulations.

The hierarchical feature regression (HFR) is a novel graph-based regularized regression estimator, which mobilizes insights from the domains of machine learning and graph theory to estimate robust parameters for a linear regression. The estimator constructs a supervised feature graph that decomposes parameters along its edges, adjusting first for common variation and successively incorporating idiosyncratic patterns into the fitting process. The graph structure has the effect of shrinking parameters towards group targets, where the extent of shrinkage is governed by a hyperparameter, and group compositions as well as shrinkage targets are determined endogenously. The method offers rich resources for the visual exploration of the latent effect structure in the data, and demonstrates good predictive accuracy and versatility when compared to a panel of commonly used regularization techniques across a range of empirical and simulated regression tasks.