• Treffer 30 von 111
Zurück zur Trefferliste

Entwicklung und Charakterisierung neuer Farnesoid X Rezeptor-Modulatoren

  • Der ligandaktivierte Transkriptionsfaktor Farnesoid X Rezeptor (FXR) ist neben seiner Funktion als Regulator des Gallensäurehaushaltes auch in vielen anderen metabolischen Prozessen wie Glukose- und Lipidhomöostase involviert und besitzt antiinflammatorische Eigenschaften. Gerade bei hepatischen, gastrointestinalen und systemischen Erkrankungen erscheint FXR daher als interessante Zielstruktur zur Behandlung metabolischer Erkrankungen. Basierend auf den natürlichen Liganden von FXR, den Gallensäuren, wurde Obeticholsäure (OCA) als seminsynthetisches Derivat der endogenen Chenodesoxycholsäure zu einem potenten FXR-Agonisten entwickelt. OCA wurde in mehreren Studien auf seine therapeutische Wirkung bei hepatisch-entzündlichen Krankheitsbildern wie der primären biliären Cholangitis (PBC), der nicht-alkoholischen Fettleber (engl: non-alcoholic fatty liver disease, NAFLD) und der daraus folgenden nicht-alkoholischen Steatohepatitis (NASH) getestet. Mittlerweile ist OCA als Zweitlinientherapie der PBC auf dem Arzneimittelmarkt zuge-lassen. Neben OCA gibt es noch eine große Anzahl an weiteren FXR-Liganden, deren strukturelle Diversität von Steroiden bis nicht-steroidalen kleinen Molekülen (engl: small molecules) reicht. Trotz dieser Erfolge muss das Therapiepotential von FXR noch weiter ausgebaut werden. Die meisten verfügbaren Liganden besitzen in vitro zwar eine hohe Potenz, können in ihrem pharmakokinetischen Profil oder ihrer Selektivität gegenüber anderen nukleären Rezeptoren aber nicht überzeugen. Die hier vorliegende Arbeit hat sich mit der Entwicklung unterschiedlicher Liganden für FXR beschäftigt und diese in vitro und teilweise auch in vivo charakterisiert, um sie entsprechend ihrer Wirkungsweise einzuordnen und ein besseres Verständnis der regulatorischen Funktion von FXR zu erlangen. Modulation von FXR bezieht sich nicht nur auf die agonistische Aktivierung, sondern setzt sich auch mit Antagonismus auseinander. Neben einigen Krankheitsbildern, die aus einer Überexpression von FXR resultieren, werden Antagonisten als Werkzeug (engl: tool compound) zur Aufklärung von konformellen Veränderungen von FXR und deren Auswirkung auf bestimmte Signalwege benötigt. Für die Erforschung solcher FXR-Antagonisten sollte das Potential nicht-steroidaler Antirheumatika (engl: non-steroidal anti-rheumatic drugs, NSAIDs) als etwaige Leitstrukturen untersucht werden, da in einer Veröffentlichung von Lu et al. ein FXR-Antagonismus durch NSAIDs postuliert wurde. Beim Versuch der Reproduktion der Ergebnisse von Lu et al. mit den drei NSAIDs Ibuprofen, Indometacin und Diclofenac wurde festgestellt, dass die Effekte auf den ersten Blick antagonistisch erscheinen, aber bei genaueren biochemischen Untersuchungen zweifelsfrei als Zytotoxizität identifiziert wurden. FXR-Antagonisten wie Guggulsteron oder Gly-MCA sind auf ihre therapeutische Wirksamkeit unter-sucht worden, aber die genaue Wirkweise ist noch nicht aufgeklärt. Aufgrund ihrer steroidalen Grundstruktur ist ihre Selektivität gegenüber anderen nukleären Rezeptoren fraglich. Die überschaubare Anzahl an publizierten nicht-steroidalen FXR-Antagonisten besitzt zwar moderate IC50-Werte, ihre strukturelle Diversität und Selektivität ist aber limitiert. Zur Entwicklung neuer potenter FXR-Antagonisten, die aus kleinen Molekülen (engl: small molecules) aufgebaut sind, wurde eine N-Phenylbenzamid-Leitstruktur ausgewählt. Diese Leitstruktur wurde im Rahmen der SAR-Unter-suchungen zur Entwicklung von Anthranilsäurederivaten als FXR-Partialagonisten innerhalb des Arbeitskreises entdeckt. Ausgehend von dieser Leitstruktur wurde eine mehrstufige, systematische SAR-Untersuchung durchgeführt, wodurch ein sehr potenter FXR-Antagonist entwickelt werden konnte, der anschließend umfangreich biochemisch auf FXR-Modulation, Selektivität, Löslichkeit, Toxizität und metabolische Stabilität charakterisiert wurde. Neben dem Verständnis eines Modulationsmechanismus ist die konkrete Anwendung eines FXR-Liganden zu therapeutischen Zwecken von großem Interesse. Die Beteiligung von FXR in unterschiedlichen metabolischen Prozessen macht den Rezeptor zu einem begehrten Ansatzpunkt für die Wirkstoffentwicklung. Doch die Behandlung eines multifaktoriellen Krankheitsbildes (z.B. metabolisches Syndrom, NASH) sollte sich nicht nur auf einen der gestörten Signalwege beziehen, da diese Erkrankungen durch mehrere Faktoren ausgelöst oder beeinflusst werden. Der semisynthetische FXR-Agonist OCA zeigte innerhalb der FLINT-Studie sowohl antientzündliche und antifibrotische Effekte, als auch eine Verbesserung der metabolischen Parameter mit Blick auf NAFLD und NASH. Die lösliche Epoxidhydrolase (engl: soluble epoxidhydrolase, sEH) besitzt nachweislich anti-inflammatorische und antisteatotische Effekte in der Leber. Aus diesem Grund wurde eine Leitstruktur entwickelt, die eine duale Modulation aus FXR-Aktivierung und sEH-Inhibition erzeugt. Dafür wurden die Pharmakophore eines im Arbeitskreis entwickelten FXR-Partialagonisten sowie eines potenten sEH-Inhibitors miteinander verknüpft. Zur Weiterentwicklung einer ausgewogenen hohen Potenz beider Modulationsfaktoren wurden mehrere unterschiedliche SAR-Untersuchungen als translationales Projekt in mehreren Arbeiten durchgeführt. In der hier vorliegenden Arbeit konnten dieses SAR-Untersuchungen zusammengeführt und weiterentwickelt werden. Dabei wurde ein ausgewogener und hochpotenter dualer Modulator erhalten, der umfassend in vitro und in vivo charakterisiert wurde. Die gezielte duale Aktivität, die mit dieser Substanz erreicht wurde, führt in einem Krankheitsbild zu synergistischer Ergänzung zweier Therapieoptionen. Jedoch kann eine unerwünschte Promiskuität über verwandten nukleären Faktoren zu Nebenwirkungen führen. Die Ursache dafür kann eine saure Funktion darstellen. Ein sehr potenter nicht-azider FXR-Agonist mit einem subnanomolaren EC50-Wert konnte im Arbeitskreis entwickelt werden. Diese Verbindung ist FXR-selektiv, hat keinen toxischen Effekt auf HepG2-Zellen und eine moderate metabolische Halbwertszeit. Die qRT-PCR-Untersuchung direkter und indirekter FXR-Zielgene zeigte eine verstärkte Expression nach der Inkubation mit der nicht-aziden Substanz. Dadurch lässt sich das Prinzip der Nebenwirkungsminderung durch nicht-azide Verbindungen beweisen. Insgesamt konnte in dieser Arbeit gezeigt werden, wie vielfältig und vielversprechend eine FXR-Modulation aufgebaut sein kann. Zum einen konnte über eine ausgeprägte biochemische Evaluation eine Differenzierung zwischen FXR-Antagonismus und Zelltoxizität bewiesen werden, worauf sich aufbauend eine genaue in vitro-Charakterisierung von neuen N-phenylbenzamidbasierten FXR-Antagonisten durchführen ließ, die ausgehend von einer moderat potenten Leitstruktur zu einer sehr potenten optimierten Substanz entwickelt wurden. FXR-Antagonismus und die dazu passenden tool compounds sind nicht nur von Bedeutung zum besseren Verständnis der unterschiedlichen Bindungsmodi des FXR, sondern auch potentielle Therapieansätze zur Behandlung von Krankheiten, in denen eine FXR-Überexpression stattfindet. Die agonistische Modulation von FXR wurde genauer betrachtet in der in vitro-Untersuchung nicht-azider FXR-Agonisten, die durch das Fehlen einer sauren Funktion ein hohes Maß an Selektivität und dabei eine geringe Toxizität aufwiesen. Synergistische Effekte zur Behandlung eines multifaktoriellen Krankheitsbildes durch die Kombination von FXR-Partialagonismus und sEH-Inhibition konnte durch die Entwicklung der potenten und balancierten Substanz sowohl in vitro als auch in vivo bewiesen werden, wodurch diese Verbindung ein vielversprechender Kandidat für weitere klinische Entwicklung ist.

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar
Metadaten
Verfasserangaben:Jurema SchmidtGND
URN:urn:nbn:de:hebis:30:3-484811
Verlagsort:Frankfurt am Main
Gutachter*in:Manfred Schubert-ZsilaveczGND, Dieter SteinhilberORCiDGND
Dokumentart:Dissertation
Sprache:Deutsch
Datum der Veröffentlichung (online):10.12.2018
Jahr der Erstveröffentlichung:2018
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Titel verleihende Institution:Johann Wolfgang Goethe-Universität
Datum der Abschlussprüfung:27.11.2018
Datum der Freischaltung:13.12.2018
Seitenzahl:133
HeBIS-PPN:439967139
Institute:Biochemie, Chemie und Pharmazie
DDC-Klassifikation:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Sammlung Biologie / Biologische Hochschulschriften (Goethe-Universität)
Lizenz (Deutsch):License LogoDeutsches Urheberrecht