• search hit 2 of 2
Back to Result List

Phylogenetic conflict in bears identified by automated discovery of transposable element insertions in low coverage genomes

  • Compared to sequence analyses, phylogenetic reconstruction from transposable elements (TEs) offers an additional perspective to study evolutionary processes. However, detecting phylogenetically informative TE insertions requires tedious experimental work, limiting the power of phylogenetic inference. Here, we analyzed the genomes of seven bear species using high throughput sequencing data to detect thousands of TE insertions. The newly developed pipeline for TE detection called TeddyPi (TE detection and discovery for Phylogenetic Inference) obtained 150,513 high-quality TE insertions in the genomes of ursine and tremarctine bears. By integrating different TE insertion callers and using a stringent filtering approach, the TeddyPi pipeline produced highly reliable TE insertion calls, which were confirmed by extensive in vitro validation experiments. Screening for single nucleotide substitutions in the flanking regions of the TEs show that these substitutions correlate with the phylogenetic signal from the TE insertions. Our phylogenomic analyses show that TEs are a major driver of genomic variation in bears and enabled phylogenetic reconstruction of a well-resolved species tree, even with strong signals for incomplete lineage sorting and introgression. The analyses show that the Asiatic black, sun and sloth bear form a monophyletic clade. TeddyPi is open source and can be adapted to various TE and structural variation callers. The pipeline makes it easy to confidently extract thousands of TE insertions even from low coverage genomes of non-model organisms, opening new possibilities for biologists to study phylogenies, evolutionary processes as well as rates and patterns of (retro-)transposition and structural variation.
Metadaten
Author:Fritjof LammersORCiDGND, Susanne GallusGND, Axel JankeORCiD, Maria A. NilssonORCiD
URN:urn:nbn:de:hebis:30:3-724313
DOI:https://doi.org/10.1101/123901
Parent Title (English):bioRxiv
Document Type:Preprint
Language:English
Date of Publication (online):2017/04/04
Date of first Publication:2017/04/04
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2023/04/17
Issue:123901
Page Number:45
HeBIS-PPN:509823416
Institutes:Angeschlossene und kooperierende Institutionen / Senckenbergische Naturforschende Gesellschaft
Biowissenschaften / Institut für Ökologie, Evolution und Diversität
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY-NC-ND - Namensnennung - Nicht kommerziell - Keine Bearbeitungen 4.0 International