### Refine

#### Year of publication

#### Document Type

- Article (442)
- Preprint (364)
- Doctoral Thesis (341)
- Diplom Thesis (119)
- Conference Proceeding (59)
- Bachelor Thesis (41)
- Master's Thesis (24)
- Other (24)
- Working Paper (16)
- Periodical Parts (14)

#### Keywords

- Kollisionen schwerer Ionen (30)
- heavy ion collisions (23)
- heavy ion collisions (18)
- Kollisionen schwerer Ionen (17)
- Quark-Gluon-Plasma (17)
- quark-gluon plasma (12)
- Quark Gluon Plasma (9)
- equation of state (9)
- quark gluon plasma (9)
- Hadron (8)

#### Institute

- Physik (1459) (remove)

- System-size dependence of strangeness production in high-energy A+A collisions and percolation of strings (2005)
- We argue that the shape of the system-size dependence of strangeness production in nucleus-nucleus collisions can be understood in a picture that is based on the formation of clusters of overlapping strings. A string percolation model combined with a statistical description of the hadronization yields a quantitative agreement with the data at sqrt s_NN = 17.3 GeV. The model is also applied to RHIC energies.

- Relativistic nucleus-nucleus collisions : a connection between the strangeness maximum at square root s approximately equal to 7 GeV and the QCD critical endpoint from lattice studies (2003)
- A steep maximum occurs in the Wroblewski ratio between strange and non-strange quarks created in central nucleus-nucleus collisions, of about A=200, at the lower SPS energy square root s approximately equal to 7 GeV. By analyzing hadronic multiplicities within the grand canonical statistical hadronization model this maximum is shown to occur at a baryochemical potential of about 450 MeV. In comparison, recent QCD lattice calculations at finite baryochemical potential suggest a steep maximum of the light quark susceptibility, to occur at similar mu B, indicative of "critical fluctuation" expected to occur at or near the QCD critical endpoint. This endpoint hat not been firmly pinned down but should occur in the 300 MeV < mu c B < 700 MeV interval. It is argued that central collisions within the low SPS energy range should exhibit a turning point between compression/heating, and expansion/cooling at energy density, temperature and mu B close to the suspected critical point. Whereas from top SPS to RHIC energy the primordial dynamics create a turning point far above in epsilon and T, and far below in mu B. And at lower AGS energies the dynamical trajectory stays below the phase boundary. Thus, the observed sharp strangeness maximum might coincide with the critical square root s at which the dynamics settles at, or near the QCD endpoint.

- The strangeness signal in hadron production at relativistic energy (2003)
- Strangeness enhancement is discussed as a feature specific to relativistic nuclear collisions which create a fireball of strongly interacting matter at high energy density. At very high energy this is suggested to be partonic matter, but at lower energy it should consist of yet unknown hadronic degrees of freedom. The freeze-out of this high density state to a hadron gas can tell us about properties of fireball matter. The hadron gas at the instant of its formation captures conditions directly at the QCD phase boundary at top SPS and RHIC energy, chiefly the critical temperature and energy density.

- Hadron production in relativistic nuclear collisions (2003)
- Relativistic nucleus-nucleus collisions create a "fireball" of strongly interacting matter at high energy density. At very high energy this is suggested to be partonic matter, but at lower energy it should consist of yet unknown hadronic, perhaps coherent degrees of freedom. The freeze-out of this high density state to a hadron gas can tell us about properties of fireball matter. Date (v1): Thu, 19 Dec 2002 12:52:34 GMT (146kb) Date (revised v2): Thu, 16 Jan 2003 15:11:47 GMT (146kb) Date (revised v3): Wed, 14 May 2003 12:49:35 GMT (146kb)

- Bulk hadron production at AGS and SPS (2002)
- With new data available from the SPS, at 40 and 80 GeV/A, I review the systematics of bulk hadron multiplicities, with prime focus on strangeness production. The classical concept of strangeness enhancement in central AA collisions is reviewed, in view of the statistical hadronization model which suggests to understand strangeness enhancement to arise chiefly in the transition from the canonical to the grand canonical version of that model. I. e. enhancement results from the fading away of canonical suppression. The model also captures the striking strangeness maximum observed in the vicinity of sqrt s approx 8 GeV. A puzzle remains in the understanding of apparent grand canonical order at the lower SPS, and at AGS energies.

- On transverse momentum event–by–event fluctuations in string hadronic models (1998)
- Transverse momentum event-by-event fluctuations are studied within the string-hadronic model of high energy nuclear collisions, LUCIAE. Data on non-statistical pT fluctuations in p+p interactions are reproduced. Fluctuations of similar magnitude are predicted for nucleus-nucleus collisions, in contradiction to the preliminary NA49 results. The introduction of a string clustering mechanism (Firecracker Model) leads to a further, significant increase of pT fluctuations for nucleus-nucleus collisions. Secondary hadronic interactions, as implemented in LUCIAE, cause only a small reduction of pT fluctuations.

- Quark Matter 99 summary: hadronic signals (1999)
- I review the new data presented at QM99. The main emphasis is placed on the CERN SPS hadron production systematics concluding that the boundary between a partonic and a hadronic phase has now been located at $T=180 \pm10\:MeV$ and $\epsilon \approx 1 \:GeV$ per $fm^3$.

- The parton to hadron phase transition observed in Pb+Pb collisions at 158 GeV per nucleon (1999)
- Hadronic yields and yield ratios observed in Pb+Pb collisions at the SPS energy of 158 GeV per nucleon are known to resemble a thermal equilibrium population at T=180 +/- 10 MeV, also observed in elementary e+ + e- to hadron data at LEP. We argue that this is the universal consequence of the QCD parton to hadron phase transition populating the maximum entropy state. This state is shown to survive the hadronic rescattering and expansion phase, freezing in right after hadronization due to the very rapid longitudinal and transverse expansion that is inferred from Bose-Einstein pion correlation analysis of central Pb+Pb collisions.

- The parton-hadron phase transition in central nuclear collisions at the CERN SPS (1999)
- A selection of recent data referring to Pb+Pb collisions at the SPS CERN energy of 158 GeV per nucleon is presented which might describe the state of highly excited strongly interacting matter both above and below the deconfinement to hadronization (phase) transition predicted by lattice QCD. A tentative picture emerges in which a partonic state is indeed formed in central Pb+Pb collisions which hadronizes at about T = 185 MeV, and expands its volume more than tenfold, cooling to about 120 MeV before hadronic collisions cease. We suggest further that all SPS collisions, from central S+S onward, reach that partonic phase, the maximum energy density increasing with more massive collision systems.

- Probing the density dependence of the symmetry potential at low and high densities (2005)
- We investigate the sensitivity of several observables to the density dependence of the symmetry potential within the microscopic transport model UrQMD (ultrarelativistic quantum molecular dynamics model). The same systems are used to probe the symmetry potential at both low and high densities. The influence of the symmetry potentials on the yields of pi-, pi+, the pi-/pi+ ratio, the n/p ratio of free nucleons and the t/3He ratio are studied for neutron-rich heavy ion collisions (208Pb+208Pb, 132Sn+124Sn, 96Zr+96Zr) at E_b=0.4A GeV. We find that these multiple probes provides comprehensive information on the density dependence of the symmetry potential.