510 Mathematik
Refine
Year of publication
Document Type
- Article (160)
- Doctoral Thesis (126)
- diplomthesis (47)
- Preprint (31)
- Report (21)
- Book (17)
- Master's Thesis (12)
- Conference Proceeding (11)
- Contribution to a Periodical (11)
- Bachelor Thesis (8)
Has Fulltext
- yes (453)
Is part of the Bibliography
- no (453)
Keywords
- Kongress (6)
- Kryptologie (5)
- Stochastik (5)
- Mathematik (4)
- Online-Publikation (4)
- Statistik (4)
- point process (4)
- Brownian motion (3)
- Finanzmathematik (3)
- LLL-reduction (3)
Institute
- Mathematik (293)
- Informatik und Mathematik (80)
- Informatik (54)
- Präsidium (12)
- Frankfurt Institute for Advanced Studies (FIAS) (6)
- Physik (6)
- Goethe-Zentrum für Wissenschaftliches Rechnen (G-CSC) (3)
- Medizin (3)
- Biochemie und Chemie (2)
- Erziehungswissenschaften (2)
Die Emergenz digitaler Netzwerke ist auf die ständige Entwicklung und Transformation neuer Informationstechnologien zurückzuführen.
Dieser Strukturwandel führt zu äußerst komplexen Systemen in vielen verschiedenen Lebensbereichen.
Es besteht daher verstärkt die Notwendigkeit, die zugrunde liegenden wesentlichen Eigenschaften von realen Netzwerken zu untersuchen und zu verstehen.
In diesem Zusammenhang wird die Netzwerkanalyse als Mittel für die Untersuchung von Netzwerken herangezogen und stellt beobachtete Strukturen mithilfe mathematischer Modelle dar.
Hierbei, werden in der Regel parametrisierbare Zufallsgraphen verwendet, um eine systematische experimentelle Evaluation von Algorithmen und Datenstrukturen zu ermöglichen.
Angesichts der zunehmenden Menge an Informationen, sind viele Aspekte der Netzwerkanalyse datengesteuert und zur Interpretation auf effiziente Algorithmen angewiesen.
Algorithmische Lösungen müssen daher sowohl die strukturellen Eigenschaften der Eingabe als auch die Besonderheiten der zugrunde liegenden Maschinen, die sie ausführen, sorgfältig berücksichtigen.
Die Generierung und Analyse massiver Netzwerke ist dementsprechend eine anspruchsvolle Aufgabe für sich.
Die vorliegende Arbeit bietet daher algorithmische Lösungen für die Generierung und Analyse massiver Graphen.
Zu diesem Zweck entwickeln wir Algorithmen für das Generieren von Graphen mit vorgegebenen Knotengraden, die Berechnung von Zusammenhangskomponenten massiver Graphen und zertifizierende Grapherkennung für Instanzen, die die Größe des Hauptspeichers überschreiten.
Unsere Algorithmen und Implementierungen sind praktisch effizient für verschiedene Maschinenmodelle und bieten sequentielle, Shared-Memory parallele und/oder I/O-effiziente Lösungen.
Ein Kreis mit unendlich vielen Mittelpunkten : die erstaunliche Welt der p-adischen Geometrie
(2023)
Die Welt, die Annette Werner untersucht, erscheint uns fremd, fast schon absurd: Verschiedene Zahlen haben hier die gleiche Größe, und Kreise besitzen unendlich viele Mittelpunkte. Die Mathematikprofessorin forscht auf dem Gebiet der sogenannten p-adischen Geometrie – einem Bereich der modernen Algebra, der in den letzten Jahrzehnten einen stürmischen Fortschritt erlebt hat.
Antimicrobial resistant infections arise as a consequential response to evolutionary mechanisms within microbes which cause them to be protected from the effects of antimicrobials. The frequent occurrence of resistant infections poses a global public health threat as their control has become challenging despite many efforts. The dynamics of such infections are driven by processes at multiple levels. For a long time, mathematical models have proved valuable for unravelling complex mechanisms in the dynamics of infections. In this thesis, we focus on mathematical approaches to modelling the development and spread of resistant infections at between-host (population-wide) and within-host (individual) levels.
Within an individual host, switching between treatments has been identified as one of the methods that can be employed for the gradual eradication of resistant strains on the long term. With this as motivation, we study the problem using dynamical systems and notions from control theory. We present a model based on deterministic logistic differential equations which capture the general dynamics of microbial resistance inside an individual host. Fundamentally, this model describes the spread of resistant infections whilst accounting for evolutionary mutations observed in resistant pathogens and capturing them in mutation matrices. We extend this model to explore the implications of therapy switching from a control theoretic perspective by using switched systems and developing control strategies with the goal of reducing the appearance of drug resistant pathogens within the host.
At the between-host level, we use compartmental models to describe the transmission of infection between multiple individuals in a population. In particular, we make a case study of the evolution and spread of the novel coronavirus (SARS-CoV-2) pandemic. So far, vaccination remains a critical component in the eventual solution to this public health crisis. However, as with many other pathogens, vaccine resistant variants of the virus have been a major concern in control efforts by governments and all stakeholders. Using network theory, we investigate the spread and transmission of the disease on social networks by compartmentalising and studying the progression of the disease in each compartment, considering both the original virus strain and one of its highly transmissible vaccine-resistant mutant strains. We investigate these dynamics in the presence of vaccinations and other interventions. Although vaccinations are of absolute importance during viral outbreaks, resistant variants coupled with population hesitancy towards vaccination can lead to further spread of the virus.
We give theorems about asymptotic normality of general additive functionals on patricia tries, derived from results on tries. These theorems are applied to show asymptotic normality of the distribution of random fringe trees in patricia tries. Formulas for asymptotic mean and variance are given. The proportion of fringe trees with 𝑘 keys is asymptotically, ignoring oscillations, given by (1−𝜌(𝑘))/(𝐻 +𝐽)𝑘(𝑘−1) with the source entropy 𝐻, an entropy-like constant 𝐽, that is 𝐻 in the binary case, and an exponentially decreasing function 𝜌(𝑘). Another application gives asymptotic normality of the independence number and the number of 𝑘-protected nodes.
We thoroughly study the properties of conically stable polynomials and imaginary projections. A multivariate complex polynomial is called stable if its nonzero whenever all coordinates of the respective argument have a positive imaginary part. In this dissertation we consider the generalized notion of K-stability. A multivariate complex polynomial is called K-stable if its non-zero whenever the imaginary part of the respective argument lies in the relative interior of the cone K. We study connections to various other objects, including imaginary projections as well as preservers and combinatorial criteria for conically stable polynomials.
In an earlier paper we proposed a recursive model for epidemics; in the present paper we generalize this model to include the asymptomatic or unrecorded symptomatic people, which we call dark people (dark sector). We call this the SEPARd-model. A delay differential equation version of the model is added; it allows a better comparison to other models. We carry this out by a comparison with the classical SIR model and indicate why we believe that the SEPARd model may work better for Covid-19 than other approaches.
In the second part of the paper we explain how to deal with the data provided by the JHU, in particular we explain how to derive central model parameters from the data. Other parameters, like the size of the dark sector, are less accessible and have to be estimated more roughly, at best by results of representative serological studies which are accessible, however, only for a few countries. We start our country studies with Switzerland where such data are available. Then we apply the model to a collection of other countries, three European ones (Germany, France, Sweden), the three most stricken countries from three other continents (USA, Brazil, India). Finally we show that even the aggregated world data can be well represented by our approach.
At the end of the paper we discuss the use of the model. Perhaps the most striking application is that it allows a quantitative analysis of the influence of the time until people are sent to quarantine or hospital. This suggests that imposing means to shorten this time is a powerful tool to flatten the curves.
Changes in the efficacies of synapses are thought to be the neurobiological basis of learning and memory. The efficacy of a synapse depends on its current number of neurotransmitter receptors. Recent experiments have shown that these receptors are highly dynamic, moving back and forth between synapses on time scales of seconds and minutes. This suggests spontaneous fluctuations in synaptic efficacies and a competition of nearby synapses for available receptors. Here we propose a mathematical model of this competition of synapses for neurotransmitter receptors from a local dendritic pool. Using minimal assumptions, the model produces a fast multiplicative scaling behavior of synapses. Furthermore, the model explains a transient form of heterosynaptic plasticity and predicts that its amount is inversely related to the size of the local receptor pool. Overall, our model reveals logistical tradeoffs during the induction of synaptic plasticity due to the rapid exchange of neurotransmitter receptors between synapses.
Changes in the efficacies of synapses are thought to be the neurobiological basis of learning and memory. The efficacy of a synapse depends on its current number of neurotransmitter receptors. Recent experiments have shown that these receptors are highly dynamic, moving back and forth between synapses on time scales of seconds and minutes. This suggests spontaneous fluctuations in synaptic efficacies and a competition of nearby synapses for available receptors. Here we propose a mathematical model of this competition of synapses for neurotransmitter receptors from a local dendritic pool. Using minimal assumptions, the model produces a fast multiplicative scaling behavior of synapses. Furthermore, the model explains a transient form of heterosynaptic plasticity and predicts that its amount is inversely related to the size of the local receptor pool. Overall, our model reveals logistical tradeoffs during the induction of synaptic plasticity due to the rapid exchange of neurotransmitter receptors between synapses.
Antimicrobial resistance is a major threat to global health and food security today. Scheduling cycling therapies by targeting phenotypic states associated to specific mutations can help us to eradicate pathogenic variants in chronic infections. In this paper, we introduce a logistic switching model in order to abstract mutation networks of collateral resistance. We found particular conditions for which unstable zero-equilibrium of the logistic maps can be stabilized through a switching signal. That is, persistent populations can be eradicated through tailored switching regimens.
Starting from an optimal-control formulation, the switching policies show their potential in the stabilization of the zero-equilibrium for dynamics governed by logistic maps. However, employing such switching strategies, deserve a specific characterization in terms of limit behaviour. Ultimately, we use evolutionary and control algorithms to find either optimal and sub-optimal switching policies. Simulations results show the applicability of Parrondo’s Paradox to design cycling therapies against drug resistance.
We propose a generalized modeling framework for the kinetic mechanisms of transcriptional riboswitches. The formalism accommodates time-dependent transcription rates and changes of metabolite concentration and permits incorporation of variations in transcription rate depending on transcript length. We derive explicit analytical expressions for the fraction of transcripts that determine repression or activation of gene expression, pause site location and its slowing down of transcription for the case of the (2’dG)-sensing riboswitch from Mesoplasma florum. Our modeling challenges the current view on the exclusive importance of metabolite binding to transcripts containing only the aptamer domain. Numerical simulations of transcription proceeding in a continuous manner under time-dependent changes of metabolite concentration further suggest that rapid modulations in concentration result in a reduced dynamic range for riboswitch function regardless of transcription rate, while a combination of slow modulations and small transcription rates ensures a wide range of finely tuneable regulatory outcomes.