## Mathematik

### Refine

#### Year of publication

- 2001 (16) (remove)

#### Document Type

- Article (7)
- Diplom Thesis (2)
- Doctoral Thesis (2)
- Working Paper (2)
- Book (1)
- Other (1)
- Report (1)

#### Keywords

- Commitment schemes (1)
- Galerkin Approximation (1)
- Heat kernel (1)
- Hinterlegungsverfahren <Kryptologie> ; Robustheit ; Hintertür <Informatik> (1)
- Laplace operator on graphs (1)
- Linear-Implicit Scheme (1)
- Parabolic SPDE (1)
- Strong Taylor Scheme (1)
- Zopfgruppe ; Lineare Darstellung ; Kettengruppe ; Homologiegruppe ; Automorphismengruppe ; Kettenkomplex (1)
- chosen ciphertext attack (1)

#### Institute

- Mathematik (16)
- Informatik (7)

- Linear-implicit strong schemes for Itô-Galkerin approximations of stochastic PDEs (2001)
- Linear-implicit versions of strong Taylor numerical schemes for finite dimensional Itô stochastic differential equations (SDEs) are shown to have the same order as the original scheme. The combined truncation and global discretization error of an gamma strong linear-implicit Taylor scheme with time-step delta applied to the N dimensional Itô-Galerkin SDE for a class of parabolic stochastic partial differential equation (SPDE) with a strongly monotone linear operator with eigenvalues lambda 1 <= lambda 2 <= ... in its drift term is then estimated by K(lambda N -½ + 1 + delta gamma) where the constant K depends on the initial value, bounds on the other coefficients in the SPDE and the length of the time interval under consideration. AMS subject classifications: 35R60, 60H15, 65M15, 65U05.

- Homfly skeins and the Hopf link (2001)
- This thesis exhibits skeins based on the Homfly polynomial and their relations to Schur functions. The closures of skein-theoretic idempotents of the Hecke algebra are shown to be specializations of Schur functions. This result is applied to the calculation of the Homfly polynomial of the decorated Hopf link. A closed formula for these Homfly polynomials is given. Furthermore, the specialization of the variables to roots of unity is considered. The techniques are skein theory on the one side, and the theory of symmetric functions in the formulation of Schur functions on the other side. Many previously known results have been proved here by only using skein theory and without using knowledge about quantum groups.

- A cost-effective pay-per-multiplication comparison method for millionaires (2001)
- Based on the quadratic residuosity assumption we present a non-interactive crypto-computing protocol for the greater-than function, i.e., a non-interactive procedure between two parties such that only the relation of the parties' inputs is revealed. In comparison to previous solutions our protocol reduces the number of modular multiplications significantly. We also discuss applications to conditional oblivious transfer, private bidding and the millionaires' problem.

- Universally composable commitments (2001)
- We propose a new security measure for commitment protocols, called Universally Composable (UC) Commitment. The measure guarantees that commitment protocols behave like an \ideal commitment service," even when concurrently composed with an arbitrary set of protocols. This is a strong guarantee: it implies that security is maintained even when an unbounded number of copies of the scheme are running concurrently, it implies non-malleability (not only with respect to other copies of the same protocol but even with respect to other protocols), it provides resilience to selective decommitment, and more. Unfortunately two-party uc commitment protocols do not exist in the plain model. However, we construct two-party uc commitment protocols, based on general complexity assumptions, in the common reference string model where all parties have access to a common string taken from a predetermined distribution. The protocols are non-interactive, in the sense that both the commitment and the opening phases consist of a single message from the committer to the receiver.

- Security of DL-encryption and signatures against generic attacks - a survey (2001)
- We survey recent results on the security of DL-cryptosystems and DL-signatures against generic attacks assuming the random oracle model (ROM) and the generic group model (GM). We comment on the relevance of these results towards applications.

- New practical algorithms for the approximate shortest lattice vector (2001)
- We present a practical algorithm that given an LLL-reduced lattice basis of dimension n, runs in time O(n3(k=6)k=4+n4) and approximates the length of the shortest, non-zero lattice vector to within a factor (k=6)n=(2k). This result is based on reasonable heuristics. Compared to previous practical algorithms the new method reduces the proven approximation factor achievable in a given time to less than its fourthth root. We also present a sieve algorithm inspired by Ajtai, Kumar, Sivakumar [AKS01].

- Security of blind discrete log signatures against interactive attacks (2001)
- We present a novel parallel one-more signature forgery against blind Okamoto-Schnorr and blind Schnorr signatures in which an attacker interacts some times with a legitimate signer and produces from these interactions signatures. Security against the new attack requires that the following ROS-problem is intractable: find an overdetermined, solvable system of linear equations modulo with random inhomogenities (right sides). There is an inherent weakness in the security result of POINTCHEVAL AND STERN. Theorem 26 [PS00] does not cover attacks with 4 parallel interactions for elliptic curves of order 2200. That would require the intractability of the ROS-problem, a plausible but novel complexity assumption. Conversely, assuming the intractability of the ROS-problem, we show that Schnorr signatures are secure in the random oracle and generic group model against the one-more signature forgery.