Branching processes in random environment

In der folgenden Arbeit werden Eigenschaften von Verzweigungsprozessen in zufälliger Umgebung (engl. branching processes in random environment, kurz BPREs) untersucht. Das Modell geht auf Smith (1969) und Athreya (1971) 
In der folgenden Arbeit werden Eigenschaften von Verzweigungsprozessen in zufälliger Umgebung (engl. branching processes in random environment, kurz BPREs) untersucht. Das Modell geht auf Smith (1969) und Athreya (1971) zurück. Ein BPRE ist ein einfaches mathematisches Modell für die Entwicklung einer Population von apomiktischen (d.h. sich ungeschlechtlich fortpflanzenden) Individuen in diskreter Zeit, wobei die Umgebungsbedingungen einen Einfluß auf den Fortpflanzungserfolg der Individuen haben. Dabei wird angenommen, dass die Umgebungsbedingungen in den einzelnen Generationen zufällig sind, und zwar unabhängig und identisch verteilt von Generation zu Generation. Man denke z.B. an eine Population von Pflanzen mit einem einjährigen Zyklus, die in jedem Jahr anderen Witterungsbedingungen ausgesetzt sind, wobei angenommen wird, dass diese sich unabhängig und identisch verteilt ändern. In Kapitel 1 wird eines der wichtigsten Hilfsmittel zur Beschreibung von BPREs, die sogenannte zugehörige Irrfahrt, eingeführt und die Klassifizierung von BPREs beschrieben. In Kapitel 2 werden bekannte Resultate, insbesondere zu kritischen, schwach subkritischen und stark subkritischen Verzweigungsprozessen, wiederholt. In Kapitel 3 wird der sogenannte intermediär subkritische Fall behandelt. Mithilfe von funktionalen Grenzwertsätzen für bedingte Irrfahrten wird die genaue Asymptotik der Überlebenswahrscheinlichkeit des Prozesses, die bereits in Vatutin (2004) bewiesen wurde, unter etwas allgemeineren Voraussetzungen gezeigt. Anschließend wird untersucht, wie häufig der Prozess, bedingt auf Überleben, nur noch aus einem Individuum besteht. Im letzten Teil des Kapitels wird ein funktionaler Grenzwertsatz für die zugehörige Irrfahrt, bedingt aufs Überleben des Prozesses, gezeigt. Diese konvergiert, richtig skaliert, gegen einen Levy-Prozess, der darauf bedingt ist, sein Minimum am Ende anzunehmen. In Kapitel 4 werden große Abweichungen von BPREs untersucht. Die Ratenfunktion des BPRE wird sowohl für den Fall mindestens geometrisch schnell abfallender Tails, als auch für den Fall von Nachkommenverteilungen mit schweren Tails bestimmt. Wie sich herausstellt, hängt die Ratenfunktion von der Ratenfunktion der zugehörigen Irrfahrt, der exponentiellen Abfallrate der Überlebenswahrscheinlichkeit sowie, bei Nachkommenverteilungen mit schweren Tails, auch von den Tails derselben ab. In der Ratenfunktion spiegeln sich die wahrscheinlichsten Wege, um Ereignisse der großen Abweichungen zu realisieren, wider, was in Kapitel 4.3 beschrieben wird. In Kapitel 4.4 wird im speziellen Fall von Nachkommenverteilungen mit gebrochen-linearer Erzeugendenfunktion die Ratenfunktion für Ereignisse bestimmt, bei denen ein superkritischer BPRE überlebt, aber klein im Vergleich zum Erwartungswert bleibt. In Kapitel 4.5 werden die großen Abweichungen, bedingt auf die Umgebung untersucht (engl. quenched). In diesem Fall können unwahrscheinliche Ereignisse nur über den Verzweigungsmechanismus und nicht mehr über eine außergewöhnliche Umgebung realisiert werden. Zum Abschluss der Dissertation werden Verzweigungsprozesse in zufälliger Umgebung, bedingt auf Überle-ben, simuliert. Dazu wird eine Konstruktion nach Geiger (1999) angewendet. Diese erlaubt es, Galton-Watson Bäume in variierender Umgebung, bedingt auf Überleben, entlang einer Ahnenlinie zu konstruieren. Der Fall geometrischer Nachkommenverteilungen, auf den wir uns in Kapitel 5 beschränken, erlaubt die explizite Berechnung der benötigten Verteilungen. Als Anwendung des Grenzwertsatzes aus Kapitel 3.1 können nun intermediär subkritische Verzweigungsprozesse, bedingt auf Überleben, wie folgt simuliert werden: Zunächst wird die Umgebung zufällig bestimmt, und zwar als Irrfahrt, bedingt darauf ihr Minimum am Ende anzunehmen. Anschließend wird, der Geiger-Konstruktion folgend, ein Verzweigungsprozess in dieser Umgebung, bedingt auf Überleben, simuliert. Zum Abschluss wird in einem kurzen Ausblick auf aktuelle Forschung verwiesen. Im Anhang befinden sich einige technische Resultate.
show moreshow less

Download full text files

Export metadata

  • Export Bibtex
  • Export RIS

Additional Services

    Share in Twitter Search Google Scholar
Metadaten
Author:Christian Böinghoff
URN:urn:nbn:de:hebis:30-94156
Referee:Götz Kersting
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2011/03/25
Year of first Publication:2010
Publishing Institution:Univ.-Bibliothek Frankfurt am Main
Granting Institution:Johann Wolfgang Goethe-Univ.
Date of final exam:2011/02/28
Release Date:2011/03/25
HeBIS PPN:23552669X
Institutes:Mathematik
Dewey Decimal Classification:510 Mathematik
Sammlungen:Universitätspublikationen
Licence (German):License Logo Veröffentlichungsvertrag für Publikationen

$Rev: 11761 $