### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (3539) (remove)

#### Language

- German (2646)
- English (886)
- French (4)
- Spanish (2)
- Portuguese (1)

#### Has Fulltext

- yes (3539) (remove)

#### Keywords

- Deutschland (9)
- Gentherapie (8)
- HIV (8)
- Membranproteine (8)
- NMR-Spektroskopie (8)
- Schwerionenphysik (8)
- Alzheimer-Krankheit (7)
- Molekulardynamik (7)
- Nanopartikel (7)
- RNS (7)

#### Institute

- Medizin (1011)
- Biochemie und Chemie (599)
- Biowissenschaften (478)
- Physik (356)
- Pharmazie (281)
- Geowissenschaften (91)
- Psychologie (79)
- Gesellschaftswissenschaften (74)
- Informatik (55)
- Kulturwissenschaften (55)

- Nuclear reactions for astrophysics with storage rings (2014)
- This thesis presents experimental studies of proton capture and fragmentation reactions with heavy-ion storage rings. In one experiment, the 96Ru(p, γ)97Rh cross sections near the Gamow window have been measured at the ESR of GSI. In the other experiment, the measurement of the fragmentation yields has been carried out at the CSRe of IMP. It is essential to determine the cross sections of (γ, p) or (p, γ) reactions for p-process network calculations. However, only very few of the required cross sections have been measured and thus most of them rely solely on Hauser-Feshbach model predictions. The predictions of the model have always very large uncertainties because of the not well-known input parameters. These parameters can be constrained by experiments. Compared to the traditional activation technique, a novel method using a storage ring has been developed to measure the cross sections of (p, γ) reactions in inverse kinematics. This proton capture experiment has been performed at the ESR, where the circulating 96Ru44+ ions interacted with a hydrogen gas target at 9, 10 and 11 MeV/u. The nuclear reaction products of (p, p), (p, α), (p, n) and (p, γ) reactions were registered by position sensitive detectors. A Geant4 simulation code has been developed to distinguish the (p, γ) reaction products unambiguously from the background reactions. In this work, a relative normalization method has been utilized to accurately determine the cross sections of the (p, γ) reaction. The 96Ru(p, γ)97Rh cross section in the Gamow window of the p process is sensitive to two parameters, i.e., the γ-ray strength function and the optical model potential, while it is mainly sensitive to the γ-ray strength function in the energy region of our experiment. Therefore, our experimental (p, γ) cross sections near 10 MeV/u have been used to directly constrain the γ-ray strength function used in the model. Furthermore, the proton potential has also been constrained by combining our results with additional experimental data for this reaction in the lower energy region. The constrained model has been used to calculate the reaction rate over a wide temperature range, which is an extremely important input for astrophysical calculations. The yields of fragments produced by 78Kr fragmentation reactions have been measured at the CSRe for the Tz = −1/2 and Tz = 1/2 nuclei along or close to the paths of αp- and rp-processes. The measured yields present a significant odd-even staggering effect for Tz = −1/2 nuclides but they are small for Tz = 1/2 nuclides. The magnitude of this effect for four consecutive yields has been quantified using a third-order difference formula. It is found that the largest odd-even staggering is reached near the closed shells Z = 20 and Z = 28. Our experimental results could also compared with the data from other experiments with different projectile-target combinations. All these experimental data strongly support the closed shells Z = 20 and Z = 28 for the Tz = −1/2 nuclei.

- Physiology and mechanics of insect hearing organs (2014)
- Tympanal hearing organs of insects emit distortion-product otoacoustic emissions (DPOAEs) which are indicative of nonlinear mechanical sound processing. General characteristics of insect DPOAEs are comparable to those measured in vertebrates, despite distinct differences in ear anatomy. DPOAEs appear during simultaneous stimulation with two pure tones (f1<f2) as additional spectral peaks at frequencies of nf1-(n-1)f2 and nf2-(n-1)f1, with the 2f1-f2 emission being the most prominent one. Insect DPOAEs are highly vulnerable to manipulations that interfere with the animal's physiological state and disappear after death. First evidence from locusts suggested that scolopidial mechanoreceptors might play a role in frequency-specific DPOAE generation (Möckel et al. 2007). The overall aim of this thesis was to determine the source of sensitive, nonlinear hearing at high frequencies and of DPOAE generation in tympanal organs of insects. The first project of the present thesis involved general characteristics of DPOAE generation in the bushcricket Mecopoda elongata and the selective exclusion of the scolopidial mechanoreceptors using the neuroactive insectizide pymetrozine (Möckel et al. 2011). Pymetrozin appears to act highly effective and selectively on chordotonal organs, without affecting other sensory organs that lack scolopidial receptors. Pymetrozine solutions were applied as closely as possible to the scolopidia via a cuticle opening in the tibia, distally to the organ. Applications at concentrations between 10-3 and 10-7 M led to a pronounced and irreversible decrease of DPOAE amplitudes. Both this study on bushcrickets (Möckel et al. 2011) and an earlier one on locusts (Möckel et al. 2007) hence indicate the involvement of scolopidia in DPOAE generation in insects, by using complementary methods (pharmacological versus mechanical manipulation) and different animal models. The second project of the present thesis investigated the temperature-dependence of DPOAEs in the locust Locusta migratoria (Möckel et al. 2012). The suggested biological origin of acoustic two-tone distortions in insects should involve metabolic processes, whose temperature-dependence would directly affect the DPOAE generation. Body temperature shifts resulted in reversible, level- and frequency-dependent effects on the 2f1–f2 emission. Using low f2 frequencies of up to 10 kHz, a body temperature increase (median +8–9°C) led to an upward shift of DPOAE amplitudes of approximately +10 dB, whereas a temperature decrease (median –7°C) was followed by a reduction of DPOAE amplitudes by 3 to 5 dB. Both effects were only present in the range of the low-level component of DPOAE growth functions below f2 stimulus levels of approximately 30-40 dB SPL. Emissions induced by higher stimulus levels and frequencies (e.g. 12 and 18 kHz) remained unaffected by any temperature shifts. The Arrhenius activation energy of the underlying cellular component amounted to 34 and 41 kJmol-1 (for growth functions measured with 8 and 10 kHz as f2, respectively). Such activation energy values provide a hint that an intact dynein-tubulin system within the scolopidial receptors could play an essential part in the DPOAE generation in tympanal organs. The third project of this thesis demonstrated mechanical DPOAE analogs in the tympanum's vibration pattern during two-tone stimulation in the locust Schistocerca gregaria, using laser Doppler vibrometry (Möckel et al. 2014). DPOAE generation crucially relies on the integrity of the scolopidial mechanoreceptors (Möckel et al. 2007, 2011), which in locusts, directly attach to the tympanal membrane. During two-tone stimulation, DPOAEs were shown to mechanically emerge at the tympanum region where the auditory mechanoreceptors are attached. Those emission-coupled vibrations differed remarkably from tympanum waves evoked by external pure tones of the same frequency, in terms of wave propagation, energy distribution, and location of amplitude maxima. In contrast to traveling wave-like characteristics of externally evoked vibrations, intrinsically generated waves were locally restricted to the region around the high frequency receptors’ attachment position. The mechanical gradient of the tympanal membrane that leads to direction-dependent properties probably avoids the spreading of these locally evoked waves, which are then reflected and occur only in restricted areas as standing waves. Selective inactivation of mechanoreceptors by mechanical lesions did not affect the tympanum's response to external pure tones, but abolished the emission's displacement amplitude peak. These findings provide evidence that tympanal auditory receptors, comparable to the situation in mammals, comprise the required nonlinear response characteristics, which during two-tone stimulation lead to additional, highly localized deflections of the tympanum.

- Expert-based Bayesian Network modeling for environmental management (2015)
- Bayesian Networks are computer-based environmental models that are frequently used to support decision-making under uncertainty. Under data scarce conditions, Bayesian Networks can be developed, parameterized, and run based on expert knowledge only. However, the efficiency of expert-based Bayesian Network modeling is limited by the difficulty in deriving model inputs in the time available during expert workshops. This thesis therefore aimed at developing a simple and robust method for deriving conditional probability tables from expert estimates in a time-efficient way. The design and application of this new elicitation and conversion method is demonstrated using a case study in Xinjiang, Northwest China. The key characteristics of this method are its time-efficiency and the approach to use different conversion tables based on varying levels of confidence. Although the method has its limitations, e.g. it can only be applied for variables with one conditioning variable; it provides the opportunity to support the parameterization of Bayesian Networks which would otherwise remain half-finished due to time constraints. In addition, a case study in the Murray-Darling Basin, Australia, is used to compare Bayesian Network types and software to improve the presentation clarity of large Bayesian Networks. Both case studies aimed at gaining insights on how to improve the applicability of Bayesian Networks to support environmental management.

- From tomograms to molecular structure : image processing in cryo-electron tomography (2014)
- Cryo-electron tomography (CET) is a unique technique to visualize biological objects under near-to-native conditions at near-atomic resolution. CET provides three-dimensional (3D) snapshots of the cellular proteome, in which the spatial relations between macromolecular complexes in their near native cellular context can be explored. Due to the limitation of the electron dose applicable on biological samples, the achievable resolution of a tomogram is restricted to a few nanometers, higher resolution can be achieved by averaging of structures occurring in multiples. For this purpose, computational techniques such as template matching, sub-tomogram averaging and classification are essential for a meaningful processing of CET data. This thesis introduces the techniques of template matching and sub-tomogram averaging and their applications on real biological data sets. Subsequently, the problem of reference bias, which restricts the applicability of those techniques, is addressed. Two methods that estimate the reference bias in Fourier and real space are demonstrated. The real space method, which we have named the “M-free” score, provides a reliable estimation of the reference bias, which gives access to the reliability of the template matching or sub-tomogram averaging process. Thus, the “M-free” score makes those approaches more applicable to structural biology. Furthermore, a classification algorithm based on Neural Networks (NN) called “KerDenSOM3D” is introduced, which is implemented in 3D and compensates for the missing-wedge. This approach helps extracting different structural states of macromolecular complexes or increasing the class purity of data sets by eliminating outliers. A comprehensive comparison with other classification methods shows superior performance of KerDenSOM3D.

- A new relaxation technique for polynomial optimization and spectrahedral geometry problems (2014)
- This work is concerned with two topics at the intersection of convex algebraic geometry and optimization. We develop a new method for the optimization of polynomials over polytopes. From the point of view of convex algebraic geometry the most common method for the approximation of polynomial optimization problems is to solve semidefinite programming relaxations coming from the application of Positivstellensätze. In optimization, non-linear programming problems are often solved using branch and bound methods. We propose a fused method that uses Positivstellensatz-relaxations as lower bounding methods in a branch and bound scheme. By deriving a new error bound for Handelman's Positivstellensatz, we show convergence of the resulting branch and bound method. Through the application of Positivstellensätze, semidefinite programming has gained importance in polynomial optimization in recent years. While it arises to be a powerful tool, the underlying geometry of the feasibility regions (spectrahedra) is not yet well understood. In this work, we study polyhedral and spectrahedral containment problems, in particular we classify their complexity and introduce sufficient criteria to certify the containment of one spectrahedron in another one.

- Untersuchungen zur Rolle der TANK-Binding Kinase (TBK) 1 bei entzündlichen Schmerzreaktionen (2014)
- Die Wahrnehmung von Schmerzen ermöglicht es dem Organismus, auf noxische Reize zu reagieren. Der akute nozizeptive Schmerz hat somit eine natürliche Warnfunktion. Bei länger anhaltenden bzw. chronischen Schmerzen oder Nervenschädigungen kann es jedoch zu pathophysiologischen Veränderungen im Nervensystem kommen, die zur Verselbständigung des Schmerzes führen können. Unter diesen Umständen gilt der Schmerz nicht mehr als Warnsignal, sondern als eigenes Krankheitsbild. Die „International Association for the Study of Pain (IASP)“ definiert Schmerz als „ein unangenehmes Sinnes- und Gefühlserlebnis, das mit aktueller oder potenzieller Gewebsschädigung verknüpft ist oder mit Begriffen einer solchen Schädigung beschrieben wird“. Da bisher verfügbare Arzneimittel chronische Schmerzen in vielen Fällen nicht ausreichend reduzieren können und teilweise zu schwerwiegenden Nebenwirkungen führen, ist es unverzichtbar, an der Entwicklung neuer und noch spezifischer wirkenden Analgetika festzuhalten. Um Pharmaka zu entwickeln, die gezielt in den Mechanismus der Schmerzverarbeitung eingreifen können, ist es notwendig, diesen auf molekularer Ebene zu kennen und zu verstehen.

- Identität zwischen Gleichheit und Wandel : Kohärenz und Selbst-Kontinuität über die Lebensspanne in und mittels autobiographischer Lebenserzählungen (2015)
- Die vorliegende Dissertation zeigt, dass globale Kohärenz in Lebenserzählungen erst in der Adoleszenz entsteht und sich im Erwachsenenalter weiter entwickelt. Außerdem konnte gezeigt werden, dass die fragmentarische Nutzung der Lebensgeschichte in Form autobiographischen Urteilens in Zeiten tiefgreifender Lebensveränderungen zum Erhalt der Selbst-Kontinuität beiträgt.