Effects of magnetic fields in compact stars

  • Compact stars can be treated as the ultimate laboratories for testing theories of dense matter. They are not only extremely dense objects, but they are known to be associated with strong magnetic fields, fast rotation and, in certain cases, with very high temperatures. Here, we present several different approaches to model numerically the signatures and properties of these stars, namely: •The effects of strong magnetic fields on hybrid stars by using a fully general relativistic approach. We solved the coupled Maxwell-Einstein equations in a self-consistent way, taking into consideration the anisotropy of the energy-momentum tensor due purely to the magnetic field, magnetic field effects on equation of state and the interaction between matter and the magnetic field (magnetization). We showed that the effects of the magnetization and the magnetic field on the equation of state for matter do not play an important role on global properties of neutron stars (only the pure magnetic _eld contribution does). In addition, the magnetic field breaks the spherical symmetry of stars, inducing major changes in the populated degrees of freedom inside these objects and, potentially, converting a hybrid star into a hadronic star over time. •The effects of magnetic fields and rotation on the structure and composition of proto-neutron stars. We found that the magnetic field not only deforms these stars, but also significantly alters the number of trapped neutrinos in the stellar interior, together with the strangeness content and temperature in each evolution stage from a hot proto-neutron star to a cold neutron star. •The influence of the quark-hadron phase transitions in neutron stars. In particular, previous calculations have shown that fast rotating neutron stars, when subjected to a quark-hadron phase transition in their interiors, could give rise to the backbending phenomenon characterized by a spin-up era. In this work, we obtained the interesting backbending phenomenon for fast spinning neutron stars. More importantly, we showed that a magnetic field, which is assumed to be axisymmetric and poloidal, can also be enhanced due to the phase transition from normal hadronic matter to quark matter on highly magnetized neutron stars. Therefore, in parallel to the spin-up era, classes of neutron stars endowed with strong magnetic fields may go through a `magnetic-up era' in their lives. •Finally, we were also able to calculate super-heavy white dwarfs in the presence of strong magnetic fields. White dwarfs are the progenitors of supernova Type Ia explosions and they are widely used as candles to show that the Universe is expanding and accelerating. However, observations of ultraluminous supernovae have suggested that the progenitor of such an explosion should be a white dwarf with mass above the well-known Chandrasekhar limit ~ 1.4 M. In corroboration with other works, but by using a fully general relativistic framework, we obtained also strongly magnetized white dwarfs with masses M ~ 2:0 M.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Bruno Franzon
URN:urn:nbn:de:hebis:30:3-441819
Place of publication:Frankfurt am Main
Referee:Stefan SchrammGND, Marcus BleicherORCiDGND
Document Type:Doctoral Thesis
Language:English
Date of Publication (online):2017/05/04
Year of first Publication:2017
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2017/04/28
Release Date:2017/05/04
Page Number:144
HeBIS-PPN:402777042
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Sammlungen:Universitätspublikationen
Licence (German):License LogoDeutsches Urheberrecht