Computational modeling of nanomaterials for biomedical applications

  • Nanomaterials, i.e., materials that are manufactured at a very small spatial scale, can possess unique physical and chemical properties and exhibit novel characteristics as compared to the same material without nanoscale features. The reduction of size down to the nanometer scale leads to the abundance of potential applications in different fields of technology. For instance, tailoring the physicochemical properties of nanomaterials for modification of their interaction with a biological environment has been reflected in a number of biomedical applications. Strategies to choose the size and the composition of nanoscale systems are often hindered by a limited understanding of interactions that are difficult to study experimentally. However, this goal can be achieved by means of advanced computer simulations. This thesis explores, from a theoretical and a computational viewpoints, stability, electronic and thermo-mechanical properties of nanoscale systems and materials which are related to biomedical applications. We examine the ability of existing classical interatomic potentials to reproduce stability and thermo-mechanical properties of metal systems, assuming that these potentials have been fitted to describe ground-state properties of the perfect bulk materials. It is found that existing classical interatomic potentials poorly describe highly-excited vibrational states when the system is far from the potential energy minimum. On the other hand, construction of a reliable computational model is essential for further development of nanomaterials for applications. A new interatomic potential that is able to correctly reproduce both the melting temperature and the ground-state properties of different metals, such as gold, platinum, titanium, and magnesium, by means of classical molecular dynamics simulations is proposed in this work. The suggested modification of a many-body potential has a general nature and can be utilized for similar numerical exploration of thermo-mechanical properties of a broad range of molecular and solid state systems experiencing phase transitions. The applicability of the classical interatomic potentials to the description of nanoscale systems, consisting of several tens-hundreds of atoms, is also explored in this study. This issue is important, for instance, in the case of nanostructured materials, where grains or nanocrystals have a typical size of about a few nanometers. We validate classical potentials through the comparison with density-functional theory calculations of small atomic clusters made of titanium and nickel. By this analysis, we demonstrate that the classical potentials fitted to describe ground-state properties of a bulk material can describe the energetics of nanoscale systems with a reasonable accuracy. In this work, we also analyze electronic properties of nanometer-size nanoparticles made of gold, platinum, silver, and gadolinium; nanoparticles composed of these materials are of current interest for radiation therapy applications. We focus on the production of low-energy electrons, having the kinetic energy from a few electronvolts to several tens of electronvolts. It is currently established that the low-energy secondary electrons of such energies play an important role in the nanoscale mechanisms of biological damage resulting from ionizing radiation. We provide a methodology for analyzing the dynamic response of nanoparticles of the experimentally relevant sizes, namely of about several nanometers, exposed to ionizing radiation. Because of a large number of constituent atoms (about 1000 −10000 atoms) and consequently high computational costs, the electronic properties of such systems can hardly be described by means of ab initio methods based on a quantum-mechanical treatment of electrons, and this analysis should rely on model approaches. By comparing the response of smaller systems (of about 1 nm size) calculated within the ab initio- and the model framework, we validate this methodology and make predictions for the electron production in larger systems. We have revealed that a significant increase in the number of the low-energy electrons emitted from nanometer-size noble metal nanoparticles arises from collective electron excitations formed in the systems. It is demonstrated that the dominating mechanisms of electron yield enhancement are related to the formation of plasmons excited in a whole system and of atomic giant resonances formed due to excitation of valence d electrons in individual atoms of a nanoparticle. Being embedded in a biological medium, the noble metal nanoparticles thus represent an important source of low-energy electrons, able to produce a significant irrepairable damage in biological systems. A general methodology for studying electronic properties of nanosystems is used to make quantitative predictions for electron production by non-metal nanoparticles. The analysis illustrates that due to a prominent collective response to an external electric field, carbon nanoparticles embedded in a biological medium also enhance the production of low-energy electrons. The number of low-energy electrons emitted from carbon nanoparticles is demonstrated to be several times higher as compared to the case of liquid water.

Download full text files

Export metadata

Author:Alexey Verkhovtsev
Place of publication:Frankfurt am Main
Referee:Andrey V. Solov’yovORCiDGND, Stefan SchrammGND, Marcus BleicherORCiDGND
Advisor:Andrey V. Solov’yov, Stefan Schramm
Document Type:Doctoral Thesis
Date of Publication (online):2016/07/14
Year of first Publication:2016
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Granting Institution:Johann Wolfgang Goethe-Universität
Date of final exam:2016/07/12
Release Date:2016/07/14
Page Number:152
Institutes:Physik / Physik
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
Licence (German):License LogoDeutsches Urheberrecht