• search hit 2 of 3
Back to Result List

Mapping interactions between the Ca2+-ATPase and its substrate ATP with infrared spectroscopy

  • Infrared spectroscopy has been used to map substrate-protein interactions: the conformational changes of the sarcoplasmic reticulum Ca(2+)-ATPase upon nucleotide binding and ATPase phosphorylation were monitored using the substrate ATP and ATP analogues (2'-deoxy-ATP, 3'-deoxy-ATP, and inosine 5'-triphosphate), which were modified at specific functional groups of the substrate. Modifications to the 2'-OH, the 3'-OH, and the amino group of adenine reduce the extent of binding-induced conformational change of the ATPase, with particularly strong effects observed for the latter two. This demonstrates the structural sensitivity of the nucleotide-ATPase complex to individual interactions between nucleotide and ATPase. All groups studied are important for binding and interactions of a given ligand group with the ATPase depend on interactions of other ligand groups. Phosphorylation of the ATPase was observed for ITP and 2'-deoxy-ATP, but not for 3'-deoxy-ATP. There is no direct link between the extent of conformational change upon nucleotide binding and the rate of phosphorylation showing that the full extent of the ATP-induced conformational change is not mandatory for phosphorylation. As observed for the nucleotide-ATPase complex, the conformation of the first phosphorylated ATPase intermediate E1PCa(2) also depends on the nucleotide, indicating that ATPase states have a less uniform conformation than previously anticipated.

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar
Metadaten
Author:Man LiuORCiDGND, Andreas BarthORCiD
URN:urn:nbn:de:hebis:30:3-760960
DOI:https://doi.org/10.1074/jbc.M212403200
ISSN:0021-9258
Pubmed Id:https://pubmed.ncbi.nlm.nih.gov/12538577
Parent Title (English):Journal of biological chemistry
Publisher:American Society for Biochemistry and Molecular Biology Publications
Place of publication:Bethesda, Md
Document Type:Article
Language:English
Date of Publication (online):2021/01/04
Year of first Publication:2003
Publishing Institution:Universitätsbibliothek Johann Christian Senckenberg
Release Date:2023/09/21
Volume:278
Issue:12
Page Number:7
First Page:10112
Last Page:10118
HeBIS-PPN:513165754
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 530 Physik
5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Sammlungen:Universitätspublikationen
Licence (German):License LogoCreative Commons - CC BY - Namensnennung 4.0 International