### Refine

#### Year of publication

- 2017 (93) (remove)

#### Document Type

- Article (54)
- Doctoral Thesis (23)
- Conference Proceeding (7)
- Master's Thesis (4)
- Contribution to a Periodical (3)
- Bachelor Thesis (1)
- Other (1)

#### Is part of the Bibliography

- no (93) (remove)

#### Keywords

- Biophysics and structural biology (2)
- Cryo-electron microscopy (2)
- D-wave (2)
- Gabor lens (2)
- Gabor-Linse (2)
- I-wave (2)
- QCD (2)
- Research article (2)
- brain stimulation (2)
- compartmental neuron model (2)

#### Institute

- Physik (93) (remove)

- A self-organized one-neuron controller for artificial life on wheels (2017)
- We study simulated animats in terms of wheeled robots with the most simple neural controller possible – a single neuron per actuator. The system is fully self-organized in the sense that the controlling neuron receives uniquely the actual angle of the wheel as an input. Non-trivial locomotion results in structured environments, with the robot determining autonomously the direction of movement (time-reversal symmetry is spontaneously broken). Our controller, which mimics the mechanism used to transmit power in steam locomotives, abstracts from the body plan of the animat, working without problems also in the presence of noise and for chains of individual two-wheeled cars. Being fully compliant our controller may be also used, in the spirit of morphological computation, as a basic unit for higher-level evolutionary algorithms.

- Conserved charge fluctuations are not conserved during the hadronic phase (2017)
- We study the correlation between the distributions of the net-charge, net-kaon, net-baryon and net-proton number at hadronization and after the final hadronic decoupling by simulating ultra relativistic heavy ion collisions with the hybrid version of the ultrarelativistic quantum molecular dynamics (UrQMD) model. We find that due to the hadronic rescattering these distributions are not strongly correlated. The calculated change of the correlation, during the hadronic expansion stage, does not support the recent paradigm, namely that the measured final moments of the experimentally observed distributions do give directly the values of those distributions at earlier times, when the system had been closer to the QCD crossover.

- Distillation of scalar exchange by coherent hypernucleus production in antiproton–nucleus collisions (2017)
- The total and angular differential cross sections of the coherent process p¯ + A Z → A (Z − 1) + ¯ are evaluated at the beam momenta 1.5 ÷ 20 GeV/c within the meson exchange model with bound proton and -hyperon wave functions. It is shown that the shape of the beam momentum dependence of the hypernucleus production cross sections with various discrete states is strongly sensitive to the presence of the scalar κ-meson exchange in the p p¯ → ¯ amplitude. This can be used as a clean test of the exchange by scalar π K correlation in coherent p A¯ reactions.

- What is the magnetic field distribution for the equation of state of magnetized neutron stars? (2017)
- In this Letter, we report a realistic calculation of the magnetic field profile for the equation of state inside strongly magnetized neutron stars. Unlike previous estimates, which are widely used in the literature, we find that magnetic fields increase relatively slowly with increasing baryon chemical potential (or baryon density) of magnetized matter. More precisely, the increase is polynomial instead of exponential, as previously assumed. Through the analysis of several different realistic models for the microscopic description of stellar matter (including hadronic, hybrid and quark models) combined with general relativistic solutions endowed with a poloidal magnetic field obtained by solving Einstein–Maxwell's field equations in a self-consistent way, we generate a phenomenological fit for the magnetic field distribution in the stellar polar direction to be used as input in microscopic calculations.

- Unparticle Casimir effect (2017)
- In this paper we present the un-Casimir effect, namely the study of the Casimir energy in the presence of an unparticle component in addition to the electromagnetic field contribution. The distinctive feature of the un-Casimir effect is a fractalization of metallic plates. This result emerges through a new dependence of the Casimir energy on the plate separation that scales with a continuous power controlled by the unparticle dimension. As long as the perfect conductor approximation is valid, we find bounds on the unparticle scale that are independent of the effective coupling constant between the scale invariant sector and ordinary matter. We find regions of the parameter space such that for plate distances around 5 μm and larger the un-Casimir bound wins over the other bounds.

- Equilibration and freeze-out of an expanding gas in a transport approach in a Friedmann–Robertson–Walker metric (2017)
- Motivated by a recent finding of an exact solution of the relativistic Boltzmann equation in a Friedmann–Robertson–Walker spacetime, we implement this metric into the newly developed transport approach Simulating Many Accelerated Strongly-interacting Hadrons (SMASH). We study the numerical solution of the transport equation and compare it to this exact solution for massless particles. We also compare a different initial condition, for which the transport equation can be independently solved numerically. Very nice agreement is observed in both cases. Having passed these checks for the SMASH code, we study a gas of massive particles within the same spacetime, where the particle decoupling is forced by the Hubble expansion. In this simple scenario we present an analysis of the freeze-out times, as function of the masses and cross sections of the particles. The results might be of interest for their potential application to relativistic heavy-ion collisions, for the characterization of the freeze-out process in terms of hadron properties.

- Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential (2017)
- The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivity, we consider the hadron resonance gas (HRG) model with repulsive baryonic interactions, which are modeled by means of the excluded volume correction. The Fourier coefficients of the imaginary part of the netbaryon density at imaginary baryochemical potential – corresponding to the fugacity or virial expansion at real chemical potential – are calculated within this model, and compared with the Nt = 12 lattice data. The lattice QCD behavior of the first four Fourier coefficients up to T 185 MeV is described fairly well by an interacting HRG with a single baryon–baryon eigenvolume interaction parameter b 1 fm3, while the available lattice data on the difference χB 2 − χB 4 of baryon number susceptibilities is reproduced up to T 175 MeV.