560 Paläontologie; Paläozoologie
Refine
Year of publication
Document Type
- Article (174)
- Doctoral Thesis (9)
- Book (5)
- Part of Periodical (5)
- Contribution to a Periodical (4)
- Part of a Book (3)
- Preprint (2)
- Review (2)
- Conference Proceeding (1)
Has Fulltext
- yes (205)
Is part of the Bibliography
- no (205)
Keywords
- Piesberg (5)
- taxonomy (5)
- Ammonoida (4)
- Cretaceous (3)
- Germany (3)
- Insecta (3)
- biogeography (3)
- fossil insects (3)
- paleoecology (3)
- phylogeny (3)
Institute
Due to the fragility of the ophiuroid (brittle star) skeleton, the bulk of the group’s fossil record consists of dissociated ossicles preserved as microfossils. In spite of their great potential as basis for taxonomic and phylogenetic studies, however, ophiuroid ossicles from the Paleozoic have received very little attention so far. Here, we provide an exhaustive taxonomic assessment of such fossils retrieved from sieving residues from the Silurian of Gotland, Sweden. This material was used in a previous study to describe two key taxa that allowed constraining the origin of the extant ophiuroid clade. The remaining taxa belonging to that same lineage are described in the present paper. The evidence at hand suggests that the stem of the extant ophiuroid clade was formed by two genera, Ophiopetagno and Ophiolofsson gen. nov., including six and five species, respectively, and spanning at least the upper Llandovery through upper Ludlow. We conclude that Ophiopetagno and Ophiolofsson represent sister genera that coexisted through most of the Silurian in the shallow tropical seas of Gotland. They underwent repeated body size reductions in correlation with environmental perturbations, with Ophiopetagno paicei eventually giving rise to Muldaster haakei; the first member of the living Ophiuroidea. Herein, we also introduce two new clades, Ankhurida clade nov. and Ophiovalida clade nov., and the following eight new species: Ophiolofsson joelmciveri gen. et sp. nov., O. obituary gen. et sp. nov., O. immolation gen. et sp. nov., O. archspire gen. et sp. nov., O. hendersonorum gen. et sp. nov., Ophiopetagno bonzo sp. nov., O. kansas sp. nov., O. doro sp. nov.; and two probably new species in open nomenclature: Ophiopetagno sp. 1, and Ophiopetagno sp. 2.
We can see an increasing consumption of meat together with the corresponding behavioral adaptations in early hominins, such as Homo erectus. This new development was driven by one or more behavioral adaptations, such as a shift to a higher-quality diet, increased social interactions and/or changes in the life history strategies. The methods by which these hominins obtained meat—through scavenging the carcasses of large herbivores or hunting themselves—remain a topic of debate. They seem to have thrived in expanding grasslands, which offered few resources except for herds of large, gregarious mammals. In our study, we developed an agent-based model that simulates the behavior of a group of hunter-gatherers foraging in a reconstructed tropical grassland environment. The environmental parameters, including plant availability and prey population densities, are derived from the Serengeti National Park. In this model, agents gather or hunt various species either alone or as a group, using strategies early hominins may already have access to. The basic behavior and the implemented hunting strategies are based on data from recent hunter-gatherer societies living in tropical grasslands. Our model demonstrates how foragers may have thrived in tropical grasslands by either adopting fast hunting strategies, which often require access to sophisticated hunting tools, or by cooperating extensively, which would rely on an enhanced social structure to promote cooperative behavior. Our model can be used to study other scenarios by offering the option to change the environmental conditions and aspects of the agent behavior.
The fossil record of the diverse subfamily Passifloroideae (>750 species and 17 genera) is relatively poor. Despite the distinctiveness of its leaves (glandular and often emarginate), most of the fossils from this group have been described from seeds. Fossil seeds have been recovered from Europe, and North and South America. A lack of information on seed morphology for all the genera and tribes of this subfamily has prevented a tribe-level identification of the fossils and a better understanding of their biogeographic patterns. The Passifloroideae is divided into three tribes: Passifloreae with 10 genera, Paropsieae with six genera and the monotypic Jongkindieae. This study provides new descriptions for 15 species from 5 genera from the mostly Afrotropical tribe Paropsieae based on herbarium material, and introduces an online seed database and a key for 100 species of Passifloroideae compiled from literature and direct observations. Our study shows a low morphological diversity among the seeds of Paropsieae in comparison to a much larger diversity within Passifloreae. Some rare morphologies are only present in Passifloreae and can be used to assign seeds to this tribe. Within the Paropsieae, Androsiphonia has seed that are very distinct from those in the other genera in the tribe and also from the rest of the subfamily. The genus Paropsia exhibits two main morphotypes, while the genera Barteria, Paropsiopsis and Smeathmannia have very similar seeds with a highly conserved morphology. These results suggest that living or fossil Paropsieae cannot be identified confidently based solely on seed characters.
A collection of 1149 otoliths of the Ypresian and Ypresian–Lutetian transition (early Eocene) from 18 sites across five states in the eastern and southern regions of the USA was analyzed. In total, 33 otolith-based taxa are documented, of which 27 are identified at the species level. Nine of these are introduced as new species: “Conger” biaculeatus sp. nov., Bauzaia gibbosa sp. nov., Ampheristus brevicaudatus sp. nov., Symmetrosulcus virginicus sp. nov., Neobythites longesulcatus sp. nov., “Neobythites” pamunkeyensis sp. nov., “Neobythites” stringeri sp. nov., Waitakia dorsogibbosa sp. nov., and “Haemulon” ypresiensis sp. nov. The assemblages are distinct when compared to their younger Eocene counterparts in America. This distinction is primarily characterized by the high proportion of the newly introduced species or exclusive Ypresian species. Additionally, we highlight the presence of 10 amphi-Atlantic species originally described in European deposits. Significantly, the composition of the otolith collection supports the interpretation of a shallow-water environment for the sampled sites during the Ypresian. This ecological setting appears to persist into the subsequent middle and late Eocene within the same geographic region.
Taphonomy and palaeoecology of Laetoli as well as Makuyuni, Arusha region in northern Tanzania
(2004)
This thesis is the result of the Hominid Corridor research Project in Tanzania since 1993 to 1995 that include Pliocene and Pleistocene localities. The localities under study include Laetoli and Manyara area in Arusha Region, northern Tanzania. The thesis has the following specific objectives: firstly, to identify taxa recovered from the studied assemblages; secondly, to underpin taphonomic history of the assemblages under study; thirdly, to elucidate further palaeoecological reconstruction of the assemblages; and finally, to examine surface fossil fauna modifications including agents of modifications either hominids or carnivores.
The Upper Laetolil Beds are dated at 3.5 million years ago (Ma) and the Ndolanya Beds are bracketed in age between 3.5 and 2.41 Ma. The Naibadad Beds, also from Laetoli area, are date to be between 2.2 to 2.1 Ma. The Naibadad Beds are correlated with the base of Bed I at Olduvai Gorge. There are so far no absolute dates for Manyara assemblages. Based on biostratigraphic correlation, the younger overlying unit, the Upper Manyara Beds are estimated to belong to Later Pleistocene and the Lower Manyara Beds are estimated to belong to Early Pleistocene. The Upper Manyara Beds are correlated to the age of Bed III at Olduvai Gorge, while the Lower Manyara Beds are interpreted to span the same contemporaneity with the upper part of Bed II at Olduvai Gorge.
At Laetoli localities, terrestrial mammals while localities from Manyara besides terrestrial mammals dominate fauna; they include aquatic species such as fish, crocodiles and hippopotamus. The main families recovered from Upper Laetolil Beds complement those already recovered from former research works by other workers. This is also true for the younger overlying stratigraphic horizon, the Upper Ndolanya Beds. Thus, mammalian families recovered from Upper Laetolil Beds include Bovidae, Carnivora, Elephantidae, Equidae, Lagomorpha, Suidae, Rodentia, Hominoidea and Rhenocerotidae. Remains of an invertebrate, Gastropoda were also recovered. For Upper Ndolanya Beds include almost the same families recovered from Upper Laetolil Beds, but based on former recovery of fossil fauna, these Beds outnumber greatly the Upper Laetolil Beds in bovid composition by 20 per cent. Such a change in species composition is noticed also from South African localities and East African localities such as the East Turkana. This is interpreted to be due to climatic change drier environments that included species adapted to such palaeoclimates.
For the first time, our team has been able to retrieve specimens identifiable to taxa, a pattern that not possible from previous workers who claimed to have recovered too sparse specimens to be identifiable to any taxon.
The Upper Manyara Beds as well as Lower Manyara taxonomic composition include aquatic species besides the large terrestrial mammalian fauna retrieved from there. In due regard, the former horizon is attributed to have affinity with Olduvai Bed III components and the latter, older horizon, is attributed to have affinity with upper parts of Bed II times at Olduvai Gorge. The Lower Manyara Beds can be said to have, in relative terms, affinity to species recovered from site RC 11 of the Chiwondo Beds, Malema region in northern Malawi, although the former site may be equable to the terminal age of the latter locality.
Fossil hominid remains; attributable to genus Homo and possibly species Homo erectus have been recovered from two localities, Mk 2 and Mk, along Lower Manyara Beds. On the other hand, stone tools, identified to belong to the Acheulian industrial technocomplex, were recovered from site Mk 4.
All of fossil fauna from Laetoli sites were mostly exfoliated and there shows to be little effect in terms of hydrodynamic sorting of the fossil bones. However, intense carnivore activity is witnessed due to the almost one to one ratio of proximal to distal ends. This is also true for the Lower Manyara Beds locality. Through examination of surface modifications of the fossil fauna, it has been established that there was carnivore consumption of ungulates. There is no evidence of hominid involvement that has to be testified by stone tools.
Highlights
• Protocol for extracting and analyzing pollen grains from fossil insects
• Individual fossil grains can be analyzed using a combined approach
• Simple and fast TEM embedding and sectioning protocol
• Protocol enables a taxonomic assignment of pollen
Summary
This protocol explains how to extract pollen from fossil insects with subsequent descriptions of pollen treatment. We also describe how to document morphological and ultrastructural features with light-microscopy and electron microscopy. It enables a taxonomic assignment of pollen that can be used to interpret flower-insect interactions, foraging and feeding behavior of insects, and the paleoenvironment. The protocol is limited by the state of the fossil, the presence/absence of pollen on fossil specimens, and the availability of extant pollen for comparison.
Fossil dental remains are an archive of unique information for paleobiological studies. Computed microtomography based on X-ray microfocus sources (X-μCT) and Synchrotron Radiation (SR-μCT) allow subtle quantification at the micron and sub-micron scale of the meso- and microstructural signature imprinted in the mineralized tissues, such as enamel and dentine, through high-resolution “virtual histology”. Nonetheless, depending on the degree of alterations undergone during fossilization, X-ray analyses of tooth tissues do not always provide distinct imaging contrasts, thus preventing the extraction of essential morphological and anatomical details. We illustrate here by three examples the successful application of neutron microtomography (n-μCT) in cases where X-rays have previously failed to deliver contrasts between dental tissues of fossilized specimen.
Significance
Identifying the earliest members of the genus Homo is crucial for understanding when and where selective pressures resulted in its emergence from a Plio-Pleistocene hominin taxon. Our revision of a large part of the dental fossil record from southern Africa provides evidence suggesting a paucity of Homo remains and indicates increased levels of dental variation in australopith taxa. Results of the Ba/Ca, Sr/Ca, and elemental mapping of enamel and dentine also indicate that some of the purported Homo specimens show a paleoecological signal similar to that of the australopiths.
Abstract
The origins of Homo, as well as the diversity and biogeographic distribution of early Homo species, remain critical outstanding issues in paleoanthropology. Debates about the recognition of early Homo, first appearance dates, and taxonomic diversity within Homo are particularly important for determining the role that southern African taxa may have played in the origins of the genus. The correct identification of Homo remains also has implications for reconstructing phylogenetic relationships between species of Australopithecus and Paranthropus, and the links between early Homo species and Homo erectus. We use microcomputed tomography and landmark-free deformation-based three-dimensional geometric morphometrics to extract taxonomically informative data from the internal structure of postcanine teeth attributed to Early Pleistocene Homo in the southern African hominin-bearing sites of Sterkfontein, Swartkrans, Drimolen, and Kromdraai B. Our results indicate that, from our sample of 23 specimens, only 4 are unambiguously attributed to Homo, 3 of them coming from Swartkrans member 1 (SK 27, SK 847, and SKX 21204) and 1 from Sterkfontein (Sts 9). Three other specimens from Sterkfontein (StW 80 and 81, SE 1508, and StW 669) approximate the Homo condition in terms of overall enamel–dentine junction shape, but retain Australopithecus-like dental traits, and their generic status remains unclear. The other specimens, including SK 15, present a dominant australopith dental signature. In light of these results, previous dietary and ecological interpretations can be reevaluated, showing that the geochemical signal of one tooth from Kromdraai (KB 5223) and two from Swartkrans (SK 96 and SKX 268) is consistent with that of australopiths.
Neanderthal diet has been on the spotlight of paleoanthropological research for many years. The majority of studies that tried to reconstruct the diet of Neanderthals were based on the analysis of zooarchaeological remains, stable isotopes, dental calculus and dental microwear patterns. In the past few years, there have been a few studies that linked dental macrowear patterns of Neanderthals and modern humans to diet and cultural habits. However, they mostly focused on maxillary molars. Although mandibular molars have been widely used in microwear dietary research, little is known about their usage at the macroscopic scale to detect information about human subsistence strategies. In this study, we compare the macrowear patterns of Neanderthal (NEA), fossil Homo sapiens (FHS), modern hunter-gatherers (MHG), pastoralists, early farmers and Australian Aborigines from Yuendumu mandibular molars in order to assess their utility in collecting any possible information about dietary and cultural habits among diverse human groups. We use the occlusal fingerprint analysis method, a quantitative digital approach that has been successfully employed to reconstruct the diet of living non-human primates and past human populations. Our results show macrowear pattern differences between meat-eater MHG and EF groups. Moreover, while we did not find eco-geographical differences in the macrowear patterns of the fossil sample, we found statistically significant differences between NEA and FHS inhabiting steppe/coniferous forest. This latter result could be associated with the use of distinct technological complexes in these two species, which ultimately could have allowed modern humans to exploit natural resources in a different way compared to NEA.