Das Suchergebnis hat sich seit Ihrer Suchanfrage verändert. Eventuell werden Dokumente in anderer Reihenfolge angezeigt.
  • Treffer 2 von 6
Zurück zur Trefferliste

EEG microstate sequences from different clustering algorithms are information-theoretically invariant

  • We analyse statistical and information-theoretical properties of EEG microstate sequences, as seen through the lens of five different clustering algorithms. Microstate sequences are computed for n = 20 resting state EEG recordings during wakeful rest. The input for all clustering algorithms is the set of EEG topographic maps obtained at local maxima of the spatial variance. This data set is processed by two classical microstate clustering algorithms (1) atomize and agglomerate hierarchical clustering (AAHC) and (2) a modified K-means algorithm, as well as by (3) K-medoids, (4) principal component analysis (PCA) and (5) fast independent component analysis (Fast-ICA). Using this technique, EEG topographies can be substituted with microstate labels by competitive fitting based on spatial correlation, resulting in a symbolic, non-metric time series, the microstate sequence. Microstate topographies and symbolic time series are further analyzed statistically, including static and dynamic properties. Static properties, which do not contain information about temporal dependencies of the microstate sequence include the maximum similarity of microstate maps within and between the tested clustering algorithms, the global explained variance and the Shannon entropy of the microstate sequences. Dynamic properties are sensitive to temporal correlations between the symbols and include the mixing time of the microstate transition matrix, the entropy rate of the microstate sequences and the location of the first local maximum of the autoinformation function. We also test the Markov property of microstate sequences, the time stationarity of the transition matrix and detect periodicities by means of time-lagged mutual information. Finally, possible long-range correlations of microstate sequences are assessed via Hurst exponent estimation. We find that while static properties partially reflect properties of the clustering algorithms, information-theoretical quantities are largely invariant with respect to the clustering method used. As each clustering algorithm has its own profile of computational speed, ease of implementation, determinism vs. stochasticity and theoretical underpinnings, our results convey a positive message concerning the free choice of method and the comparability of results obtained from different algorithms. The invariance of these quantities implies that the tested properties are algorithm-independent, inherent features of resting state EEG derived microstate sequences.

Volltext Dateien herunterladen

Metadaten exportieren

Metadaten
Verfasserangaben:Frederic von WegnerORCiDGND, Paul Knaut, Helmut LaufsORCiDGND
URN:urn:nbn:de:hebis:30:3-474486
DOI:https://doi.org/10.3389/fncom.2018.00070
ISSN:1662-5188
Pubmed-Id:https://pubmed.ncbi.nlm.nih.gov/30210325
Titel des übergeordneten Werkes (Englisch):Frontiers in computational neuroscience
Verlag:Frontiers Research Foundation
Verlagsort:Lausanne
Sonstige beteiligte Person(en):Urs Ribary
Dokumentart:Wissenschaftlicher Artikel
Sprache:Englisch
Jahr der Fertigstellung:2018
Datum der Erstveröffentlichung:27.08.2018
Veröffentlichende Institution:Universitätsbibliothek Johann Christian Senckenberg
Datum der Freischaltung:01.11.2018
Freies Schlagwort / Tag:EEG microstates; entropy; information theory; markovianity; mutual information; stationarity
Jahrgang:12
Ausgabe / Heft:Art. 70
Seitenzahl:14
Erste Seite:1
Letzte Seite:14
Bemerkung:
Copyright © 2018 von Wegner, Knaut and Laufs. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
HeBIS-PPN:440663717
Institute:Medizin / Medizin
DDC-Klassifikation:6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Sammlungen:Universitätspublikationen
Open-Access-Publikationsfonds:Medizin
Lizenz (Deutsch):License LogoCreative Commons - Namensnennung 4.0